
JNCIE
Juniper® Networks 
Certified Internet Expert

Study Guide

by Harry Reynolds

This book was originally developed by Juniper Networks Inc. in conjunction with 
Sybex Inc.   It is being offered in electronic format because the original book 
(ISBN: 0-7821-4069-6) is now out of print. Every effort has been made to remove 
the original publisher's name and references to the original bound book and its 
accompanying CD. The original paper book may still be available in used book 
stores or by contacting, John Wiley & Sons, Publishers.  www.wiley.com.

Copyright © 2004-6 by Juniper Networks Inc. All rights reserved. 

This publication may be used in assisting students to prepare for a Juniper 
JNCIE exam but Juniper Networks Inc. cannot warrant that use of this 
publication will ensure passing the relevant exam. 



 

As with my first book in this series, I once again dedicate this effort to my family, 

who persevered through my “virtual” absence as I endeavored to complete this 

project. Anita, I love you with all that I am, and I promise you that the extension 

cord’s lease on our lovely home is rapidly coming due. I am happy to report to my 

daughters, Christina and Marissa, that their homework tutor will soon be returning 

to a full-time schedule. The general lack of combustion in my home office through-

out this project has instilled in me a certain affinity for a special 20-amp circuit 

breaker that diligently stood guard over all that really matters in life—my family 

and my home. Ladies, you may start your hair dryers!



 

Acknowledgments

 

There are numerous people who deserve a round of thanks for assisting with this book. Special 
thanks go out to Jason Rogan and Patrick Ames for making the whole Juniper Networks 
book initiative possible. I would also like to thank Mae Lum and Maureen Adams at Sybex for 
keeping me on schedule and for getting the whole thing rolling, and also to my copyeditor, 
Linda Stephenson, who dealt mightily with my passive writing style and proclivity towards 
excessive comma usage. Once again, Peter Moyer and Josef Buchsteiner proved invaluable 
in the role of technical editors.

I would also like to thank Juniper Networks and my manager, Scott Edwards, for making 
this effort possible through arrangements that allowed me to access, borrow, or buy the 
equipment needed to build the test bed that formed the basis of this book.

—Harry Reynolds

Sybex would like to thank compositors Rozi Harris and Bill Clark, and indexer Ted Laux 
for their valuable contributions to this book.



 

Contents at a Glance 

 

Introduction

 

 

 

xv

 

Chapter 1

 

Network Discovery and Verification 1

 

Chapter 2

 

MPLS and Traffic Engineering 123

 

Chapter 3

 

Firewall Filter and Traffic Sampling 275

 

Chapter 4

 

Multicast 403

 

Chapter 5

 

IPv6 509

 

Chapter 6

 

Class of Service 619

 

Chapter 7

 

VPNs 697



 

Contents 

 

Introduction

 

 

 

xv

 

Chapter 1 Network Discovery and Verification 1

 

Task 1: Verify OoB Network 2
The OoB Topology 3
Accessing Routers Using Telnet 4

Task 2: Discover and Verify IGP Topology and Route 
Redistribution 5

Discovering and Verifying Core IGP 7
Discovering and Verifying IGP Redistribution 10
Summary of IGP Discovery 19

Task 3: IBGP Discovery and Verification 20
Task 4: EBGP and Routing Policy Discovery 24

P1 Peering 24
T1 Peering 28
Customer Peering 30
Final EBGP and Policy Checks 34
Summary of EBGP and Policy Discovery 35

Complete Configurations for OSPF Baseline Network 37
Summary 66
Case Study: IS-IS Network Discovery and Validation Techniques 67

Network Discovery Case Study Configuration 82
Spot the Issues: Review Questions 117
Spot the Issues: Answers to Review Questions 121

 

Chapter 2 MPLS and Traffic Engineering 123

 

LDP Signaled LSPs 126
Configuring Interfaces for MPLS Support 126
Enable MPLS Processing on the Router 130
Enabling the LDP Instance 132
Verifying LDP Signaled LSPs 134
LDP Summary 141

RSVP Signaled LSPs 141
Configuring Baseline MPLS Support on Remaining Routers 141
Enabling RSVP Signaling 148
Configuring and Verifying RSVP Signaled LSP 151

Constrained Routing 157
ERO Constraints 158
Constrained Shortest Path First 161
RSVP Summary 172



 

Contents

 v

vi

 

Routing Table Integration 172
Installing Prefixes 172
Traffic Engineering Shortcuts 179
Prefix Mapping 184
Summary of Routing Table Integration 193

Traffic Protection 194
Secondary Paths 194
Fast Reroute and Link Protection 201
Preemption 208
Summary of Traffic Protection 214

Miscellaneous MPLS Capabilities and Features 214
Summary 223
Case Study: MPLS and Traffic Engineering 223

MPLS Case Study Analysis 226
MPLS and Traffic Engineering Case Study Configurations 247

Spot the Issues: Review Questions 269
Spot the Issues: Answers to Review Questions 272

 

Chapter 3 Firewall Filter and Traffic Sampling 275

 

Firewall Filters 277
RE Protection 279
Transit Filtering 299
Policing 307
Firewall Filter Summary 321

Filter Based Forwarding 321
Configuring FBF 322
Verifying FBF 326
Filter Based Forwarding Summary 329

Traffic Sampling 329
Traffic Sampling 329
Cflowd Export 334
Port Mirroring 338
Traffic Sampling Summary 343

Summary 344
Case Study: Firewall Filter and Traffic Sampling 346

Firewall Filtering Case Study Analysis 349
Firewall Filter and Traffic Sampling Case Study 

Configurations 376
Spot the Issues: Review Questions 394
Spot the Issues: Answers to Review Questions 400

 

Chapter 4 Multicast 403

 

IGMP 406
Configuring IGMP 407
IGMP Summary 411



 vv

vii

 

Contents

 

DVMRP 412
Configuring DVMRP 413
DVMRP Summary 429

Protocol Independent Multicast 429
PIM Dense Mode 430
PIM Sparse Mode 441
PIM Summary 464

MSDP 465
Configure Any-Cast and MSDP 465
Configuring Interdomain Multicast 472
MSDP Summary 479

Summary 480
Case Study: Multicast 480

Multicast Case Study Analysis 481
Multicast Case Study Configurations 494

Spot the Issues: Review Questions 500
Spot the Issues: Answers to Review Questions 505

 

Chapter 5 IPv6 509

 

IPv6 Addressing and Router Advertisements 510
Assigning IPv6 Addresses 513
Configuring Router Advertisements 515
IPv6 Addressing and Neighbor Discovery Summary 522

IPv6 and IGP Support 522
Configuring RIPng 523
Configuring OSPF3 533
Summary of IPv6 IGP Support 540

BGP Support for IPv6 540
Configuring Native IPv6 EBGP Peering 542
Configuring IBGP Peering to Support IPv6 546

Tunneling IPv6 561
Preliminary Configuration 562
IP-IP Tunnel Configuration 565
Adjusting IBGP and EBGP Policy 569
IPv6 Tunneling Summary 577

Summary 577
Case Study: IPv6 578

IPv6 Case Study Analysis 580
IPv6 Case Study Configurations 597

Spot the Issues: Review Questions 616
Spot the Issues: Answers to Review Questions 618

 

Chapter 6 Class of Service 619

 

Packet Classification and Forwarding Classes 623
Multifield Classification 624



 

Contents

 v

viii

 

BA Classification 631
Classification Summary 635

Rewrite Markers 635
Configuring DSCP Rewrite 636
Loss Priority 642
Rewrite/Marking Summary 650

Schedulers 651
Configuring Schedulers 651
RED Profiles 661
Scheduler Summary 666

Summary 666
Case Study: CoS 667

CoS Case Study Analysis 669
CoS Case Study Configurations 680

Spot the Issues: Review Questions 689
Spot the Issues: Answers to Review Questions 692

 

Chapter 7 VPNs 697

 

Layer 3 VPNs (2547 bis) 699
Preliminary Configuration 700
Preliminary Configuration Summary 708
PE-CE BGP and Static Routing 708
PE-CE OSPF Routing 727
Layer 3 VPN Summary 746

Layer 2 VPNs (Draft-Kompella and Draft-Martini) 746
Draft-Kompella 747
Draft-Martini 766
Layer 2 VPN Summary 773

Summary 774
Case Study: VPNs 775

VPN Case Study Analysis 778
VPN Case Study Configurations 807

Spot the Issues: Review Questions 820
Spot the Issues: Answers to Review Questions 825



 

Table of Case Studies 

 

IS-IS Network Discovery and Validation Techniques 67

MPLS and Traffic Engineering 223

Firewall Filter and Traffic Sampling 346

Multicast 480

IPv6 578

CoS 667

VPNs 775



 

Introduction

 

Greetings and welcome to the world of Juniper Networks. This introductory section serves 
as a location to pass on to you some pertinent information concerning the Juniper Networks 
Technical Certification Program. In addition, you’ll find information about how the book itself 
is laid out and what it contains. Finally, we’ll review some technical information that you 
should already know before reading this book.

 

Juniper Networks Technical Certification Program

 

The Juniper Networks Technical Certification Program (JNTCP) consists of two platform-
specific, multitiered tracks. Each exam track allows participants to demonstrate their competence 
with Juniper Networks technology through a combination of written proficiency and hands-on 
configuration exams. Successful candidates demonstrate a thorough understanding of Internet 
technology and Juniper Networks platform configuration and troubleshooting skills.

The two JNTCP tracks focus on the M-series Routers & T-series Routing Platforms and the 
ERX Edge Routers, respectively. While some Juniper Networks customers and partners work 
with both platform families, it is most common to find individuals working with only one or the 
other platform. The two different certification tracks allow candidates to pursue specialized 
certifications, which focus on the platform type most pertinent to their job functions and 
experience. Candidates wishing to attain a certification on both platform families are 
welcome to do so, but are required to pass the exams from each track for their desired 
certification level.

 

This book covers the M-series & T-series track. For information on the ERX Edge 
Routers certification track, please visit the JNTCP website at 

 

www.juniper.net/

 

certification

 

.

 

M-series Routers & T-series Routing Platforms

 

The M-series Routers certification track consists of four tiers. They include the following:

 

Juniper Networks Certified Internet Associate (JNCIA)

 

The Juniper Networks Certified 
Internet Associate, M-series, T-series Routers (JNCIA-M) certification does not have any 
prerequisites. It is administered at Prometric testing centers worldwide.

 

Juniper Networks Certified Internet Specialist (JNCIS)

 

The Juniper Networks Certified 
Internet Specialist, M-series, T-series Routers (JNCIS-M) certification also does not have 
any prerequisites. Like the JNCIA-M, it is administered at Prometric testing centers 
worldwide.

 

Juniper Networks Certified Internet Professional (JNCIP)

 

The Juniper Networks Certified 
Internet Professional, M-series, T-series Routers (JNCIP-M) certification requires that candidates 



 

xi

 

Introduction

 

first obtain the JNCIS-M certification. The hands-on exam is administered at Juniper Networks 
offices in select locations throughout the world.

 

Juniper Networks Certified Internet Expert (JNCIE)

 

The Juniper Networks Certified Internet 
Expert, M-series, T-series Routers (JNCIE-M) certification requires that candidates first obtain 
the JNCIP-M certification. The hands-on exam is administered at Juniper Networks offices in 
select locations throughout the world.

 

F I G U R E 1

 

JNTCP M-series Routers & T-series Routing Platforms certification track

 

The JNTCP M-series Routers & T-series Routing Platforms certification track 
covers the M-series and T-series routing platforms as well as the JUNOS 
software configuration skills required for both platforms. The lab exams are 

 

conducted using M-series routers only.

 

Juniper Networks Certified Internet Associate

 

The JNCIA-M certification is the first of the four-tiered M-series Routers & T-series Routing 
Platforms track. It is the entry-level certification designed for experienced networking pro-
fessionals with beginner-to-intermediate knowledge of the Juniper Networks M-series and 
T-series routers and the JUNOS software. The JNCIA-M (exam code JN0-201) is a computer-
based, multiple-choice exam delivered at Prometric testing centers globally for U.S. $125. 
It is a fast-paced exam that consists of 60 questions to be completed within 60 minutes. The 
current passing score is set at 70 percent.

JNCIA-M exam topics are based on the content of the Introduction to Juniper Networks 
Routers, M-series (IJNR-M) instructor-led training course. Just as IJNR-M is the first class most 
students attend when beginning their study of Juniper Networks hardware and software, the 
JNCIA-M exam should be the first certification exam most candidates attempt. The study 
topics for the JNCIA-M exam include:
�

 

System operation, configuration, and troubleshooting
�

 

Routing protocols—BGP, OSPF, IS-IS, and RIP
�

 

Protocol-independent routing properties
�

 

Routing policy
�

 

MPLS
�

 

Multicast

JNCIA JNCIS JNCIP JNCIE

Juniper Networks Technical Certification Program (JNTCP)
M-series Routers Track



 

Introduction

 

xii

 

Please be aware that the JNCIA-M certification is 

 

not

 

 a prerequisite for further 
certification in the M-series Routers & T-series Routing Platforms track. The 
purpose of the JNCIA-M is to validate a candidate’s skill set at the Associate 
level and it is meant to be a stand-alone certification fully recognized and 
worthy of pride of accomplishment. Additionally, it can be used as a stepping-

 

stone before attempting the JNCIS-M exam.

 

Juniper Networks Certified Internet Specialist

 

The JNCIS-M was originally developed as the exam used to prequalify candidates for admittance 
to the practical hands-on certification exam. While it still continues to serve this purpose, this 
certification has quickly become a sought-after designation in its own right. Depending on the 
candidates’ job functions, many have chosen JNCIS-M as the highest level of JNTCP certification 
needed to validate their skill set. Candidates also requiring validation of their hands-on 
configuration and troubleshooting ability on the M-series and T-series routers and the JUNOS 
software use the JNCIS-M as the required prerequisite to the JNCIP-M practical exam.

The JNCIS-M exam tests for a wider and deeper level of knowledge than does the JNCIA-M 
exam. Question content is drawn from the documentation set for the M-series routers, the 
T-series routers, and the JUNOS software. Additionally, on-the-job product experience and an 
understanding of Internet technologies and design principles are considered to be common 
knowledge at the Specialist level.

The JNCIS-M (exam code JN0-302) is a computer-based, multiple-choice exam delivered at 
Prometric testing centers globally for U.S. $125. It consists of 75 questions to be completed 
in 90 minutes. The current passing score is set at 70 percent.

 

70 Percent Seems Really Low!

 

The required score to pass an exam can be one indicator of the exam’s difficulty, but not in the 
way that many candidates might assume. A lower pass score on an exam does 

 

not

 

 usually 
indicate an easier exam. Ironically, it often indicates the opposite—it’s harder.

The JNTCP exams are extensively beta tested and reviewed. The results are then statistically 
analyzed based on multiple psychometric criteria. Only after this analysis is complete does the 
exam receive its appropriate passing score. In the case of the JNCIA-M exam, for example, 
requiring the passing score to be higher than 70 percent would mean that the exam’s target 
audience would have been excluded from passing. In effect, the exam would have been more 
difficult to pass. Over time, as more exam statistics are collected, or the exam questions them-
selves are updated, the passing score may be modified to reflect the exam’s new difficulty 
level. The end result is to ensure that the exams are passable by the members of the target 
audience for which they are written.



 

xiii

 

Introduction

 

The study topics for the JNCIS-M exam include:
�

 

Advanced system operation, configuration, and troubleshooting
�

 

Routing protocols—BGP, OSPF, and IS-IS
�

 

Routing policy
�

 

MPLS
�

 

Multicast
�

 

Router and network security
�

 

Router and network management
�

 

VPNs
�

 

IPv6

 

There are no prerequisite certifications for the JNCIS-M exam. While JNCIA-M 
certification is a recommended stepping-stone to JNCIS-M certification, candi-

 

dates are permitted to go straight to the Specialist (JNCIS-M) level.

 

Juniper Networks Certified Internet Professional

 

The JNCIP-M is the first of the two one-day practical exams in the M-series Routers & T-series 
Routing Platforms track of the JNTCP. The goal of this challenging exam is to validate a candidate’s 
ability to successfully build an ISP network consisting of seven M-series routers and multiple EBGP 
neighbors. Over a period of eight hours, the successful candidate will perform system configuration 
on all seven routers, install an IGP, implement a well-designed IBGP, establish connections with 
all EBGP neighbors as specified, and configure the required routing policies correctly.

This certification establishes candidates’ practical and theoretical knowledge of core Internet 
technologies and their ability to proficiently apply that knowledge in a hands-on environment. 
This exam is expected to meet the hands-on certification needs of the majority of Juniper 
Networks customers and partners. The more advanced JNCIE-M exam focuses on a set of 
specialized skills and addresses a much smaller group of candidates. You should carefully 
consider your certification goals and requirements, for you may find that the JNCIP-M exam 
is the highest-level certification you need.

The JNCIP-M (exam code CERT-JNCIP-M) is delivered at one of several Juniper Networks 
offices worldwide for U.S. $1,250. The current passing score is set at 80 percent.

The study topics for the JNCIP-M exam include:
�

 

Advanced system operation, configuration, and troubleshooting
�

 

Routing protocols—BGP, OSPF, IS-IS, and RIP
�

 

Routing policy
�

 

Routing protocol redistribution
�

 

VLANs
�

 

VRRP



 

Introduction

 

xiv

 

The JNCIP-M certification is a prerequisite for attempting the JNCIE-M prac-

 

tical exam.

 

Juniper Networks Certified Internet Expert

 

At the pinnacle of the M-series Routers & T-series Routing Platforms track is the one-day 
JNCIE-M practical exam. The 

 

E

 

 stands for Expert and they mean it—the exam is the most 
challenging and respected of its type in the industry. Maintaining the standard of excellence 
established over two years ago, the JNCIE-M certification continues to give candidates the 
opportunity to distinguish themselves as the truly elite of the networking world. Only a few 
have dared attempt this exam, and fewer still have passed.

The new eight-hour format of the exam requires that candidates troubleshoot an existing and 
preconfigured ISP network consisting of 10 M-series routers. Candidates are then presented 
with additional configuration tasks appropriate for an expert-level engineer.

The JNCIE-M (exam code CERT-JNCIE-M) is delivered at one of several Juniper Networks 
offices worldwide for U.S. $1,250. The current passing score is set at 80 percent.

The study topics for the JNCIE-M exam 

 

may

 

 include:
�

 

Expert-level system operation, configuration, and troubleshooting
�

 

Routing protocols—BGP, OSPF, IS-IS, and RIP
�

 

Routing protocol redistribution
�

 

Advanced routing policy implementation
�

 

Firewall filters
�

 

Class of service
�

 

MPLS
�

 

VPNs
�

 

IPv6
�

 

IPSec
�

 

Multicast

 

Since the JNCIP-M certification is a prerequisite for attempting this practical 
exam, all candidates who pass the JNCIE-M will have successfully completed 

 

two days of intensive practical examination.

 

Registration Procedures

 

JNTCP written exams are delivered worldwide at Prometric testing centers. To register, visit 
Prometric’s website at 

 

www.2test.com

 

 (or call 1-888-249-2567 in North America) to open an 
account and register for an exam.



 

xv

 

Introduction

 

The JNTCP Prometric exam numbers are
�

 

JNCIA-M—JN0-201
�

 

JNCIS-M—JN0-302

JNTCP lab exams are delivered by Juniper Networks at select locations. Currently the testing 
locations are
�

 

Sunnyvale, CA
�

 

Herndon, VA
�

 

Amsterdam, The Netherlands

Other global locations are periodically set up as testing centers based on demand. To register, 
send an e-mail message to Juniper Networks at 

 

certification-testreg@juniper.net

 

 
and place one of the following exam codes in the subject field. Within the body of the message, 
indicate the testing center you prefer and in which month you would like to attempt the exam. 
You will be contacted with the available dates at your requested testing center. The JNTCP lab 
exam numbers are
�

 

JNCIP-M—CERT-JNCIP-M
�

 

JNCIE-M—CERT-JNCIE-M

 

Recertification Requirements

 

To maintain the high standards of the JNTCP certifications, and to ensure that the skills of 
those certified are kept current and relevant, Juniper Networks has implemented the following 
recertification requirements, which apply to both certification tracks of the JNTCP:
�

 

All JNTCP certifications are valid for a period of two years.
�

 

Certification holders who do not renew their certification within this two-year period will 
have their certification placed in 

 

suspended mode

 

. Certifications in suspended mode are 
not eligible as prerequisites for further certification and cannot be applied to partner 
certification requirements.

�

 

After being in suspended mode for one year, the certification is placed in 

 

inactive mode

 

. 
At that stage, the individual is no longer certified at the JNTCP certification level that has 
become inactive and the individual will lose the associated certification number. For example, 
a JNCIP holder placed in inactive mode will be required to pass both the JNCIS and JNCIP 
exams in order to regain JNCIP status; such an individual will be given a new JNCIP 
certification number.

�

 

Renewed certifications are valid for a period of two years from the date of passing the renewed 
certification exam.

�

 

Passing an exam at a higher level renews all lower-level certifications for two years from the 
date of passing the higher-level exam. For example, passing the JNCIP exam will renew 
the JNCIS certification (and JNCIA certification if currently held) for two years from the 
date of passing the JNCIP exam.

�

 

JNCIA holders must pass the current JNCIA exam in order to renew the certification for 
an additional two years from the most recent JNCIA pass date.



 

Introduction

 

xvi

�

 

JNCIS holders must pass the current JNCIS exam in order to renew the certification for an 
additional two years from the most recent JNCIS pass date.

�

 

JNCIP and JNCIE holders must pass the current JNCIS exam in order to renew these 
certifications for an additional two years from the most recent JNCIS pass date.

 

The most recent version of the JNTCP Online Agreement must be accepted 

 

for the recertification to become effective.

 

JNTCP Nondisclosure Agreement

 

Juniper Networks considers all written and practical JNTCP exam material to be confidential 
intellectual property. As such, an individual is not permitted to take home, copy, or re-create the 
entire exam or any portions thereof. It is expected that candidates who participate in the JNTCP 
will not reveal the detailed content of the exams.

For written exams delivered at Prometric testing centers, candidates must accept the online 
agreement before proceeding with the exam. When taking practical exams, candidates are 
provided with a hard-copy agreement to read and sign before attempting the exam. In either 
case, the agreement can be downloaded from the JNTCP website for your review prior to the 
testing date. Juniper Networks retains all signed hard-copy nondisclosure agreements on file.

 

Candidates must accept the online JNTCP Online Agreement in order for their 
certifications to become effective and to have a certification number assigned. 
You can do this by going to the CertManager site at 

 

www.certmanager.net/

 

juniper

 

.

 

Resources for JNTCP Participants

 

Reading this book is a fantastic place to begin preparing for your next JNTCP exam. You 
should supplement the study of this volume’s content with related information from various 
sources. The following resources are available for free and are recommended to anyone seeking 
to attain or maintain Juniper Networks certified status.

 

JNTCP Website

The JNTCP website (www.juniper.net/certification) is the place to go for the most 
up-to-date information about the program. As the program evolves, this website is periodi-
cally updated with the latest news and major announcements. Possible changes include new 
exams and certifications, modifications to the existing certification and recertification require-
ments, and information about new resources and exam objectives.

The site consists of separate sections for each of the certification tracks. The information 
you’ll find there includes the exam number, passing scores, exam time limits, and exam topics. 
A special section dedicated to resources is also provided to supply you with detailed exam 



xvii Introduction

topic outlines, sample written exams, and study guides. The additional resources listed next are 
also linked from the JNTCP website.

CertManager

The CertManager system (www.certmanager.net/juniper) provides you with a place to 
track your certification progress. The site requires a username and password for access, and 
you typically use the information contained on your hard-copy score report from Prometric the 
first time you log in. Alternatively, a valid login can be obtained by sending an e-mail message 
to certification@juniper.net with the word certmanager in the subject field.

Once you log in, you can view a report of all your attempted exams. This report includes 
the exam dates, your scores, and a progress report indicating the additional steps required to 
attain a given certification or recertification. This website is where you accept the online JNTCP 
agreement, which is a required step toward becoming certified at any level in the program. 
You can also use the website to request the JNTCP official certification logos to use on your 
business cards, resumes, and websites.

Perhaps most important, the CertManager website is where all your contact information 
is kept up-to-date. Juniper Networks uses this information to send you certification benefits, 
such as your certificate of completion, and to inform you of important developments regarding 
your certification status. A valid company name is used to verify a partner’s compliance with 
certification requirements. To avoid missing out on important benefits and information, you 
should ensure your contact information is kept current.

Juniper Networks Training Courses

Juniper Networks training courses (www.juniper.net/training) are the best source of 
knowledge for seeking a certification and to increase your hands-on proficiency with Juniper 
Networks equipment and technologies. While attendance of official Juniper Networks training 
courses doesn’t guarantee a passing score on the certification exam, it does increase the 
likelihood of your successfully passing it. This is especially true when you seek to attain JNCIP 
or JNCIE status, where hands-on experience is a vital aspect of your study plan.

Juniper Networks Technical Documentation

You should be intimately familiar with the Juniper Networks technical documentation set 
(www.juniper.net/techpubs). During the JNTCP lab exams (JNCIP and JNCIE), these 
documents are provided in PDF on your PC. Knowing the content, organizational structure, 
and search capabilities of these manuals is a key component for a successful exam attempt. At 
the time of this writing, hard-copy versions of the manuals are provided only for the hands-on 
lab exams. All written exams delivered at Prometric testing centers are closed-book exams.

Juniper Networks Solutions and Technology

To broaden and deepen your knowledge of Juniper Networks products and their applications, you 
can visit www.juniper.net/techcenter. This website contains white papers, application 
notes, frequently asked questions (FAQ), and other informative documents, such as customer 
profiles and independent test results.



Introduction xviii

Group Study

The Groupstudy mailing list and website (www.groupstudy.com/list/juniper.html) is 
dedicated to the discussion of Juniper Networks products and technologies for the purpose of 
preparing for certification testing. You can post and receive answers to your own technical 
questions or simply read the questions and answers of other list members.

Tips for Taking Your Exam

Time, or the lack thereof, is normally one of the biggest factors influencing the outcome of 
JNCIE-M certification attempts. Having to single-handedly configure numerous protocols and 
parameters on ten routers while in a somewhat stressful environment often serves as a rude 
wake-up call early in the JNCIE-M candidate’s first attempt.

Although the product documentation is provided during the exam, you will likely run short 
on time if you have to refer to it more than once or twice during your exam. The successful 
candidate will have significant practice time with the JUNOS software CLI, and will be experienced 
with virtually all aspects of protocol configuration, so that commands can be entered quickly 
and accurately without the need for user manuals.

Although troubleshooting is not a primary component of the exam, many candidates spend 
a good portion of their time fault-isolating issues that result from their own configuration 
mistakes or that result from unanticipated interactions between the various protocols 
involved. Being able to quickly assess the state of the network, and to rapidly isolate and 
correct mistakes and omissions, are critical skills that a successful JNCIE candidate must 
possess.

The JNCIE-M exam is scored in a non-linear fashion—this means that a candidate can lose 
points for a single mistake that happens to affect multiple aspects of their network. The goal 
of this grading approach can be summed up as, “We grade on results, as opposed to individual 
configuration statements, and your grade will be determined by the overall operational state 
of your network at the end of the exam.” This is a significant point, and one that needs some 
elaboration, because many candidates are surprised to see how many points can be lost due 
to a single mistake on a critical facet of the exam.

Non-linear grading The JNCIE-M exam is made up of several sections, and each section is 
worth a number of points. Missing too many of the criteria within one section can result in zero 
points being awarded for the entire section, even if the candidate configured some aspects 
of the task correctly! Getting zero points on a section almost always results in an insufficient 
number of total points for a passing grade. The goal of this grading approach is to ensure that 
the JNCIE candidate is able to at least get the majority of each task right. Put another way, 
“How can you be deemed an Expert if you cannot get a significant portion of your IPv6 or 
provider provisioned VPN configurations correct?”



xix Introduction

Results-based grading Because of the numerous ways that JUNOS software can be configured 
to effect a common result and because an Expert should be able to configure a network that 
is largely operational, the JNCIE-M exam is graded based on overall results. So a serious error 
in a critical section of the exam can spell doom for the candidate, even if other sections of the 
candidate’s configuration are largely correct. For example, consider the case of a candidate 
who makes a serious mistake in their OSPF3 configuration. With a dysfunctional IPv6 IGP, there 
is a high probability that the candidate’s multi-protocol BGP and IPv6 related policy-related 
tasks will exhibit operational problems, which will result in point loss in this section, even 
though the BGP and policy components of their IPv6 configuration might be configured properly. 
The moral of this story is make sure that you periodically spot-check the operation of your 
network, and that you quickly identify and correct operational issues before moving on to 
subsequent tasks.

Here are some general tips for exam success:

� Arrive early at the exam center, so you can relax and review your study materials.

� Read the task requirements carefully. Don’t just jump to conclusions. Make sure that you’re 
clear about what each task requires. When in doubt, consult the proctor for clarification. 
Don’t be shy, because the proctor is there mainly to ensure you understand what tasks you 
are being asked to perform.

� Because the exam is graded based on your network’s overall operation, moving on to later 
tasks when you are “stuck” on a previous task is not always a good idea. In general, you 
should not move on if your network has operational problems related to a previous task. 
If you get stuck, you might consider “violating” the rules by deploying a static route (or 
something similar) in an attempt to complete the entire exam with an operational network. 
You should then plan to revisit your problem areas using any remaining time after you 
have completed all remaining requirements. The point here is that you will likely experi-
ence significant point loss if your network has operational problems, so violating some 
restrictions in an effort to achieve an operational network can be a sound strategy for 
reducing overall point loss when you are stuck on a particular task.

� Pay attention to detail! With so much work to do and so many routers to configure, many 
candidates make “simple” mistakes that relate to basic instructions such as the need to 
filter a specific route, assign prescribed names to variables, and so on.

� Use cut and paste judiciously. Cut and paste can be a real time-saver, but in many cases it 
can cost a candidate precious time when the configurations of the routers differ significantly 
or when mistakes are made because the candidate did not correctly adjust parameters 
before loading the configuration into the next router.

� Read each section (and perhaps the whole exam) fully before starting to type on the 
consoles. In many cases, the ordering of the requirements for a given section may result 
in the candidate having to revisit each router many times. By carefully reading all the 
requirements first, the candidate may be able to save time by grouping requirements so 
that each router needs to be configured only once.



Introduction xx

JNCIE Study Guide

Now that you know a lot about the JNTCP, we need to provide some more information about 
this text. We begin with a look at some topics and information you should already be familiar 
with and then examine what topics are in the book. Finally, we discuss how to utilize this 
resource and the accompanying CD.

What You Should Know Before Starting

If you are familiar with networking books, you might be a little surprised to see that this book 
starts off running, rather than beginning with the Open Systems Interconnection (OSI) model 
common to books in our industry. We instead dive headfirst into the details of a typical 
JNCIE-level configuration task that involves the topology discovery (and possible fault isolation) 
of an internetwork comprising a link-state IGP, route redistribution, BGP, and routing policy. 
This philosophy of knowing the basics is quite ingrained in the Juniper Networks Education 
courseware and certification exams, so we follow that assumption.

This means that you should be knowledgeable and conversant in the following topics in the 
context of Juniper Networks M-series Routers or T-series Routing Platforms before attempting 
your JNCIE examination. Please refer to other Juniper Networks Study Guides published by 
Sybex for assistance in gaining this knowledge.
� Routing Policy
� Open Shortest Path First (OSPF)
� Intermediate System to Intermediate System (IS-IS)
� Border Gateway Protocol (BGP)
� Multicast
� Multiprotocol Label Switching (MPLS)

� Know and prepare for the current test version. At the time of this writing, the production 
JNCIE-M exam and this book are synchronized to the same JUNOS software version. Before 
showing up for the exam, the candidate should determine the software version currently 
deployed in the JNCIE-M testing centers. If newer versions of JUNOS software are rolled 
out, the well-prepared candidate should study the release notes for the new software and 
compare any new features or functionality to the current JNCIE-M study guide and 
preparation road maps to ensure that exam updates will not catch them unprepared.

It is important to note that the JNCIE-M certification requirements might not change just 
because a newer software version has been deployed in the lab, because there are many 
reasons to periodically upgrade the code used in the exam. Please also note that while 
the exam requirements might not change, the syntax used to establish a given level of 
functionality might evolve with new software releases.

JNCIE-M exam grading occurs at the end of the day. Results are provided by e-mail within ten 
business days.



xxi Introduction

� Virtual Private Networks (VPNs)
� Class of Service
� Security and firewall filtering
� IPv6

Scope of the Book

While this book does provide the reader with a “feel” for the JNCIE-M exam, doing well on the 
exam also involves getting some hands-on experience with M-series and T-series routers to 
practice the scenarios covered in each chapter. This book serves as a guide to readers who have 
access to a test bed that is specifically designed for JNCIE exam preparation. However, this 
book was also written so that adequate preparation can be achieved when the reader combines 
on-the-job experience with a careful study of the tips and examples contained in this book. The 
bottom line is that hands-on experience is critical in gaining the proficiency and troubleshooting 
skills required to successfully pass the JNCIE-M exam.

This book provides the reader with sample configuration scenarios that closely parallel those 
used in the actual JNCIE-M exam. At the time of writing, this book completely addressed all 
aspects of the production JNCIE-M exam. In fact, many of the configuration scenarios actually 
exceed the difficulty level of the current exam so that readers may be better prepared for their 
certification attempt.

The operational output and configuration examples demonstrated throughout 
this book are based on JUNOS software version 5.6R1.3 and 5.6R2.4.

What Does This Book Cover?

This book covers design, configuration, and troubleshooting skills that are commensurate 
with the knowledge and skill set expected of a JNCIE-M candidate. The material closely parallels 
the actual JNCIE-M environment, in that each configuration example is characterized as a 
series of requirements and restrictions with which the resulting configuration and network 
behavior must comply. The reader is walked through each configuration scenario with equal 
emphasis placed on the correct configuration syntax and on the operational mode commands 
used to confirm proper operation, as defined by the restrictions placed on each configuration 
task. In many cases, the reader is made privy to tips and tricks that are intended to save time, 
avoid common pitfalls, and provide insight into how the JNCIE-M exam is graded. Knowing 
the techniques that are used by the exam proctors to assess the state of the candidate’s network 
will often allow the candidate to correct his or her own mistakes before it is too late!

Each chapter begins with a list of the lab skills covered in that chapter, with the chapter body 
providing detailed examples of how the corresponding functionality can be quickly configured 
and verified. A full-blown case study typical of what the JNCIE-M candidate will encounter in 
the actual exam is featured near the end of each chapter. Each case study is designed to serve 
as a vehicle for review and as the basis for lab-based study time. Solutions to the case study 
configuration requirements and tips for verifying proper operation are provided at the end of 



Introduction xxii

each case study. Each chapter ends with review questions to highlight (and therefore prevent) 
mistakes that are commonly seen when JNCIE exams are graded.

The book consists of the following material:
� Chapter 1 provides detailed coverage of a network discovery and verification task. This 

type of task is designed to familiarize the JNCIE candidate with a JNCIE topology that 
serves as the starting point for the advanced functionality and features that are added in 
later tasks. A network discovery task is characteristic of how the JNCIE-M candidate will 
usually begin their testing day.

� Chapter 2 focuses on the configuration and testing of Multiprotocol Label based Switching 
(MPLS) features, to include LDP, RSVP, constrained routing using Explicit Route Objects 
(ERO) and Constrained Shortest Path First (CSPF), routing table integration, and traffic 
protection. This chapter fully explores the issues with incomplete traffic engineering databases 
(TEDs) that result from the use of multiple area OSPF/multiple level IS-IS topologies.

� Chapter 3 explores the use of JUNOS software firewall filters for packet filtering, rate 
limiting, and Filter Based Forwarding (FBF). The chapter details Routing Engine (RE) 
and transit filtering, and also covers Prefix Specific Counters and Policers (PSCP) and 
interface-based policers.

� Chapter 4 details multicast configuration and testing, to include DVMRP, PIM dense and 
sparse modes, the bootstrap and auto-RP protocols, Anycast-RP, and interdomain multicast 
based on Multicast Source Discovery Protocol (MSDP).

� Chapter 5 covers the next generation of Internet protocols in the form of IPv6. The scenarios 
in this chapter deal with various forms of IPv6 addressing, IGP support in the form of 
RIPng, OSPF3, and IS0IS, as well as BGP and routing policy support for IPv6.

� Chapter 6 explores Class of Service (CoS) features made available by the 5.6 JUNOS release 
coupled with Enhanced FPCs (E-FPCs). These scenarios cover a typical Voice over IP (VoIP) 
application that involves multi-field classification at the edge and Behavior Aggregate (BA) 
classification in the core based on Differential Services Code Points (DSCPs). The configu-
ration of schedulers and RED profiles that react to the loss priority of each packet is also 
demonstrated in this chapter.

� Chapter 7 details several Provider Provisioned Virtual Private Network (PP-VPN) scenarios 
that demonstrate the configuration and testing of Layer 3 and Layer 2 VPN options. These 
scenarios cover BGP and LDP based signaling VPNs (2547 bis, draft-Kompella, and draft-
Martini), and demonstrate advanced concepts such as the OSPF domain-ID, AS-override, 
Internet access over non-VRF interfaces, mapping VPN traffic to particular LSPs, and 
obtaining IP II functionality (in other words, firewall filtering and IP address lookups) 
at the egress PE.

This book is written to mimic the actual JNCIE-M exam by having the reader add layers of 
complexity and increased functionality to a common network topology with each successive 
chapter. The decision to use a fixed topology allows the reader to focus on the task at hand instead 
of having to constantly adapt to new connectivity and address assignments. This layering approach 
helps to familiarize the reader with how the exam is structured, and also helps to reinforce the 
relationships between the various network protocols and applications that are covered.



 

Chapter

 

1

 

Network Discovery 
and Verification

 

JNCIE LAB SKILLS COVERED IN THIS 
CHAPTER:

�

 

Verify Out of Band (OoB) management network

�

 

Discover and verify IGP topology and route redistribution

�

 

Discover and verify IBGP topology

�

 

Discover and verify EBGP topology and routing policy



 

In this chapter, you will be exposed to a series of network discovery 
and verification tasks that are indicative of those typically 
encountered at the beginning of the JNCIE examination. While 

the ability to reverse engineer an unfamiliar network is an invaluable skill that all experts should 
possess, the primary purpose of the discovery scenario is to allow the candidate to “become 
one” with the provided baseline network topology before the candidate is expected to begin 
modifying it during the course of subsequent configuration scenarios.

Because the JNCIE examination focuses on advanced topics such as Multi Protocol Label 
based Switching (MPLS), firewall filters, and VPNs, the JNCIE examination begins with a 
preconfigured network with regards to the OoB management network, user accounts, interface 
configuration, interior gateway protocol (IGP) configuration, Internal and External Border Gate-
way Protocol (IBGP/EBGP) configuration, and a simple set of redistribution and IBGP/EBGP 
policies. Though spared the need to actually configure this baseline functionality, the JNCIE 
candidate begins the examination by discovering the initial network topology and by verifying the 
overall operation of this baseline network. Because the emphasis of the JNCIE is on higher-level 
applications and services, the candidate might assume that their interfaces are properly configured 
and operational. While you will likely find nothing “fancy” about your interface configurations, 
it is suggested that you give the interface portion of each router’s configuration a quick glance; the 
memory of a non-default logical unit or Virtual Router Redundancy Protocol (VRRP) group con-
figuration may come back to prevent you from making a mistake in a later configuration task.

Although candidates are never intentionally provided with faulty equipment, you should be 
on guard for any symptoms of hardware malfunction during the network discovery task. In 
some cases, you may find that the provided configurations require some tweaking. Some versions 
of the JNCIE examination might require that the candidate perform fault isolation and take 
corrective actions during the discovery scenario.

Two sets of complete baseline configurations for all routers in the test bed are provided in this 
chapter. It is suggested that you load your test bed with the same baseline configuration as called out 
in each chapter to maximize your ability to follow along with each chapter’s configuration scenarios.

To kick things off, you will need to access the routers in the test bed either using terminal 
server–based console attachment, or through the preconfigured Out of Band (OoB) network. 
Once connected, you can begin to reverse engineer and become one with your new network!

 

Task 1: Verify OoB Network

 

As described in the introduction, your JNCIE test bed consists of seven M-series routers, a 
terminal server, and a 100Mbps Fast Ethernet LAN segment that will serve as your network’s 



 

Task 1: Verify OoB Network

 

3

 

OoB management network. You will likely find that there is no need for terminal server–based 
attachment because the baseline network has a preconfigured OoB network.

 

Although you can use the router console ports for the JNCIE examination, most 
candidates find that it saves time to open multiple telnet sessions (one per router) 
using the OoB management network that is configured during the examination. 
You should use the terminal server whenever you are performing router 
maintenance (such as upgrading JUNOS software), or when routing problems 

 

cause telnet access problems.

 

The OoB Topology

 

The Out of Band management topology is illustrated in Figure 1.1. Based on this figure, you can 
see that the IP address of the terminal server is 10.0.1.101, and that its asynchronous interfaces 
are connected in ascending order to the console ports of each router that is associated with your 
test bed. The preconfigured fxp0 addressing is also shown in the figure.

 

F I G U R E 1 . 1

 

The Out of Band (OoB) management network

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

10.0.200.0/24

Terminal
Server

Console
Ports

r1

fxp0
.101

10.0.1.0/24

.1
fxp0
.2
fxp0
.3
fxp0
.4
fxp0
.5
fxp0
.6
fxp0
.7

r7

RADIUS,
SNMP, FTP, etc.

Proctor
Workstation

.2 .1

Candidate
Workstation

.100

Firewall

.102



 

4

 

Chapter 1 �

 

Network Discovery and Verification

 

The testing center will provide you with both user EXEC and privileged EXEC mode pass-
words for the terminal server (or their equivalents, should a non–Internetwork Operating 
System (IOS) based terminal server be in use). This chapter will focus on fxp0-based router access; 
please see the 

 

JNCIP Study Guide

 

 (Sybex, 2003) for a detailed discussion of terminal server usage.

 

Accessing Routers Using Telnet

 

Using the addressing shown earlier in Figure 1.1 and the predefined user account information 
provided in Table 1.1, verify that you can open a telnet connection to each router using the 

 

lab

 

 
login. (A 

 

root

 

 login requires terminal server–based console attachment because secure shell 
[SSH] is not enabled by default).

A successful telnet session will be similar to this capture, which shows the telnet session to 

 

r1

 

 
being successfully established:

 

r1 (ttyp1)

login: 

 

lab

 

Password:

Last login: Wed Feb  5 02:44:47 from 10.0.1.100

--- JUNOS 5.6R1.3 built 2003-01-02 20:38:33 UTC

lab@r1> 

 

After opening telnet sessions to all seven routers, you quickly confirm the static routing 
needed to reach the proctor subnet and RADIUS/FTP server by performing some ping testing:

 

lab@r1> 

 

ping 10.0.200.2

 

PING 10.0.200.2 (10.0.200.2): 56 data bytes

64 bytes from 10.0.200.2: icmp_seq=0 ttl=255 time=1.228 ms

64 bytes from 10.0.200.2: icmp_seq=1 ttl=255 time=0.701 ms

 

^C

 

--- 10.0.200.2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.701/0.964/1.228/0.264 ms

 

T A B L E 1 . 1

 

User Account Parameters

 

User Password Class/Permission Notes

 

root root

 

superuser RADIUS/local password with automatic login 
in the event of RADIUS failure

RADIUS secret is 

 

juniper

 

lab lab

 

superuser Same as for user 

 

root



 

Task 2: Discover and Verify IGP Topology and Route Redistribution

 

5

 

Verification of the OoB network is complete once you open telnet sessions to all seven routers 
and verify that each can ping the proctor workstation.

 

Task 2: Discover and Verify IGP Topology 
and Route Redistribution

 

Your next goal is to discover the provided IGP topology, and to verify that there are no oper-
ational issues in the core IGP, or in the operation of any IGP route redistribution that may 
be going on. Figure 1.2 details the JNCIE test bed topology that has been provided in this example. 
It is suggested that you mark up a copy of the network topology as you proceed in your discovery 
to assist you in later configuration scenarios.

 

Using the IGP Operation to Verify Interface Operation

 

Because your IGP relies on proper interface configuration and operation, you can effectively kill 
two birds with one stone by starting your verification with your IGP. Proper interface operation 
is effectively confirmed when you have all expected IGP adjacencies and IGP routes, and when 
traceroute testing confirms optimal paths through the network. You should confirm interface 
operation when IGP problems are detected even though the IGP’s configuration seems correct. It 
is also a good idea to note any non-default logical units in place for future reference as the JNCIE 
examination progresses. Note that for the IS-IS routing protocol, proper adjacency formation can 
occur even if errors are present in the IP configuration of the corresponding interface. Newer ver-
sions of JUNOS software, such as the 5.6 release used as the basis for this book, will not form an 
IS-IS adjacency when IP parameters are mismatched, as reflected in the trace output shown here:

 

lab@r2# 

 

run show log isis

 

Mar  5 08:04:13 Received L1 LAN IIH, source id r1 on fe-0/0/3.0

Mar  5 08:04:13     intf index 5, snpa 0:a0:c9:6f:7b:84

Mar  5 08:04:13     max area 0, circuit type l1, packet length 56

Mar  5 08:04:13     hold time 9, priority 64, circuit id r1.03

Mar  5 08:04:13     neighbor 0:a0:c9:6f:70:d (ourselves)

Mar  5 08:04:13     speaks IP

Mar  5 08:04:13     speaks IPV6

Mar  5 08:04:13     IP address 10.0.6.1

Mar  5 08:04:13     area address 49.0001 (3)

Mar  5 08:04:13     restart RR reset RA reset holdtime 0

Mar  5 08:04:13 ERROR: IIH from r1 without matching addresses,

 

   interface fe-0/0/3.0

 

The tracing output in this example was obtained at 

 

r2

 

 after the IP address was removed from 

 

r1

 

’s fe-0/0/2 interface.



 

6

 

Chapter 1 �

 

Network Discovery and Verification

 

F I G U R E 1 . 2

 

The JNCIE test bed topology

AS
 6

52
22

13
0.

13
0/

16
T1

AS
 6

50
20

22
0.

22
0/

16
C2

AS
 6

50
10

20
0.

20
0/

16

C1

.2
54

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

fe
-0

/0
/1

fe
-0

/0
/0

r1 r2

Lo
op

ba
ck

s

r3

r5

fe-
0/0

/3

fe
-0

/0
/0

r1
 =

 1
0.

0.
6.

1
r2

 =
 1

0.
0.

6.
2

r3
 =

 1
0.

0.
3.

3
r4

 =
 1

0.
0.

3.
4

r5
 =

 1
0.

0.
3.

5
r6

 =
 1

0.
0.

9.
6

r7
 =

 1
0.

0.
9.

7

fe
-0

/0
/1

fe
-0

/0
/1

fe
-0

/0
/2

10.0.5/24

10.0.4.4/30

fe
-0

/0
/3

fe
-0

/0
/0

10
.0

.4
.1

2/
30

17
2.

16
.0

.1
2/

30

AS
 6

50
50

12
0.

12
0/

16
10

.0
.2

.4
/3

0

fe
-0

/0
/1

fe
-0

/3
/1

fe
-0

/0
/0

(192.168.0-3)

fe
-0

/0
/1

fe
-0

/3
/3

fe
-0

/0
/3

fe-
0/3

/2

10
.0

.2
.1

2/
30

10
.0

.2
.0

/3
0

10
.0

.8
.4

/3
0

10
.0.

8.0
/3

0

fe-
0/

1/
2

10
.0

.8
.8

/3
0

10
.0

.2
.8

/3
0

so
-0

/2
/0

so
-0/

1/1
so

-0
/1

/0

so
-0

/1
/0

at-
0/

1/
0

at-
0/

2/
1

.1
.1

4
.1

3.1
3

.1
4

.1
3

.9

.5

.6

.9

.1

.9

.1
0

10
.0.

8.1
2/3

0

fe-
0/3

/0

.1
4

.1
3.1

.2

.1
7 .1

fe
-0

/0
/3

fe
-0

/0
/2

fe-
0/0

/0
fe-

0/1
/0

fe
-0

/1
/1fe

-0
/1

/3

17
2.

16
.0

.8
/3

0

.1
.5

.1
8

.2
.1

0
.9

10
.0

.4
.8

/3
0

10
.0

.2
.1

6/
30

17
2.1

6.0
.0/

30
17

2.1
6.0

.4/
30

10
.0.

4.1
6/3

0fe-
0/0/1

fe-
0/0/2

10.0.4.0/30

fe-
0/0

/2
.2

.1
7

.1
8 fe-

0/0
/0

.5

.6
.1

0

.2
.5

r6

Da
ta

Ce
nt

er

r4
r7

P1

.6



 

Task 2: Discover and Verify IGP Topology and Route Redistribution

 

7

 

The reader who is familiar with the previous book in this series should immediately recognize 
numerous similarities between the JNCIP and JNCIE topologies. This level of similarity may 
or may not occur in the actual JNCIE examination, which is why the candidate begins the 
examination with a discovery scenario designed to familiarize the candidate with their “new” 
topology.

Figure 1.2 (shown earlier) holds a wealth of information about your test bed. From the 
figure, you can see that you have a mix of EBGP peers, and that route redistribution will likely 
be in place between 

 

r6

 

, 

 

r7

 

, and the data center routers. You will also note that your test bed once 
again consists of a mix of interface types, including Fast Ethernet, OC-3c POS, and ATM.

 

Discovering and Verifying Core IGP

 

While there are many ways in which a candidate might decide to attack the discovery of their 
network’s IGP, this author has chosen to begin with 

 

r3

 

, 

 

r4

 

, and 

 

r7

 

, because their central placement 
implies that much can be learned by examining the configuration (and operation) of their IGP. 
You take a deep breath and begin by displaying 

 

r3

 

’s protocol stanza:

 

[edit]

lab@r3# 

 

show protocols

 

 

bgp {

    advertise-inactive;

    group int {

        type internal;

        local-address 10.0.3.3;

        export nhs;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

    group ext {

        import ebgp-in;

        export ebgp-out;

        neighbor 172.16.0.14 {

            peer-as 65222;

        }

    }

}

ospf {

    area 0.0.0.1 {

        stub default-metric 10;



 

8

 

Chapter 1 �

 

Network Discovery and Verification

 

        interface fe-0/0/0.0;

        interface fe-0/0/1.0;

    }

    area 0.0.0.0 {

        interface so-0/2/0.100;

        interface at-0/1/0.0;

    }

    area 0.0.0.2 {

        nssa;

        interface fe-0/0/3.0;

    } 

}

 

The highlighted portion relating to 

 

r3

 

’s IGP configuration is the area of concern at this stage. 
From 

 

r3

 

’s IGP configuration, you can determine the following:
�

 

The core IGP is OSPF (Open Shortest Path First).
�

 

r3

 

 is an Area Border Router (ABR) for areas 1 and 2.
�

 

Area 1 is a stub network and 

 

r3

 

 is configured to generate a default route into that area.
�

 

Area 2 is configured as a NSSA (not-so-stubby area) network. No default route is generated 
by 

 

r3

 

 into area 2.
�

 

No address aggregation or restriction of summary LSAs is occurring at 

 

r3

 

.
�

 

OSPF authentication is not configured in areas 0, 1, and 2.
�

 

r3

 

 will run OSPF on all interfaces in the baseline topology, except its lo0 and external 
fe-0/0/2 interfaces.

The omission of the router’s lo0 interface from the area declarations results in advertisement 
of the router’s loopback address (the lo0 interface is the default source of the RID) in the router 
LSAs injected into all areas. Although not shown here, the OSPF configuration for 

 

r4

 

 is virtually 
identical to that of 

 

r3

 

. Now that you have some idea of what to expect, it makes sense to quickly 
assess the state of 

 

r3

 

’s adjacencies:

 

[edit]

lab@r3# 

 

run show ospf neighbor

 

 

  Address         Interface             State      ID              Pri  Dead

10.0.2.1         at-0/1/0.0             Full      10.0.3.5         128   36

10.0.2.6         so-0/2/0.100           Full      10.0.3.4         128   34

10.0.4.14        fe-0/0/0.0             Full      10.0.6.1         128   32

10.0.4.2         fe-0/0/1.0             Full      10.0.6.2         128   31

10.0.2.13        fe-0/0/3.0             Full      10.0.9.6         128   39

 

The results confirm that all five of 

 

r3

 

’s adjacencies have been correctly established. A 
quick look at 

 

r4

 

’s adjacencies confirms that it too has the five adjacencies one would expect, 



 

Task 2: Discover and Verify IGP Topology and Route Redistribution

 

9

 

given this topology:

 

[edit]

lab@r4# 

 

run show ospf neighbor

  Address         Interface             State      ID              Pri  Dead

10.0.2.5         so-0/1/0.100           Full      10.0.3.3         128   34

10.0.2.9         so-0/1/1.0             Full      10.0.3.5         128   39

10.0.4.10        fe-0/0/1.0             Full      10.0.6.2         128   35

10.0.4.18        fe-0/0/2.0             Full      10.0.6.1         128   35

10.0.2.17        fe-0/0/3.0             Full      10.0.9.7         128   32

You now quickly examine the OSPF configuration for r1 and r2:

[edit]

lab@r1# show protocols ospf

area 0.0.0.1 {

    stub;

    interface fe-0/0/0.0 {

        passive;

    }

    interface fe-0/0/1.0;

    interface fe-0/0/2.0;

    interface fe-0/0/3.0;

}

r1’s configuration allows you to determine that it is configured to run a passive OSPF 
instance on its fe-0/0/0 interface, and that its overall configuration is commensurate with the 
stub area settings discovered in r3. The passive setting on its fe-0/0/0 interface will prevent 
adjacency formation on the P1 peering subnet, while allowing the 10.0.5/24 prefix to be carried 
as an OSPF internal route. With r2’s configuration being virtually identical (not shown), you 
expect to see three OSPF adjacencies in place on both r1 and r2:

lab@r1# run show ospf neighbor

  Address         Interface             State      ID              Pri  Dead

10.0.4.13        fe-0/0/1.0             Full      10.0.3.3         128   34

10.0.4.6         fe-0/0/2.0             Full      10.0.6.2         128   35

10.0.4.17        fe-0/0/3.0             Full      10.0.3.4         128   34

As anticipated, r1 has the correct number of adjacent neighbors. With area 1 configured as 
a stub area, there should be no external routes in r1’s link state database:

[edit]

lab@r2# run show ospf database extern 

Because network summaries (LSA Type 3s) are not being filtered at the ABR (r3), you expect 
to see OSPF routes to the loopback addresses of all routers making up your test bed. Some 



10 Chapter 1 � Network Discovery and Verification

creative CLI (command-line interface) work makes this determination a snap:

[edit]

lab@r2# run show route protocol ospf | match /32

10.0.3.3/32        *[OSPF/10] 00:12:37, metric 1

10.0.3.4/32        *[OSPF/10] 01:52:14, metric 1

10.0.3.5/32        *[OSPF/10] 00:12:37, metric 2

10.0.6.1/32        *[OSPF/10] 01:52:14, metric 1

10.0.9.6/32        *[OSPF/10] 00:12:37, metric 2

10.0.9.7/32        *[OSPF/10] 01:52:14, metric 2

224.0.0.5/32       *[OSPF/10] 03:32:36, metric 1

The highlighted output generated by r2 confirms that the loopback addresses of the other six 
routers are being learned through the OSPF protocol. As a final check, you confirm the presence 
of a default route in accordance with the configuration found on ABR r3:

[edit]

lab@r2# run show route 

inet.0: 118111 destinations, 118118 routes (118111 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[OSPF/10] 00:47:14, metric 11

                    > to 10.0.4.9 via fe-0/0/1.0

                      to 10.0.4.1 via fe-0/0/2.0

. . .

The default route is present in area 1, and the two viable next hops listed indicate that both 
r3 and r4 are sourcing a default route into the stub area. So far, things are looking pretty 
good for the operation of the test bed’s IGP!

Discovering and Verifying IGP Redistribution

Having confirmed the overall operation of the OSPF protocol for r1 through r4, you next 
examine the OSPF configuration at r5:

[edit]

lab@r5# show protocols ospf

area 0.0.0.0 {

    interface at-0/2/1.0;

    interface so-0/1/0.0;

}

area 0.0.0.2 {

    nssa;

    interface fe-0/0/0.0;



Task 2: Discover and Verify IGP Topology and Route Redistribution 11

    interface fe-0/0/1.0;

}

The output indicates that r5 is an ABR interconnecting area 2 and the backbone. You also 
note that, like r3, r5 considers area 2 to be a NSSA. The lack of the default metric keyword 
indicates that r5 will not generate a default route into area 2. With the same finding made at 
r3 and r4, you conclude that the NSSA will not have an OSPF derived default route. You 
quickly confirm your suspicions regarding the absence of a default route in area 2 using the 
following command on r6:

[edit]

lab@r6# run show route | match 0.0.0.0/0 

[edit]

lab@r6#

Considering that nothing you have uncovered so far can be considered “broken,” you simply 
note the lack of a default route in the NSSA, and you move on with your discovery task.

You expect to find four OSPF adjacencies in place at r5. The output from r5 quickly confirms 
your expectations on this front:

[edit]

lab@r5# run show ospf neighbor

  Address         Interface             State      ID              Pri  Dead

10.0.2.2         at-0/2/1.0             Full      10.0.3.3         128   32

10.0.2.10        so-0/1/0.0             Full      10.0.3.4         128   38

10.0.8.5         fe-0/0/0.0             Full      10.0.9.6         128   39

10.0.8.10        fe-0/0/1.0             Full      10.0.9.7         128   37

With r5’s IGP configuration analyzed, you move on to r7 to inspect its IGP configuration:

[edit]

lab@r7# show interfaces

fe-0/3/0 {

    unit 0 {

Why Is There No Default Route in the NSSA?

You may find it odd that none of area 2’s ABRs are configured to generate a default route into 
the NSSA. Because network summaries are permitted in the NSSA, and because there are no 
OSPF AS-externals (LSA Type 5s) being generated in areas 0 or 1, the lack of a default route in 
the NSSA may not represent a problem. If all external routing information associated with 
areas 0 and 1 is carried in BGP, for example, the routers in area 2 should not have trouble reaching 
external destinations.



12 Chapter 1 � Network Discovery and Verification

        family inet {

            address 10.0.8.14/30;

        }

        family iso;

    }

}

fe-0/3/1 {

    unit 0 {

        family inet {

            address 10.0.8.10/30;

        }

    }

}

fe-0/3/2 {

    unit 0 {        

        family inet {

            address 172.16.0.1/30;

        }

    }

}

fe-0/3/3 {

    unit 0 {

        family inet {

            address 10.0.2.17/30;

        }

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.7/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.9.7/32;

        }

        family iso {

            address 49.0002.7777.7777.7777.00;



Task 2: Discover and Verify IGP Topology and Route Redistribution 13

        }

    }

}

[edit]

lab@r7# show protocols

bgp {

    group int {

        type internal;

        local-address 10.0.9.7;

        export nhs;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

    }

    group c1 {

        type external;

        export ebgp-out;

        neighbor 172.16.0.2 {

            peer-as 65010;

        }

    }

}

isis {

    export ospf-isis;

    level 2 disable;

    level 1 external-preference 149;

    interface fe-0/3/0.0;

    interface lo0.0;

}

ospf {

    export isis-ospf;

    area 0.0.0.2 {

        nssa;

        interface fe/0/3/1.0;

        interface fe-0/3/0.0 {

            passive;

        }



14 Chapter 1 � Network Discovery and Verification

        interface fe-0/3/3.0;

    }

}

Once again, the IGP related portions of the router’s configuration are called out with highlights. 
Though not shown here, the configuration of r6 is virtually identical to that shown for r7. The 
presence of both OSPF and IS-IS stanzas tells you that r7 is most likely acting as a redistribution 
source for the 192.168.0/22 routes associated with the data center. You also note the following:
� r7 is configured to operate as a Level 1 IS-IS router on its fe-0/3/0 interface, which implies 

that the DC router is running IS-IS Level 1.
� The global preference for IS-IS Level 1 external routes has been modified to ensure that the 

IS-IS routes are preferred over their OSPF equivalents when they are redistributed into 
OSPF as NSSA externals, which have a default preference of 150.

� r7 has been set to run a passive OSPF instance on its fe-0/3/0 interface; this will result in 
advertisement of the 10.0.8.12/30 subnet as an OSPF internal route while also guarding 
against unwanted OSPF adjacencies to the DC router.

� Export policy is in place for both the OSPF and IS-IS IGPs.

You start by quickly accessing the state of IGP adjacencies at r6 or r7; based on the config-
uration displayed, you expect a total of three adjacencies, two of which should be OSPF and 
one that is IS-IS Level 1:

[edit]

lab@r6# run show ospf neighbor

  Address         Interface             State      ID             Pri   Dead

10.0.8.6         fe-0/1/0.0             Full       10.0.3.5       128   36

10.0.2.14        fe-0/1/1.0             Full       10.0.3.3       128   32

The display confirms the expected number of OSPF adjacencies at r6. You next confirm its 
IS-IS adjacency status:

[edit]

lab@r6# run show isis adjacency

Interface       System         L State        Hold (secs)  SNPA

fe-0/1/2.0          dc            1 Up                  7  0:a0:c9:69:c5:27

Excellent! All expected IGP adjacencies are established at r6. You now display the ospf-isis 
export policy to get a handle on what routes should be redistributed from OSPF to the DC 
router:

[edit]

lab@r6# show policy-options policy-statement ospf-isis

term 1 {

    from {

        protocol ospf;

        route-filter 0.0.0.0/0 exact;

    }



Task 2: Discover and Verify IGP Topology and Route Redistribution 15

    then accept;

}

The ospf-isis export policy is designed to redistribute a default route from OSPF into IS-IS. 
Most likely, this default route is intended to provide the data center router with reachability 
to internal and external prefixes, as it is assumed that a DC router will not be running BGP. But 
wait—a previous test confirmed that there was no default route in area 2! You quickly re-verify 
that no OSPF-based default route exists at r6:

[edit]

lab@r6# run show route protocol ospf | match 0.0.0.0

No default route, OSPF or otherwise. This makes the ospf-isis policy more than a bit 
moot, and this may represent an operational problem. A quick telnet hop to the DC router 
confirms the magnitude of the situation:

lab@dc> show route protocol isis

inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.9.6/32        *[IS-IS/15] 02:00:35, metric 10

                    > to 10.0.8.2 via fe-0/0/0.0

10.0.9.7/32        *[IS-IS/15] 00:49:24, metric 10

                    > to 10.0.8.14 via fe-0/0/1.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

The output confirms that the only IS-IS routes being advertised to the data center router from 
r6 and r7 are the prefixes associated with their loopback addresses. Further testing confirms 
serious reachability problems at the data center when a traceroute to r5 fails:

lab@dc> traceroute 10.0.3.5 

traceroute to 10.0.3.5 (10.0.3.5), 30 hops max, 40 byte packets

traceroute: sendto: No route to host

 1 traceroute: wrote 10.0.3.5 40 chars, ret=-1

^C

In light of the ospf-isis policies in place on r6 and r7, and the fact that reachability prob-
lems have been confirmed in the data center, it now seems that NSSA area 2 is “broken” by 
virtue of there being no OSPF-based default route available for redistribution into the data 
center. Before making any changes to the baseline network, you should document your findings 
and bring them to the attention of the proctor. In this example, the proctor confirms the need 
for a default route in area 2 and authorizes the necessary changes on the ABRs that serve the 
NSSA. The following command is entered on r3, r4, and r5, which configures them to generate 
a default route into area 2:

[edit protocols ospf]

lab@r3# set area 2 nssa default-lsa default-metric 10



16 Chapter 1 � Network Discovery and Verification

There is no need to specify an LSA Type 7 for the default route in this case, as summary LSAs 
are permitted in the NSSA. After the change is committed on r3, the results are confirmed at r6:

[edit]

lab@r6# run show route protocol ospf | match 0.0.0.0/0

0.0.0.0/0          *[OSPF/150] 00:00:23, metric 11, tag 0

Great, the default route is now present and active as an OSPF route. Before proceeding, you 
should verify that all three of the NSSA’s ABRs are now configured to source a default route 
into area 2. When correctly configured, both r6 and r7 will display two viable next hops for the 
OSPF default route. The data center router should now be receiving the default route from both 
r6 and r7. After telnetting to the data center router, the presence of a default route pointing 
to r6 and r7 as the next hops is confirmed, as is the data center router’s ability to reach various 
10.0/16 destinations:

lab@dc> show route 

inet.0: 17 destinations, 17 routes (17 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[IS-IS/160] 00:00:05, metric 21

                      to 10.0.8.2 via fe-0/0/0.0

                    > to 10.0.8.14 via fe-0/0/1.0

The default route correctly lists both r6 and r7 as viable next hops; this proves that the 
ospf-isis export policy is now functional on both r6 and r7. With the default route present, 
traceroutes originated at the data center now succeed:

lab@dc> traceroute 10.0.3.3 

traceroute to 10.0.3.3  (10.0.3.3), 30 hops max, 40 byte packets

 1  10.0.8.14 (10.0.8.14)  0.377 ms  0.221 ms  0.155 ms

 2  10.0.8.9  (10.0.8.9)   0.435 ms  0.391 ms  0.388 ms

 3  10.0.3.3  (10.0.3.3)   0.815 ms  1.120 ms  1.071 ms

lab@dc> traceroute 10.0.6.2

traceroute to 10.0.6.2 (10.0.6.2), 30 hops max, 40 byte packets

 1  10.0.8.14 (10.0.8.14)  0.263 ms  0.185 ms  0.155 ms

 2  10.0.2.18 (10.0.2.18)  0.435 ms  0.374 ms  0.388 ms

 3  10.0.6.2  (10.0.6.2)   0.288 ms  0.285 ms  0.262 ms

Both of the traceroutes complete normally, but the reliance on a default route with two 
equal-cost next hops has resulted in a less than optimal forwarding path to some destinations, 
because the data center router has installed r7 as the default route’s current next hop as this 
is being written. This situation can be considered normal, so for now you simply note the issue 
and move on with your network discovery actions.



Task 2: Discover and Verify IGP Topology and Route Redistribution 17

With OSPF to IS-IS redistribution now confirmed, you examine the isis-ospf policy to 
determine the redistribution behavior expected in the IS-IS to OSPF direction:

[edit]

lab@r7# show policy-options policy-statement isis-ospf

term 1 {

    from {

        protocol isis;

        route-filter 192.168.0.0/22 longer;

    }

    then accept;

}

The isis-ospf policy seems pretty straightforward. Routes learned from IS-IS matching the 
192.168.0/22 longer route filter declaration should be redistributed into area 2 using an 
LSA Type 7 in accordance with the area’s NSSA settings.

You begin verification of the IS-IS to OSPF redistribution aspects of the baseline network 
by confirming that both r6 and r7 have installed the IS-IS versions of the 192.168.0/22 data 
center routes as active. Recall that the configuration in r6 and r7 has adjusted the default 
preference of IS-IS Level 1 externals from 160 to 149, to ensure that they will be preferred to 
the versions being redistributed into OSPF by the other router:

[edit]

lab@r7# run show route 192.168.0/22 

inet.0: 125015 destinations, 125029 routes (125015 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.0.0/24     *[IS-IS/149] 00:26:16, metric 10

                    > to 10.0.8.13 via fe-0/3/0.0

                    [OSPF/150] 00:25:52, metric 10, tag 0

                    > to 10.0.8.9 via fe-0/3/1.0

                    [BGP/170] 00:25:53, MED 10, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.8.9 via fe-0/3/1.0

192.168.0.1/32     *[IS-IS/15] 00:26:16, metric 10

                    > to 10.0.8.13 via fe-0/3/0.0

                    [OSPF/150] 00:25:52, metric 10, tag 0

                    > to 10.0.8.9 via fe-0/3/1.0

                    [BGP/170] 00:25:53, MED 10, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.8.9 via fe-0/3/1.0



18 Chapter 1 � Network Discovery and Verification

192.168.1.0/24     *[IS-IS/149] 00:26:16, metric 20

                    > to 10.0.8.13 via fe-0/3/0.0

                    [OSPF/150] 00:25:52, metric 20, tag 0

                    > to 10.0.8.9 via fe-0/3/1.0

                    [BGP/170] 00:25:52, MED 20, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.8.9 via fe-0/3/1.0

192.168.2.0/24     *[IS-IS/149] 00:26:16, metric 20

                    > to 10.0.8.13 via fe-0/3/0.0

                    [OSPF/150] 00:25:52, metric 20, tag 0

                    > to 10.0.8.9 via fe-0/3/1.0

                    [BGP/170] 00:25:52, MED 20, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.8.9 via fe-0/3/1.0

192.168.3.0/24     *[IS-IS/149] 00:26:16, metric 20

                    > to 10.0.8.13 via fe-0/3/0.0

                    [OSPF/150] 00:25:52, metric 20, tag 0

                    > to 10.0.8.9 via fe-0/3/1.0

                    [BGP/170] 00:25:52, MED 20, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.8.9 via fe-0/3/1.0

The output confirms that r7 has selected the IS-IS versions of the 192.168.0/22 routes as 
active. You can also determine from this display that r6 has redistributed the 192.168.0/22 
routes into both OSPF and IBGP. These points help to confirm the correct operation of r6’s 
redistribution policies. Though not shown, the same command is issued on r6 to confirm that 
it displays a similar view of the 192.168.0/22 routes. The presence of the data center routes are 
next confirmed in the backbone area with the following command entered on r3:

lab@r3# run show route 192.168.1/24

inet.0: 118083 destinations, 118105 routes (118083 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.1.0/24     *[OSPF/150] 00:12:59, metric 20, tag 0

                    > to 10.0.2.13 via fe-0/0/3.0

                    [BGP/170] 00:12:59, MED 20, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.2.13 via fe-0/0/3.0

                    [BGP/170] 00:12:59, MED 20, localpref 100, from 10.0.9.7

                      AS path: I



Task 2: Discover and Verify IGP Topology and Route Redistribution 19

                    > via at-0/1/0.0

                      via so-0/2/0.100

Good, the routes are present in the OSPF backbone as both OSPF and BGP routes; the 
presence of two BGP next hops for the DC routes further confirms that both r6 and r7 are redis-
tributing the 192.168.0/22 routes into BGP. Before considering your OSPF discovery exercise 
complete, you should take a few moments to trace routes to various internal destinations to 
verify there are no forwarding oddities at play in the baseline network. For example, the layout 
of area 2 results in packets taking an extra hop when r3 or r4 forwards packets to the loopback 
address of r7 or r6, respectively. This behavior is to be expected, because in this topology 
r4 learns r6’s loopback address from a router LSA in area 2 (as flooded by r7) and from a 
network summary flooded into the backbone area by r5. Because an OSPF router always 
prefers internal (intra area) routes over a network summary, r4 forwards through r7 to reach 
the loopback address of r6. The same behavior is observed when r3 forwards to r7’s loopback 
address, as shown here:

lab@r3# run traceroute 10.0.9.7

traceroute to 10.0.9.7 (10.0.9.7), 30 hops max, 40 byte packets

 1  10.0.2.13 (10.0.2.13)  0.776 ms  0.556 ms  0.426 ms

 2  10.0.8.6 (10.0.8.6)  0.700 ms  9.111 ms  0.648 ms 

 3  10.0.9.7 (10.0.9.7)  0.577 ms  0.553 ms  0.514 ms

This situation can be considered par for the course, or could be corrected with an additional 
link between r6 and r7, with a static route, or with a redefinition of the OSPF area boundaries. 
In this case, you are informed that the baseline network is “operating as designed” so no 
corrective actions are taken at this time. With the completion of your traceroute testing, your 
operational analysis of area 2 is complete!

Summary of IGP Discovery

Your discovery activities have resulted in the determination that the baseline network consists 
of a multi-area OSPF IGP with mutual route redistribution occurring between the network 
core and data center locations. In this example, you were provided with an IGP that was largely 
functional and, for the most part, properly configured. The notable exception would be the missing 
OSPF default route in area 2 that led to connectivity problems for the data center.

Your findings have confirmed that all OSPF (and IS-IS) adjacencies are in place and that, 
with a few exceptions, optimal forwarding paths are in place. The exceptions you have noted 
include the data center router, which uses a 0/0 default route with two viable next hops to reach 
various destinations, and the extra hops incurred by r3 and r4 due to the specific layout of 
area 2.

Documenting your discovery findings is a good idea. Being able to refresh your memory 
with an accurate picture of the network that you have inherited may prevent mistakes in subse-
quent configuration tasks. Figure 1.3 provides an example of the key points that you have 
discovered in your JNCIE test bed so far.



20 Chapter 1 � Network Discovery and Verification

F I G U R E 1 . 3 Summary of IGP discovery findings

Task 3: IBGP Discovery and Verification
With your network’s IGPs and route redistribution confirmed as operational, it is time to take 
things up a notch by analyzing the network’s IBGP configuration and operation. Once again, 
you begin your analysis on a backbone router:

[edit]

lab@r5# show protocols bgp

group int {

    type internal;

OSPF
Passive

OSPF
Passive

OSPF
Passive

OSPF
Passive

Area 1: stub,
default route

Area 0

IS-IS Level 1
Area 0002

r2 r4

r7

r6

Data
Center

r5

r3
r1

Area 2:
NSSA, no

default route,
corrected

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

Loopback addresses have not been assigned to specific areas (lo0 address advertised in Router LSA in all areas).

Passive OSPF interfaces on P1 and data center segments.

No authentication or route summarization in effect; summaries (LSA type 3) allowed in all areas.

Data center router running IS-IS, Level 1. r6 and r7 compatibly configured and adjacent.

Redistribution of 192.168.0/24 through 192.168.3/24 into OSPF from IS-IS by both r6 and r7.

Adjustment to IS-IS level 1 external preference to ensure r6 and r7 always prefer IS-IS Level 1 externals over
OSPF externals.

All adjacencies up and full reachability confirmed.

Sub-optimal routing detected at the data center router for some locations, and when r3 and r4 forward to
some Area 2 addresses. This is the result of random nexthop choice for its default route and Area 2 topology
specifics. Considered to be working as designed; no action taken.

Redistribution of OSPF default route to data center from both r6 and r7 was broken. Fixed with default-metric
command on r3, r4, and r5.

Notes:



Task 3: IBGP Discovery and Verification 21

    local-address 10.0.3.5;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

[edit]

lab@r5# show routing-options

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

autonomous-system 65412;

Well, there certainly appears to be nothing fancy going on here! You now know that your 
test bed is (once again) using Autonomous System Number (ASN) 65412. Further, the IBGP 
configuration at r5 indicates that you have been provided with a full mesh of IBGP sessions 
using lo0-based peering. A quick glance at the status of r5’s IBGP sessions confirms that all six 
of its IBGP sessions have been correctly established:

[edit]

lab@r5# run show bgp summary

Groups: 1 Peers: 6 Down peers: 0

Table    Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0      125100     125088          0          0          0          0

Peer      AS    InPkt OutPkt OutQ Flaps  Last Up/Dwn State|#Active/Received/Damped...
10.0.3.3  65412 24421    166    0     0     1:21:54 125085/125085/0      0/0/0

10.0.3.4  65412   168    168    0     0     1:22:46 1/1/0                0/0/0

10.0.6.1  65412   165    167    0     0     1:22:02 1/1/0                0/0/0

10.0.6.2  65412   164    166    0     0     1:21:58 0/1/0                0/0/0

10.0.9.6  65412   167    166    0     0     1:21:52 1/6/0                0/0/0

10.0.9.7  65412   167    167    0     0     1:22:04 0/6/0                0/0/0

Seeing that all of r5’s loopback-based IBGP sessions are in the established state provides an 
additional check of your network’s IGP, as the IGP is needed to route between the loopback 
addresses of the routers in the test bed. You also note that r5 has received at least one route from 
each IBGP peer, and that it has received a whole bunch of routes from r3; you note that r3 in 
turn EBGP peers with a transit provider T1, so these findings make a fair bit of sense. Your 
attention now shifts to the analysis of r7’s configuration. You note that the presence of an 



22 Chapter 1 � Network Discovery and Verification

EBGP peer in the form of C1 will make r7’s configuration differ from that observed at r5:

[edit]

lab@r7# show protocols bgp 

group int {

    type internal;

    local-address 10.0.9.7;

    export nhs;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

}

group c1 {

    type external;

    export ebgp-out;

    neighbor 172.16.0.2 {

        peer-as 65010;

    }

}

The IBGP configuration of r7 is similar to that shown for r5, with the exception of the 
highlighted nhs export policy statement and the presence of EBGP-related configuration for 
the C1 peering session. The nhs export policy is displayed on r7:

[edit]

lab@r7# show policy-options policy-statement nhs

term 1 {

    from {

        protocol bgp;

        neighbor 172.16.0.2;

    }

    then {

        next-hop self;

    }

}

term 2 {

    from {

        route-filter 192.168.0.0/22 longer;

    }

    then accept;

}



Task 3: IBGP Discovery and Verification 23

The first term in the nhs policy resets the BGP next hop for routes learned from C1 to 
r7’s RID. This eliminates the need to carry the various 172.16.0/30 EBGP link addresses in 
your IGP. The second term in the nhs policy results in the data center routes being redis-
tributed into IBGP, presumably so that they can in turn be re-advertised to your network’s 
EBGP peers by the other routers in the test bed. Note that r1 and r2 do not receive the data 
center routes via OSPF external LSAs due to a stub area’s inability to carry external routing 
information.

The IBGP configuration on the remaining routers is similar to that shown for r7, with the 
following exceptions noted.

The advertise-inactive option has been set on r3 and r4 as highlighted:

[edit]

lab@r4# show protocols bgp

advertise-inactive;

group int {

    type internal;

    local-address 10.0.3.4;

    export nhs;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

group c1 {

    type external;

    export ebgp-out;

    neighbor 172.16.0.6 {

        peer-as 65010;

    }

The presence of active OSPF routes for the data center on r3 and r4 will prevent their 
advertisement into EBGP without the use of some type of OSPF-to-BGP export policy. The 
advertise-inactive option on r3 and r4 alleviates this problem in the most expedient way 
possible with no policy modifications needed. The advertise-inactive option is not needed 
on r1 and r2 because they do not receive the OSPF advertisements for the DC’s routes, thus 
making the IBGP versions of these routes active and therefore eligible for export using the default 
BGP policy.

The lack of a next hop self-policy on r1 and r2 is noted, but is not considered an issue at 
this time. Resetting the EBGP next hop is not needed on these routers because the 10.0.5/24 
peering subnet is being advertised into OSPF due to the passive IGP setting on their fe-0/0/0 
interfaces. Having the 10.0.5/24 subnet carried in OSPF makes P1’s 10.0.5.254 EBGP next hop 
reachable by all routers in your AS.



24 Chapter 1 � Network Discovery and Verification

As a final check on your network’s IBGP operation, you verify that the data center’s routes 
are present in both r1 and r2, and that each router displays two viable BGP next hops, as this 
will confirm that r1 and r2 are correctly receiving the 192.168.0/22 routes from both r6 and r7:

[edit]

lab@r2# run show route 192.168.2/24

inet.0: 118098 destinations, 118113 routes (118098 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.2.0/24     *[BGP/170] 01:27:12, MED 20, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.4.1 via fe-0/0/2.0

                    [BGP/170] 01:27:12, MED 20, localpref 100, from 10.0.9.7

                      AS path: I

                    > to 10.0.4.9 via fe-0/0/1.0

Before moving into the EBGP and policy verification task, you should review each router’s 
IBGP export policy, and you should quickly confirm that all IBGP session are established on 
all routers. You can assume that in this example all IBGP sessions are established and that no 
IBGP-related operational problems were detected.

Task 4: EBGP and Routing Policy 
Discovery
Having verified that your network’s overall IGP and IBGP operation are sound, it is time to 
move on to your final network discovery task—namely the discovery and verification of your 
test bed’s EBGP topology and its related routing policy.

P1 Peering

You begin the EBGP and policy discovery process on r1 by verifying its EBGP session status to P1:

[edit]

lab@r1# run show bgp neighbor 10.0.5.254

Peer: 10.0.5.254+179  AS 65050 Local: 10.0.5.1+1544   AS 65412

  Type: External    State: Established    Flags: <>

  Last State: OpenConfirm   Last Event: RecvKeepAlive

  Last Error: None

  Export: [ ebgp-out ] 

  Options: <Preference HoldTime PeerAS Refresh>



Task 4: EBGP and Routing Policy Discovery 25

  Holdtime: 90 Preference: 170

  Number of flaps: 0

  Peer ID: 120.120.0.1      Local ID: 10.0.6.1         Active Holdtime: 90

  Keepalive Interval: 30

  Local Interface: fe-0/0/0.0                           

  NLRI advertised by peer: inet-unicast

  NLRI for this session: inet-unicast

  Peer supports Refresh capability (2)

  Table inet.0 Bit: 10000

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            1

    Received prefixes:          1

    Suppressed due to damping:  0

  Last traffic (seconds): Received 23   Sent 2    Checked 2   

  Input messages:  Total 884    Updates 16      Refreshes 0     Octets 17434

  Output messages: Total 894    Updates 23      Refreshes 0     Octets 17960

  Output Queue[0]: 0

The output confirms that the EBGP session to P1 is in the established state, and that one 
prefix has been received and installed as an active route over this session. The EBGP sessions’ 
established state is an auspicious beginning, so you decide to analyze the EBGP configuration 
stanza on r1:

lab@r1# show protocols bgp

group int {

    type internal;

    local-address 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

group p1 {

    type external;

    export ebgp-out;

    neighbor 10.0.5.254 {

        peer-as 65050;

    }

}



26 Chapter 1 � Network Discovery and Verification

The highlighted EBGP portion of the configuration reveals a rather vanilla setup. There is 
no EBGP import policy in place, and a single export policy called, conveniently enough, ebgp-out 
has been applied. You display the ebgp-out policy to determine the expected EBGP advertisement 
behavior from r1 to P1:

[edit]

lab@r1# show policy-options policy-statement ebgp-out

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then accept;

}

term 2 {

    from community transit;

    then reject;

}

[edit]

lab@r1# show routing-options aggregate

route 10.0.0.0/16;

[edit]

lab@r1# show policy-options community transit

members 65412:420;

The first term in the policy results in the advertisement of a locally defined aggregate route 
encompassing the addressing space of your AS; the aggregate route is also confirmed as present 
and active on r1 (not shown). The second term in the ebgp-out policy serves to block the 
advertisement of routes with the transit community attached. With the default policy left in 
place for all remaining BGP routes, you expect to see r1 advertise all remaining (and active) 
BGP routes to the P1 router. Assuming for the moment that the routes learned from transit peer 
T1 are being tagged with the transit community, you expect to see your AS’s 10.0/16 aggregate, 
the data center routes, and both sets of customer routes being sent to P1.

A series of commands are now issued at r1 to confirm the advertisement of the expected 
routes to P1. These commands also serve to provide an ongoing check of the overall operations 
of your test bed, as the lack of advertisement for a given set of EBGP routes may constitute cause 
for further investigation:

lab@r1> show route advertising-protocol bgp 10.0.5.254 10.0/16

inet.0: 118092 destinations, 118107 routes (118092 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 10.0.0.0/16             Self                                    I



Task 4: EBGP and Routing Policy Discovery 27

The aggregate for your AS is correctly being advertised to P1. This should allow P1 to 
respond to pings and traceroutes issued from within your AS.

The presence of a locally defined 10.0/16 aggregate is not causing reachability 
problems on r1 and r2 due to the presence of network summary (LSA Type 3) 
in their stub area. If network summaries were blocked by the area’s ABRs, this 
aggregate definition would result in a black hole for internal destinations 
outside of area 1. This situation was documented, and solved, in the JNCIP 
Study Guide (Sybex, 2003).

The next command confirms that the data center routes are being advertised to P1:

lab@r1> show route advertising-protocol bgp 10.0.5.254 192.168.0/22 

inet.0: 118092 destinations, 118107 routes (118092 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 192.168.0.0/24          Self                                    I

* 192.168.0.1/32          Self                                    I

* 192.168.1.0/24          Self                                    I

* 192.168.2.0/24          Self                                    I

* 192.168.3.0/24          Self                                    I

The next set of commands confirms that both sets of customer routes are being sent 
to P1:

lab@r1> show route advertising-protocol bgp 10.0.5.254 200.200/16

inet.0: 118093 destinations, 118108 routes (118093 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 200.200.0.0/16          Self                                    65010 I

lab@r1> show route advertising-protocol bgp 10.0.5.254 220.220/16

inet.0: 118094 destinations, 118109 routes (118094 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 220.220.0.0/16          Self                                    65020 I

The output (or lack thereof) from the last command in this series confirms that the 130.130/16 
routes, as received from EBGP peer T1, are not being sent to the P1 router in accordance with 
the ebgp-out export policy’s rejection of routes with the transit community:

lab@r1> show route advertising-protocol bgp 10.0.5.254 130.130/16

The results shown here indicate that all is well with the r1-P1 EBGP peering session and its 
related routing policy. Although not shown here, the same verification steps are also performed 
on r2 and similar results are obtained. These findings confirm that EBGP peering to the P1 
router is operational.



28 Chapter 1 � Network Discovery and Verification

T1 Peering

You next analyze the EBGP peering session to the T1 router using an approach similar to that 
demonstrated for the P1 peering session. Once again, you begin by verifying the EBGP session 
status to T1:

[edit]

lab@r3# run show bgp summary

Groups: 2 Peers: 7 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            125079     125067          0          0          0          0

Peer        AS    InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/Received/Damped...

172.16.0.14 65222  23868  24684  0     0     1:35:16 125064/125064/0     0/0/0

10.0.3.4    65412  214    24730  0     0     1:46:51 1/1/0               0/0/0

10.0.3.5    65412  215    24748  0     0     1:46:49 0/0/0               0/0/0

10.0.6.1    65412  215    24765  0     0     1:46:59 1/1/0               0/0/0

10.0.6.2    65412  215    24765  0     0     1:46:55 0/1/0               0/0/0

10.0.9.6    65412  218    24765  0     0     1:46:54 1/6/0               0/0/0

10.0.9.7    65412  217    24765  0     0     1:46:58 0/6/0               0/0/0

The highlighted entry confirms that the EBGP session between r3 and P1 has been correctly 
established, and that some 125,000 routes have been received over this peering session.

As was the case with the JNCIP examination, making “simple” mistakes when 
you are dealing with a full BGP routing table can have a significant impact 
on your network’s health and general state of well-being. Extra care should be 
taken when BGP-related redistribution policies are placed into service with this 
many routes floating about!

Displaying the EBGP-related configuration on r3 reveals the following settings:

[edit]

lab@r3# show protocols bgp 

advertise-inactive;

group int {

    type internal;

    local-address 10.0.3.3;

    export nhs;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.4;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;



Task 4: EBGP and Routing Policy Discovery 29

    neighbor 10.0.9.7;

}

group ext {

    import ebgp-in;

    export ebgp-out;

    neighbor 172.16.0.14 {

        peer-as 65222;

    }

}

The highlighted entries represent another rather basic EBGP peering configuration. Worth 
noting is the use of advertise-inactive to allow the export of the data center routes despite 
the fact that the routes are active as OSPF routes. Using this option avoids the need for some 
type of OSPF-to-EBGP export policy for the data center’s routes. You also note the presence of 
group-level import and export policy, the contents of which are displayed next:

[edit]

lab@r3# show policy-options policy-statement ebgp-in 

term 1 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

    }

    then {

        community add transit;

    }

}

[edit]

lab@r3# show policy-options community transit

members 65412:420;

[edit]

lab@r3# show policy-options policy-statement ebgp-out

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then accept;

}

The ebgp-in policy functions to tag routes received from the T1 peer with the transit com-
munity. Recall that r1 and r2 are filtering routes with this community when sending EBGP 



30 Chapter 1 � Network Discovery and Verification

updates to the P1 router. The ebgp-out policy causes the advertisement of a locally defined 
aggregate route representing your AS’s addressing space. Based on these findings, you can conclude 
that all active BGP routes will be sent from r3 to T1, as well as a locally defined 10.0/16 aggregate 
route. Further, the presence of advertise-inactive will result in the advertisement of the best 
BGP routes that are currently not active due to protocol preference, which means that in this 
case, the 192.168.0/22 data center routes should also be advertised to the T1 router.

As with the P1 peering, you now issue a series of show route advertising-protocol bgp 
commands to confirm if r3’s EBGP route advertisements to T1 match your predictions:

lab@r3> show route advertising-protocol bgp 172.16.0.14 10.0/16 

inet.0: 118054 destinations, 118076 routes (118054 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 10.0.0.0/16             Self                                    I

lab@r3> show route advertising-protocol bgp 172.16.0.14 120.120/16 

inet.0: 125150 destinations, 125164 routes (125150 active, 0 holddown, 0 hidden)

  Prefix          Nexthop        MED  Lclpref  AS path

* 120.120.0.0/16  Self                         65050 I                  65050 I

lab@r3> show route advertising-protocol bgp 172.16.0.14 192.168.0/22

inet.0: 118054 destinations, 118076 routes (118054 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

  192.168.0.0/24          Self                                    I

  192.168.0.1/32          Self                                    I

  192.168.1.0/24          Self                                    I

  192.168.2.0/24          Self                                    I

  192.168.3.0/24          Self                                    I

The output from the commands confirm all your predictions regarding the EBGP advertise-
ment behavior at the r3–T1 EBGP peering. Note that the 192.168.0/22 data center routes are 
being advertised despite the lack of active route indication (there is no * next to them). Though 
not shown, you may assume that the 200.200/16 and 220.220/16 routes, owned by C1 and 
C2 respectively, have also been confirmed in r3’s EBGP advertisements to the T1 peer. These 
results indicate that the r3–T1 EBGP peering session is working as expected.

Customer Peering

The next check of your network’s EBGP and routing policy operation involves the discovery and 
verification of the EBGP peering to customer sites. In this example, the EBGP configuration 



Task 4: EBGP and Routing Policy Discovery 31

and routing policy configurations for both customer sites are virtually identical, so discovery and 
verification steps will be demonstrated only for the C1 peering points at r4 and r7.

r7 to C1 EBGP Peering

You begin your customer peering analysis and discovery with router r7, with the confirmation 
that the r7–C1 peering session is in the established state:

[edit]

lab@r7# run show bgp summary 

Groups: 2 Peers: 6 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            118032     118022          0          0          0          0

Peer        AS    InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/Received/Damped...

172.16.0.2  65010  51182  26385  0     0    2:19:24 1/1/0              0/0/0

10.0.3.3    65412  26308    278  0     0    2:16:29 118012/118012/0    0/0/0

10.0.3.4    65412    274    277  0     0    2:16:22 0/1/0              0/0/0

10.0.3.5    65412    274    277  0     0    2:16:10 0/0/0              0/0/0

10.0.6.1    65412    275    277  0     0    2:16:23 1/1/0              0/0/0

10.0.6.2    65412    275    277  0     0    2:16:12 0/1/0              0/0/0

With r7’s EBGP session to C1 confirmed as operational, you move on to the inspection of 
r7’s EBGP configuration:

[edit]

lab@r7# show protocols bgp

group int {

    type internal;

    local-address 10.0.9.7;

    export nhs;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4;

    neighbor 10.0.3.5;

}

group c1 {

    type external;

    export ebgp-out;

    neighbor 172.16.0.2 {

        peer-as 65010;

    }

}



32 Chapter 1 � Network Discovery and Verification

Nothing of note here, except the presence of an ebgp-out export policy, the contents of 
which are displayed next:

[edit]

lab@r7# show policy-options policy-statement ebgp-out

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then accept;

}

term 2 {

    from {

        route-filter 192.168.0.0/22 upto /24;

    }

    then accept;

}

The first term in r7’s ebgp-out export policy functions to advertise a local 10.0/16 aggregate 
to EBGP peer C1. As with the routers in area 1, the presence of the local aggregate does not 
cause operational problems in area 2 due to the presence of network summaries (LSA Type 3s). 
The second policy term results in the redistribution of the data center routes from IS-IS into 
EBGP. Though not shown in this capture, you should recall that r6 and r7 also redistribute 
the same routes into IBGP so that r1 and r2 can in turn advertise the DC routes to the 
P1 router.

The analysis of r7’s EBGP peering configuration indicates that C1 should be receiving the 
10.0/16 aggregate, the 192.168.0/22 data center routes, C2’s routes, T1’s routes, and the routes 
learned from the P1 router. The same set of commands demonstrated for the T1 and P1 peering 
points are now issued to confirm your analysis. Although not shown here, you can assume that 
in this example all expected routes are confirmed as present in r7’s EBGP advertisements to the 
C1 router.

r4 to C1 EBGP Peering

You now shift your attention to the C1 peering point at r4. After verifying that the EBGP 
session is established (not shown), you move onto the inspection of r4’s EBGP configuration 
and routing policy:

[edit]

lab@r4# show protocols bgp 

advertise-inactive;

group int {

    type internal;

    local-address 10.0.3.4;



Task 4: EBGP and Routing Policy Discovery 33

    export nhs;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

group c1 {

    type external;

    export ebgp-out;

    neighbor 172.16.0.6 {

        peer-as 65010;

    }

}

The highlighted entries in the output relate to the C1 EBGP peering, and are virtually identical 
to the settings shown for r3. Once again, the advertise-inactive option is being used to 
allow the export of the data center routes via EBGP when the BGP versions of these routes are 
not active due to global preference settings. The ebgp-out policy is now displayed:

[edit]

lab@r4# show policy-options policy-statement ebgp-out

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then accept;

}

Based on the contents of the ebgp-out policy, you conclude that r4 will advertise the same 
set of routes to C1 as was described for the r7–C1 peering. You now issue a series of show 
route advertising-protocol bgp commands on r4 to confirm the advertisement of the 10.0/
16 aggregate, the data center’s 192.168.0/22 routes, and the routes learned from the T1, P1, and 
C2 EBGP peerings:

lab@r4> show route advertising-protocol bgp 172.16.0.6 10.0/16 

inet.0: 125146 destinations, 125160 routes (125146 active, 5 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 10.0.0.0/16             Self                                    I

lab@r4> show route advertising-protocol bgp 172.16.0.6 192.168.0/22

inet.0: 125147 destinations, 125161 routes (125147 active, 5 holddown, 0 hidden)



34 Chapter 1 � Network Discovery and Verification

  Prefix                  Nexthop              MED     Lclpref    AS path

  192.168.0.0/24          Self                                    I

  192.168.0.1/32          Self                                    I

  192.168.1.0/24          Self                                    I

  192.168.2.0/24          Self                                    I

  192.168.3.0/24          Self                                    I

This output confirms that the 10.0/16 aggregate and data center routes are correctly adver-
tised from r4 to C1. The next set of commands verifies the remaining routes, all of which have 
been learned from the various EBGP peerings in your baseline network:

lab@r4> show route advertising-protocol bgp 172.16.0.6 130.130/16 

inet.0: 125146 destinations, 125160 routes (125146 active, 5 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 130.130.0.0/16          Self                                    65222 I

lab@r4> show route advertising-protocol bgp 172.16.0.6 120.120/16

inet.0: 125146 destinations, 125160 routes (125146 active, 5 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 120.120.0.0/16          Self                                    65050 I

lab@r4> show route advertising-protocol bgp 172.16.0.6 220.220/16

inet.0: 125147 destinations, 125161 routes (125147 active, 5 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 220.220.0.0/16          Self                                    65020 I

The results indicate that the r4–C1 EBGP peering and routing policies are fully operational.

Final EBGP and Policy Checks

Before blessing the EBGP and policy operation of the baseline network that you have been lucky 
enough to inherit, it is a good idea to check for hidden routes and to confirm reachability and 
forwarding paths to all EBGP peers. You really should inspect all routers in the test bed for hidden 
routes but, because r5 has no EBGP peerings, any problems with next hop reachability will 
most likely manifest themselves at r5. The following command is used to determine hidden route 
status at r5:

[edit]

lab@r5# run show route hidden 

inet.0: 125144 destinations, 125158 routes (125144 active, 0 holddown, 0 hidden)

[edit]



Task 4: EBGP and Routing Policy Discovery 35

The lack of output from r5 indicates that none of the 125,000 or so routes that it has received 
are hidden. The absence of hidden routes provides an additional indication that your network’s 
EBGP, IBGP, and IGP protocols are functioning correctly. You now issue a series of traceroute 
commands from r5 to verify external prefix reachability and to validate the forwarding paths 
to external destinations:

lab@r5> traceroute 120.120.0.1 

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets

 1  10.0.2.10 (10.0.2.10)  0.994 ms  0.765 ms  0.629 ms

 2  10.0.4.10 (10.0.4.10)  0.533 ms  0.529 ms  0.491 ms

 3  120.120.0.1 (120.120.0.1)  0.641 ms  0.610 ms  0.580 ms

lab@r5> traceroute 130.130.0.1

traceroute to 130.130.0.1 (130.130.0.1), 30 hops max, 40 byte packets

 1  10.0.2.2 (10.0.2.2)  1.295 ms  1.029 ms  1.136 ms

 2  130.130.0.1 (130.130.0.1)  1.078 ms  1.024 ms  1.171 ms

lab@r5> traceroute 200.200.0.1

traceroute to 200.200.0.1 (200.200.0.1), 30 hops max, 40 byte packets

 1  10.0.2.10 (10.0.2.10)  0.834 ms  0.680 ms  0.603 ms

 2  200.200.0.1 (200.200.0.1)  0.532 ms  0.540 ms  0.504 ms

lab@r5> traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.8.5 (10.0.8.5)  0.724 ms  0.535 ms  0.464 ms

 2  220.220.0.1 (220.220.0.1)  0.575 ms  0.586 ms  0.543 ms

The traceroute commands all succeed, which provides confirmation that all EBGP peers 
are receiving the 10.0/16 aggregate for your AS. The indication that packets take optimal 
forwarding paths to external destinations provides further validation that all aspects of your 
baseline network are now operational. Before moving on to the first configuration scenario, it 
is advisable that you repeat your traceroutes testing from the data center router, taking care 
to source the packets from one of its 192.168.0/22 prefixes, as doing so will validate the oper-
ation of the default route used by the data center router while also confirming that all EBGP 
peers are receiving advertisements for the data center’s routes. Although not shown, you can 
assume that all traceroute testing from the data center router succeeds in this example.

Summary of EBGP and Policy Discovery

Once again, it is suggested that you take a few moments to document the results of your network 
discovery for future reference. After all, trying to lay down advanced services such as MPLS 
on top of a network that you are not intimately familiar with is akin to running with scissors, 
only more dangerous. Being able to jog your memory with the notes and documentation you 
make during a discovery scenario can make all the difference in later configuration tasks. A 



36 Chapter 1 � Network Discovery and Verification

summary of your IBGP, EBGP, and BGP-related routing policy is provided here:
� Full IBGP mesh between loopback addresses with all IBGP sessions established.
� Next hop self-policies on r3, r4, r6, and r7. Not needed on r1 and r2.
� Data center routes redistributed into IBGP at r6 and r7.
� All EBGP sessions established with no hidden routes.
� All active BGP routes being sent to all peers, with the exception of transit routes, which are 

not advertised to the P1 router.
� Local 10.0/16 aggregate advertised to all peers.
� Data center routes advertised to all peers; using advertise-inactive at r3 and r4.
� No Martian filtering is in place.
� Connectivity and forwarding paths confirmed to all EBGP peers.

Figure 1.4 details your BGP-related findings in the context of a simplified topology map.

F I G U R E 1 . 4 EBGP and policy discovery example

AS 65222
130.130/16

T1

AS 65020
220.220/16

C2

AS 65010
200.200/16

C1

r2

Notes:

All active BGP routes sent to all EBGP peers, except T1 routes, which are tagged with a transit community and filtered from P1
at r1 and r2.

Advertise inactive at r3 and r4. r6 and r7 redistributing data center routes into both IGP and IBGP.

No operational issues detected. Trace routes to EGBP peers are successful and follow optimal paths. No hidden routes detected.

Full IBGP mesh, all IBGP sessions established. EBGP peering to physical addresses, all EGBP sessions established.

10.0/16 aggregate, and data center routes confirmed to all EBGP peers. Local 10.0/16 aggregate is not black holing due to the presence
of network summaries in all areas.

r4 r7

r6

Data
Center

r5

r3r1

M5M5

M5M5

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)AS 65050
120.120/16

P1

M5M5 M5M5



Complete Configurations for OSPF Baseline Network 37

Complete Configurations for OSPF 
Baseline Network
Listings 1.1 through 1.7 provide the complete baseline configurations for all seven routers in the 
test bed as they existed at the conclusion of the network discovery and validation techniques 
demonstrated in the body of this chapter. You might need to modify the specifics to suit your 
hardware environment before loading the configurations into your test bed, but try to maintain 
as much similarity as possible. The baseline configuration will serve as the building block for the 
advanced topics covered in later chapters.

Listing 1.1: r1 OSPF Baseline Configuration

[edit]

lab@r1# show | no-more 

version 5.6R1.3;

system {

    host-name r1;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {



38 Chapter 1 � Network Discovery and Verification

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r1-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 10.0.5.1/24;

            }

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.14/30;

            }

        }

    }

    fe-0/0/2 {

        unit 0 {

            family inet {

                address 10.0.4.5/30;

            }

        }

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.4.18/30;

            }

        }

    }



Complete Configurations for OSPF Baseline Network 39

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.1/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.6.1/32;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group p1 {

            type external;

            export ebgp-out;



40 Chapter 1 � Network Discovery and Verification

            neighbor 10.0.5.254 {

                peer-as 65050;

            }

        }

    }

    ospf {

        area 0.0.0.1 {

            stub;

            interface fe-0/0/0.0 {

                passive;

            }

            interface fe-0/0/1.0;

            interface fe-0/0/2.0;

            interface fe-0/0/3.0;

        }

    }

}

policy-options {

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from community transit;

            then reject;

        }

    }

    community transit members 65412:420;

}

Listing 1.2: r2 OSPF Baseline Configuration

[edit]

lab@r2# show | no-more 

version 5.6R1.3;

system {

    host-name r2;

    authentication-order [ radius password ];

    ports {



Complete Configurations for OSPF Baseline Network 41

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r2-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 10.0.5.2/24;



42 Chapter 1 � Network Discovery and Verification

            }

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.10/30;

            }

        }

    }

    fe-0/0/2 {

        speed 100m;

        unit 0 {

            family inet {

                address 10.0.4.2/30;

            }

        }

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.4.6/30;

            }

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.2/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.6.2/32;

            }

        }

    }

}



Complete Configurations for OSPF Baseline Network 43

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.6.2;

            neighbor 10.0.6.1;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group p1 {

            type external;

            export ebgp-out;

            neighbor 10.0.5.254 {

                peer-as 65050;

            }

        }

    }

    ospf {

        area 0.0.0.1 {

            stub;

            interface fe-0/0/0.0 {

                passive;

            }

            interface fe-0/0/1.0;

            interface fe-0/0/2.0;



44 Chapter 1 � Network Discovery and Verification

            interface fe-0/0/3.0;

        }

    }

}

policy-options {

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from community transit;

            then reject;

        }

    }

    community transit members 65412:420;

}

Listing 1.3: r3 OSPF Baseline Configuration (with Highlighted Corrections)

[edit]

lab@r3# show | no-more 

version 5.6R1.3;

system {

    host-name r3;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;



Complete Configurations for OSPF Baseline Network 45

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r3-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 10.0.4.13/30;

            }

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.1/30;

            }

        }

    }

    fe-0/0/2 {



46 Chapter 1 � Network Discovery and Verification

        unit 0 {

            family inet {

                address 172.16.0.13/30;

            }

        }

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.2.14/30;

            }

        }

    }

    at-0/1/0 {

        atm-options {

            vpi 0 {

                maximum-vcs 64;

            }

        }

        unit 0 {

            point-to-point;

            vci 50;

            family inet {

                address 10.0.2.2/30;

            }

        }

    }

    so-0/2/0 {

        dce;

        encapsulation frame-relay;

        unit 100 {

            dlci 100;

            family inet {

                address 10.0.2.5/30;

            }

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.3/24;



Complete Configurations for OSPF Baseline Network 47

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.3.3/32;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        advertise-inactive;

        group int {

            type internal;

            local-address 10.0.3.3;

            export nhs;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group ext {

            import ebgp-in;

            export ebgp-out;

            neighbor 172.16.0.14 {



48 Chapter 1 � Network Discovery and Verification

                peer-as 65222;

            }

        }

    }

    ospf {

        area 0.0.0.1 {

            stub default-metric 10;

            interface fe-0/0/0.0;

            interface fe-0/0/1.0;

        }

        area 0.0.0.0 {

            interface so-0/2/0.100;

            interface at-0/1/0.0;

        }

        area 0.0.0.2 {

            nssa {

                default-lsa default-metric 10;

            }

            interface fe-0/0/3.0;

        }

    }

}

policy-options {

    policy-statement nhs {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.14;

            }

            then {

                next-hop self;

            }

        }

    }

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;



Complete Configurations for OSPF Baseline Network 49

        }

    }

    policy-statement ebgp-in {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.14;

            }

            then {

                community add transit;

            }

        }

    }

    community transit members 65412:420;

}

Note that r3, r4, and r5 had their configurations modified (as highlighted) to resolve a problem 
with a missing default route in area 2.

Listing 1.4: r4 OSPF Baseline Configuration (with Highlighted Corrections)

[edit]

lab@r4# show | no-more 

version 5.6R1.3;

system {

    host-name r4;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }



50 Chapter 1 � Network Discovery and Verification

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r4-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 172.16.0.5/30;

            }

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.9/30;

            }

        }

    }

    fe-0/0/2 {

        unit 0 {

            family inet {

                address 10.0.4.17/30;

            }

        }



Complete Configurations for OSPF Baseline Network 51

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.2.18/30;

            }

        }

    }

    so-0/1/0 {

        encapsulation frame-relay;

        unit 100 {

            dlci 100;

            family inet {

                address 10.0.2.6/30;

            }

        }

    }

    so-0/1/1 {

        encapsulation ppp;

        unit 0 {

            family inet {

                address 10.0.2.10/30;

            }

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.4/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.3.4/32;

            }

        }

    }

}

routing-options {



52 Chapter 1 � Network Discovery and Verification

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        advertise-inactive;

        group int {

            type internal;

            local-address 10.0.3.4;

            export nhs;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group c1 {

            type external;

            export ebgp-out;

            neighbor 172.16.0.6 {

                peer-as 65010;

            }

        }

    }

    ospf {

        area 0.0.0.1 {

            stub default-metric 10;

            interface fe-0/0/1.0;

            interface fe-0/0/2.0;

        }

        area 0.0.0.0 {



Complete Configurations for OSPF Baseline Network 53

            interface so-0/1/0.100;

            interface so-0/1/1.0;

        }

        area 0.0.0.2 {

            nssa {

                default-lsa default-metric 10;

            }

            interface fe-0/0/3.0;

        }

    }

}

policy-options {

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

    }

    policy-statement nhs {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.6;

            }

            then {

                next-hop self;

            }

        }

    }

}

Note that r3, r4, and r5 had their configurations modified (as highlighted) to resolve a problem 
with a missing default route in area 2.

Listing 1.5: r5 OSPF Baseline Configuration (with Highlighted Corrections)

lab@r5# show | no-more 

version 5.6R1.3;

system {

    host-name r5;



54 Chapter 1 � Network Discovery and Verification

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r5-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {



Complete Configurations for OSPF Baseline Network 55

            family inet {

                address 10.0.8.6/30;

            }

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.8.9/30;

            }

        }

    }

    so-0/1/0 {

        encapsulation ppp;

        unit 0 {

            family inet {

                address 10.0.2.9/30;

            }

        }

    }

    at-0/2/1 {

        atm-options {

            vpi 0 {

                maximum-vcs 64;

            }

        }

        unit 0 {

            point-to-point;

            vci 50;

            family inet {

                address 10.0.2.1/30;

            }

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.5/24;

            }

        }

    }



56 Chapter 1 � Network Discovery and Verification

    lo0 {

        unit 0 {

            family inet {

                address 10.0.3.5/32;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.3.5;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

    }

    ospf {

        area 0.0.0.0 {

            interface at-0/2/1.0;

            interface so-0/1/0.0;

        }

        area 0.0.0.2 {

            nssa {

                default-lsa default-metric 10;

            }

            interface fe-0/0/0.0;



Complete Configurations for OSPF Baseline Network 57

            interface fe-0/0/1.0;

        }

    }

}

Note that r3, r4, and r5 had their configurations modified (as highlighted) to resolve a problem 
with a missing default route in area 2.

Listing 1.6: r6 OSPF Baseline Configuration

[edit]

lab@r6# show | no-more 

version 5.6R1.3;

system {

    host-name r6;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }



58 Chapter 1 � Network Discovery and Verification

        file messages {

            any notice;

            authorization info;

        }

        file r6-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/1/0 {

        unit 0 {

            family inet {

                address 10.0.8.5/30;

            }

        }

    }

    fe-0/1/1 {

        unit 0 {

            family inet {

                address 10.0.2.13/30;

            }

        }

    }

    fe-0/1/2 {

        unit 0 {

            family inet {

                address 10.0.8.2/30;

            }

            family iso;

        }

    }

    fe-0/1/3 {

        unit 0 {

            family inet {

                address 172.16.0.9/30;

            }

        }

    }

    fxp0 {



Complete Configurations for OSPF Baseline Network 59

        unit 0 {

            family inet {

                address 10.0.1.6/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.9.6/32;

            }

            family iso {

                address 49.0002.6666.6666.6666.00;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.9.6;

            export ibgp;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.7;



60 Chapter 1 � Network Discovery and Verification

        }

        group c2 {

            type external;

            export ebgp-out;

            neighbor 172.16.0.10 {

                peer-as 65020;

            }

        }

    }

    isis {

        export ospf-isis;

        level 2 disable;

        level 1 external-preference 149;

        interface fe-0/1/2.0;

        interface lo0.0;

    }

    ospf {

        export isis-ospf;

        area 0.0.0.2 {

            nssa;

            interface fe-0/1/0.0;

            interface fe-0/1/2.0 {

                passive;

            }

            interface fe-0/1/1.0;

        }

    }

}

policy-options {

    policy-statement ospf-isis {

        term 1 {

            from {

                protocol ospf;

                route-filter 0.0.0.0/0 exact;

            }

            then accept;

        }

    }

    policy-statement isis-ospf {

        term 1 {



Complete Configurations for OSPF Baseline Network 61

            from {

                protocol isis;

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 upto /24;

            }

            then accept;

        }

    }

    policy-statement ibgp {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.10;

            }

            then {

                next-hop self;

            }

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

}



62 Chapter 1 � Network Discovery and Verification

Listing 1.7: r7 OSPF Baseline Configuration

[edit]

lab@r7# show | no-more 

version 5.6R1.3;

system {

    host-name r7;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r7-cli {

            interactive-commands any;

            archive files 5;



Complete Configurations for OSPF Baseline Network 63

        }

    }

}

interfaces {

    fe-0/3/0 {

        unit 0 {

            family inet {

                address 10.0.8.14/30;

            }

            family iso;

        }

    }

    fe-0/3/1 {

        unit 0 {

            family inet {

                address 10.0.8.10/30;

            }

        }

    }

    fe-0/3/2 {

        unit 0 {

            family inet {

                address 172.16.0.1/30;

            }

        }

    }

    fe-0/3/3 {

        unit 0 {

            family inet {

                address 10.0.2.17/30;

            }

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.7/24;

            }

        }

    }

    lo0 {



64 Chapter 1 � Network Discovery and Verification

        unit 0 {

            family inet {

                address 10.0.9.7/32;

            }

            family iso {

                address 49.0002.7777.7777.7777.00;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.9.7;

            export nhs;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

        }

        group c1 {

            type external;

            export ebgp-out;

            neighbor 172.16.0.2 {

                peer-as 65010;

            }



Complete Configurations for OSPF Baseline Network 65

        }

    }

    isis {

        export ospf-isis;

        level 2 disable;

        level 1 external-preference 149;

        interface fe-0/3/0.0;

        interface lo0.0;

    }

    ospf {

        export isis-ospf;

        area 0.0.0.2 {

            nssa;

            interface fe-0/3/1.0;

            interface fe-0/3/0.0 {

                passive;

            }

            interface fe-0/3/3.0;

        }

    }

}

policy-options {

    policy-statement ospf-isis {

        term 1 {

            from {

                protocol ospf;

                route-filter 0.0.0.0/0 exact;

            }

            then accept;

        }

    }

    policy-statement isis-ospf {

        term 1 {

            from {

                protocol isis;

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

    policy-statement ebgp-out {



66 Chapter 1 � Network Discovery and Verification

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 upto /24;

            }

            then accept;

        }

    }

    policy-statement nhs {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.2;

            }

            then {

                next-hop self;

            }

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

}

Summary
This chapter provided you with a set of network discovery and verification tasks representative 
of those encountered by candidates as they begin their JNCIE examination. Because all of 
the topics addressed in this chapter were thoroughly tested in the prerequisite JNCIP examination, 
a JNCIE candidate is provided with a preconfigured network intended to serve as the starting 
point for the advanced configuration aspects that are the focus of the JNCIE examination 
proper. The goal of the network discovery scenario is twofold. The primary purpose is to provide 



Case Study: IS-IS Network Discovery and Validation Techniques 67

the candidate with a chance to assimilate and understand the operation of a network that he or she 
has never seen, before the candidate is asked to begin adding advanced services to the test bed. 
The secondary goal of the network discovery scenario is to provide a sanity check of the overall 
operation of the baseline network on the off chance that hardware errors (or configuration errors) 
are present.

Note that the specific nature of a given discovery scenario may vary over time to keep things 
interesting. The bottom line is that the prepared JNCIE candidate will possess the skills and pro-
tocol understanding needed to quickly reverse engineer an inherited network, and to rapidly 
access its overall operational state. It is expected that a JNCIE candidate will be able to detect 
and repair any configuration problems that may be uncovered during network discovery, with 
the exception of hardware-related failures that require proctor intervention.

Case Study: IS-IS Network Discovery 
and Validation Techniques
This case study presents a sample IGP discovery and validation scenario designed to demon-
strate techniques and commands that are particularly useful when reverse engineering and 
validating an IS-IS based IGP. The focus of the case study is placed on IGP discovery because 
the functionality of IBGP, EBGP, and BGP-related routing policy is largely independent of the 
particular IGP in use. In fact, very few changes have been made to the IBGP, EBGP, and policy 
configuration documented in the course of the chapter body. Please refer back to Figure 1.2 
for the case study topology.

The criteria for the case study are as follows:
� Discover and document the configuration of an IS-IS based network with mutual route 

redistribution.
� Verify correct IGP operation while documenting and correcting any IGP-related configuration 

problems encountered.
� Confirm that IBGP, EBGP, and routing policy are operational.

Although a number of discovery approaches can be used to reverse engineer an IGP, this 
author has found that it is normally more expedient to begin your analysis in the IGP core. 
The commands and techniques shown here are similar to the approach demonstrated in the 
chapter body; after all, if something works, why mess with it? You begin on r3 with the inspection 
of its IGP-related configuration:

[edit]

lab@r3# show protocols 

bgp {

    advertise-inactive;

    group int {

        type internal;

        local-address 10.0.3.3;



68 Chapter 1 � Network Discovery and Verification

        export nhs;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

    group ext {

        import ebgp-in;

        export ebgp-out;

        neighbor 172.16.0.14 {

            peer-as 65222;

        }

    }

}

isis {

    interface fe-0/0/0.0 {

        level 2 disable;

    }

    interface fe-0/0/1.0 {

        level 2 disable;

    }

    interface fe-0/0/3.0 {

        level 1 disable;

    }

    interface at-0/1/0.0 {

        level 1 disable;

    }

    interface so-0/2/0.100 {

        level 1 disable;

    }

    interface lo0.0 {

        level 1 disable;

    }

}

The highlighted IGP portion of the configuration leads to the following observations:
� That r3 is an attached router with a mix of L1 and L2 interfaces
� That authentication and route leaking are not configured for its L1 and L2 areas
� That r3’s lo0 address will not be injected into the Level 1 area due to the lo0 interface being 

disabled at IS-IS Level 1



Case Study: IS-IS Network Discovery and Validation Techniques 69

Displaying the IS-IS interface status on r3 yields the following output:

[edit]

lab@r3# run show isis interface 

IS-IS interface database:

Interface             L CirID Level 1 DR        Level 2 DR        L1/L2 Metric

at-0/1/0.0            2   0x1 Disabled          Point to Point         10/10

fe-0/0/0.0            1   0x3 r1.02             Disabled               10/10

fe-0/0/1.0            1   0x4 r2.03             Disabled               10/10

fe-0/0/3.0            2   0x2 Disabled          r6.03                  10/10

lo0.0                 0   0x1 Disabled          Passive                 0/0

so-0/2/0.100          2   0x1 Disabled          Point to Point         10/10

The display indicates that all of r3’s interfaces, except its fxp0- and T1-facing fe-0/0/2 interfaces 
are considered ISO interfaces. This confirms that the iso family has been properly configured 
on their various logical units. Note that the lo0 interface is also listed as a passive IS-IS Level 2 
interface; with some JUNOS software versions, it is critical that you actually run IS-IS on 
the interface that serves as the source of the ISO NET, making the presence of lo0 in the IS-IS 
interface display a good thing. The omission of r3’s lo0 interface from the Level 1 area is inten-
tional in this case. The intent is to prevent extra hops (through the Level 1 area) when r4 
forwards packets to r3’s lo0 address. Keeping the lo0 addresses of r3 and r4 from the Level 1 
area is necessary if we want r3 and r4 to use their Level 2 link when forwarding to each other’s 
loopback addresses, because an IS-IS router will always prefer a L1 internal route over the 
same route in Level 2, regardless of preference settings or route metrics. Traceroute testing 
confirms that r3 and r4 have optimal forwarding between loopback addresses as a result of this 
configuration:

[edit]

lab@r3# run traceroute 10.0.3.4 

traceroute to 10.0.3.4 (10.0.3.4), 30 hops max, 40 byte packets

 1  10.0.3.4 (10.0.3.4)  1.061 ms  0.890 ms  0.795 ms

You next display r3’s lo0 interface configuration. The output displays the ISO NET configured 
for r3. Based on the display, you are able to determine that r1, r2, r3, and r4 should all be 
in area 0001, because an IS-IS L1 adjacency will form only between routers that share a common 
area ID. You also note that the SYS-ID coding is based on the assigned router number. This 
coding approach should not pose a problem because the resulting SYS-IDs will have the uniqueness 
required for proper IS-IS operation:

[edit]

lab@r3# show interfaces lo0 

unit 0 {

    family inet {

        address 10.0.3.3/32;

    }

    family iso {



70 Chapter 1 � Network Discovery and Verification

        address 49.0001.3333.3333.3333.00;

    }

}

With the inspection of r3’s IGP configuration completed, it makes sense to ascertain the state 
of its adjacencies, as you now have some idea of what to expect:

[edit]

lab@r3# run show isis adjacency 

Interface            System        L State      Hold (secs)  SNPA

at-0/1/0.0           r5            2 Up                  21

fe-0/0/0.0           r1            1 Up                   6  0:a0:c9:6f:7b:3e

fe-0/0/1.0           r2            1 Up                   7  0:a0:c9:6f:7a:ff

fe-0/0/3.0           r6            2 Up                   7  0:d0:b7:3f:af:73

so-0/2/0.100         r4            2 Up                  21

The output shows that r3 has the five adjacencies one would expect, given the test bed topology 
and r3’s IS-IS configuration. The output makes it easy to confirm what interfaces are running 
IS-IS, and at what IS-IS level. The following command quickly determines if the backbone area 
is correctly receiving LSPs from all of the routers in the test bed:

[edit]

lab@r3# run show isis hostname 

IS-IS hostname database:

System ID      Hostname                                         Type

1111.1111.1111 r1                                               Dynamic

2222.2222.2222 r2                                               Dynamic

3333.3333.3333 r3                                               Static

4444.4444.4444 r4                                               Dynamic

5555.5555.5555 r5                                               Dynamic

6666.6666.6666 r6                                               Dynamic

7777.7777.7777 r7                                               Dynamic

The results could not be any better! You know that IS-IS is working overall, in that the back-
bone has received LSPs from all routers in the test bed. The final check at r3 determines correct 
IS-IS functionality with regard to the advertisement of IP routes by verifying that IS-IS routes for 
the loopback addresses of all routers in the test bed are present:

[edit]

lab@r3# run show route protocol isis | match \32 

10.0.3.4/32        *[IS-IS/15] 02:49:44, metric 20

10.0.3.5/32        *[IS-IS/18] 00:07:08, metric 20

10.0.6.1/32        *[IS-IS/15] 03:11:24, metric 10

10.0.6.2/32        *[IS-IS/15] 02:49:44, metric 10

10.0.9.6/32        *[IS-IS/18] 00:33:06, metric 10

10.0.9.7/32        *[IS-IS/18] 00:07:08, metric 20



Case Study: IS-IS Network Discovery and Validation Techniques 71

The results confirm that r3 has learned routes through IS-IS for the loopback addresses of all 
remote routers (r3’s loopback address is not learned through IS-IS, and is therefore not listed). 
You can assume that similar results are obtained when the same commands are issued on r4. 
A quick look at r2’s IS-IS configuration returns the following:

[edit]

lab@r2# show protocols isis

level 2 disable;

interface fe-0/0/0.0 {

    passive;

}

interface fe-0/0/1.0;

interface fe-0/0/2.0;

interface fe-0/0/3.0;

interface lo0.0;

r2’s IS-IS configuration is pretty basic; the only real item to note is the fact that the router 
is running a passive IS-IS instance on its fe-0/0/0 interface. As with the OSPF example in the 
chapter body, the passive interface setting ensures that the 10.0.5/25 subnet will be reachable 
as an IS-IS internal route without chancing IGP adjacency formation to peer P1. Although 
not shown, the same passive interface observation is made when inspecting r1’s IS-IS stanza. 
You next confirm IS-IS adjacency status, at r2:

[edit]

lab@r2# run show isis adjacency 

Interface           System        L State        Hold (secs)  SNPA

fe-0/0/1.0              r4           1 Up                 21  0:90:69:6b:30:1

fe-0/0/2.0              r3           1 Up                 23  0:90:69:6d:98:1

fe-0/0/3.0              r1           1 Up                  6  0:a0:c9:6f:7b:84

With r2 displaying the expected number and types of IS-IS adjacencies, things are looking 
good for IS-IS functionality in area 0001. You decide to shift your discovery activities to r5 as 
a result:

lab@r5# show

export l1-l2;

interface fe-0/0/0.0 {

    level 2 disable;

}

interface fe-0/0/1.0 {

    level 2 disable;

}

interface so-0/1/0.0 {

    level 1 {

        passive;



72 Chapter 1 � Network Discovery and Verification

    }

}

interface at-0/2/1.0 {

    level 1 {

        passive;

    }

}

interface lo0.0;

As with r3 and r4, r5’s configuration indicates that it is a L1/L2 (attached) router by virtue 
of the mix of L1 and L2 interface statements in its IS-IS stanza. Unlike r3 and r4, r5 is running 
IS-IS (passively) at both Level 1 and Level 2 on its lo0 interface; this will result in the advertisement 
of its lo0 address in both its L1 and L2 LSPs. The passive configuration on r5’s core facing 
interfaces prevents inefficient routing in area 0002, by having r5 advertise the 10.0.2.0/30 and 
10.0.2.8/30 prefixes in the L1 LSP it sends into area 0002. Disabling Level 1 on r5’s core facing 
interfaces will result in r6 and r7 incurring extra hops when forwarding to these prefixes, 
as their only routes to these destinations would be learned through the L2 LSPs generated by r3 
and r4, respectively. A quick traceroute at r7 confirms proper forwarding paths to core prefixes:

[edit]

lab@r7# run traceroute 10.0.2.1 

traceroute to 10.0.2.1 (10.0.2.1), 30 hops max, 40 byte packets

 1  10.0.2.1 (10.0.2.1)  0.758 ms  0.558 ms  0.454 ms

[edit]

lab@r7# run traceroute 10.0.2.9

traceroute to 10.0.2.9 (10.0.2.9), 30 hops max, 40 byte packets

 1  10.0.2.9 (10.0.2.9)  0.644 ms  0.489 ms  0.436 ms

The presence of an l1-l2 export policy is also noted and the contents displayed:

lab@r5# show policy-options policy-statement l1-l2 

term 1 {

    from {

        protocol isis;

        level 1;

        route-filter 192.168.0.0/22 longer;

    }

    to level 2;

    then accept;

}

The l1-l2 policy instructs r5 to leak L1 external routes matching the route filter statement 
into the backbone (Level 2) area. Note that L1 internals are leaked into L2 areas by default, 
but policy is needed for the leaking of L1 externals. From this, you surmise that the routes 



Case Study: IS-IS Network Discovery and Validation Techniques 73

associated with the data center router are being redistributed by r6 and r7 into IS-IS as Level 1 
externals. You next display r5’s IS-IS interface status along with its ISO NET:

[edit]

lab@r5# run show isis interface 

IS-IS interface database:

Interface             L CirID Level 1 DR        Level 2 DR        L1/L2 Metric

at-0/2/1.0            2   0x1 Passive           Point to Point         10/10

fe-0/0/0.0            1   0x2 r6.02             Disabled               10/10

fe-0/0/1.0            1   0x3 r5.03             Disabled               10/10

lo0.0                 0   0x1 Passive           Passive                 0/0

so-0/1/0.0            2   0x1 Passive           Point to Point         10/10

[edit]

lab@r5# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.5/32;

    }

    family iso {

        address 49.0002.5555.5555.5555.00;

    }

}

Based on the display, you conclude that r5, r6, and r7 are attached to IS-IS area 49.0002, 
and that r5 should have L2 adjacencies on its core facing interfaces and L1 adjacencies on 
the Fast Ethernet links to r6 and r7. The IS-IS adjacency status is now verified on r5:

[edit]

lab@r5# run show isis adjacency

Interface           System       L State      Hold (secs)      SNPA

at-0/2/1.0          r3           2 Up                 21

fe-0/0/0.0          r6           1 Up                  6       0:d0:b7:3f:af:f

fe-0/0/1.0          r7           1 Up                 21       0:60:94:51:c4:27

so-0/1/0.0          r4           2 Up                 26

The results confirm that r5 has the expected number of adjacencies (4), and further validates 
that area 0002 is a Level 1 area. With r5’s configuration and operation looking good, your 
attention shifts to r7:

[edit]

lab@r7# show protocols 

bgp {

    group int {

        type internal;



74 Chapter 1 � Network Discovery and Verification

        local-address 10.0.9.7;

        export nhs;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

    }

    group c1 {

        type external;

        export ebgp-out;

        neighbor 172.16.0.2 {

            peer-as 65010;

        }

    }

}

isis {

    export rip-isis;

    interface fe-0/3/0.0 {

        level 2 disable;

        level 1 passive;

    }

    interface fe-0/3/1.0 {

        level 2 disable;

    }

    interface fe-0/3/3.0 {

        level 1 disable;

    }

    interface lo0.0;

}

rip {

    group dc {

        export static-rip;

        neighbor fe-0/3/0.0;

    }

}

The highlighted output indicates that r7 is running both IS-IS and RIP. From this, you 
surmise that the data center router must now be configured to advertise the 192.168.0/22 
routes to r6 and r7 using RIP. The rip-isis export policy is now displayed. The output 



Case Study: IS-IS Network Discovery and Validation Techniques 75

confirms that r7 is configured to redistribute the data center’s routes from RIP into IS-IS:

[edit]

lab@r7# show policy-options policy-statement rip-isis 

term 1 {

    from {

        protocol rip;

        route-filter 192.168.0.0/22 longer;

    }

    then accept;

}

Displaying r7’s isis-rip policy tells you that r7 should be sending a statically defined 
default route to the data center router:

[edit]

lab@r7# show policy-options policy-statement static-rip

term 1 {

    from {

        protocol static;

        route-filter 0.0.0.0/0 exact;

    }

    then accept;

}

The static route definition is also confirmed:

[edit]

lab@r7# show routing-options static 

route 10.0.200.0/24 {

    next-hop 10.0.1.102;

    no-readvertise;

}

route 0.0.0.0/0 reject;

Why a Static Default Route?

The astute reader is likely wondering why a static default route has been defined on r6 and r7, 
especially considering that a Level 1 router normally installs an IS-IS based default route when 
the presence of an Attached router is detected in a Level 1 area through the setting of the 
Attached bit in Level 1 LSPs. The key here is the observation that area 0002 has only Attached 
routers, in that r5, r6, and r7 are all L2 and L1 Attached. Because an Attached router will not 
install a default route based on the presence of the Attached bit in the LSPs received from other 
Attached routers, a static default (or generated route) route is defined on r6 and r7.



76 Chapter 1 � Network Discovery and Verification

Now that you know what to expect, you confirm r7’s adjacency status and the presence of 
the data center’s route RIP routes:

[edit]

lab@r7# run show isis adjacency 

Interface           System        L State     Hold (secs)    SNPA

fe-0/3/1.0              r5           1 Up               7    0:90:69:69:70:1

fe-0/3/3.0              r4           2 Up               8    0:90:69:6b:30:3

Good! All of the expected adjacencies are up. You move on to confirm the presence of RIP 
routes at r7:

[edit]

lab@r7# run show route 192.168.0/22 

inet.0: 118137 destinations, 118138 routes (118137 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.0.0/24     *[RIP/100] 01:16:43, metric 2, tag 0

                    > to 10.0.8.13 via fe-0/3/0.0

192.168.1.0/24     *[RIP/100] 01:16:43, metric 2, tag 0

                    > to 10.0.8.13 via fe-0/3/0.0

192.168.2.0/24     *[RIP/100] 01:16:43, metric 2, tag 0

                    > to 10.0.8.13 via fe-0/3/0.0

192.168.3.0/24     *[RIP/100] 01:16:43, metric 2, tag 0

                    > to 10.0.8.13 via fe-0/3/0.0

The output from r7 confirms it is correctly learning the 192.168.0/22 DC routes through the 
RIP protocol. Though the results are not shown here, you can assume that similar results 
were obtained when inspecting r6. All of the results obtained thus far in your IS-IS IGP discovery 
case study have been positive. You should now be able to document your IGP discovery findings 
on a copy of the test bed topology. However, before calling it quits, you wisely opt to further 
validate the operation of your IGP through some traceroute testing:

[edit]

lab@r6# run traceroute 10.0.3.4 

traceroute to 10.0.3.4 (10.0.3.4), 30 hops max, 40 byte packets

 1  10.0.2.14 (10.0.2.14)  0.437 ms  0.352 ms  0.270 ms

 2  10.0.3.4 (10.0.3.4)  0.508 ms  0.464 ms  0.436 ms

[edit]

lab@r6# run traceroute 10.0.3.3

traceroute to 10.0.3.3 (10.0.3.3), 30 hops max, 40 byte packets

 1  10.0.3.3 (10.0.3.3)  0.592 ms  0.461 ms  0.422 ms



Case Study: IS-IS Network Discovery and Validation Techniques 77

The traceroutes to attached routers r3 and r4 succeed, but things are not so positive for the 
traceroute to r1:

[edit]

lab@r6# run traceroute 10.0.6.1

traceroute to 10.0.6.1 (10.0.6.1), 30 hops max, 40 byte packets

 1  10.0.2.14 (10.0.2.14)  0.390 ms  0.287 ms  0.243 ms

 2  * * *

 3  * * *

 4  * * *

 5  * * *

 6  * * *

The timeouts are not expected, so you move to r3, which is the first and only hop shown in 
the traceroute, to determine what is amiss:

[edit]

lab@r3# run traceroute 10.0.6.1 

traceroute to 10.0.6.1 (10.0.6.1), 30 hops max, 40 byte packets

 1  10.0.6.1 (10.0.6.1)  0.743 ms  0.553 ms  0.475 ms

The traceroute from r3 to r1 is successful, so your attention shifts to r1 itself:

[edit]

lab@r1# run traceroute 10.0.3.5 

traceroute to 10.0.3.5 (10.0.3.5), 30 hops max, 40 byte packets

traceroute: sendto: No route to host

 1 traceroute: wrote 10.0.3.5 40 chars, ret=-1

^C

[edit]

lab@r1# run show route 10.0.3.5 

inet.0: 18 destinations, 19 routes (18 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.0.0/16        *[Aggregate/130] 00:13:15

                      Reject

D’oh! The local definition of a 10.0/16 aggregate has created a black hole on r1 and r2 for 
all 10.0/16 destinations outside of their Level 1 area. Note that the presence of the same 10.0/16 
aggregate route had no impact on the operation of the OSPF IGP, as demonstrated in the 
chapter body, because neither the stub nor the NSSA areas were blocking network summaries. 
Recalling that an IS-IS L1 area functions much as an OSPF stub/NSSA area with no-summaries, the 
problems caused by the local aggregate make perfect sense. This problem is not occurring on 
r6 and r7, because they are attached routers with full routing knowledge of the IS-IS domain.

After noting the problem and obtaining permission from the proctor to make baseline 
configuration changes, you decide to correct the issue by adjusting the IBGP export policy on r3 



78 Chapter 1 � Network Discovery and Verification

and r4 to effect the advertisement of the 10.0/16 aggregate to r1 and r2 through IBGP. You must 
be careful that your policy advertises a next hop for the aggregate route that is within L1 area 0001. 
The default behavior will be to set the route’s next hop to the lo0 address of the advertising router, 
which will cause the 10.0/16 route to be hidden on r1 and r2 due to their inability to resolve 
the advertised BGP next hop (10.0.3.3 or 10.0.3.4) through the 10.0/16 route itself. (A BGP route 
cannot have its next hop resolved through itself because this can result in recursion problems.)

Advertising the aggregate to r1 and r2 through IBGP allows for the removal of the local 
10.0/16 aggregate route definition from r1 and r2, while still providing them with the ability 
to advertise the 10.0/16 route to their EBGP peer P1. The highlighted entries show the modifi-
cations that were made to the IBGP portion of r4’s configuration to evoke per-neighbor IBGP 
export policy (similar changes were also made at r3):

[edit]

lab@r4# show protocols bgp 

advertise-inactive;

group int {

    type internal;

    local-address 10.0.3.4;

    export nhs;

    neighbor 10.0.6.1 {

        export r1;

    }

    neighbor 10.0.6.2 {

        export r2;

    }

    neighbor 10.0.3.3;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

group c1 {

    type external;

    export ebgp-out;

    neighbor 172.16.0.6 {

        peer-as 65010;

    }

} 

And the new r1 and r2 policies are displayed with the next hop settings for the aggregate 
route highlighted:

[edit]

lab@r4# show policy-options policy-statement r1 



Case Study: IS-IS Network Discovery and Validation Techniques 79

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then {

        next-hop 10.0.4.17;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.6;

    }

    then {

        next-hop self;

    }

}

[edit]

lab@r4# show policy-options policy-statement r2

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then {

        next-hop 10.0.4.9;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.6;

    }

    then {



80 Chapter 1 � Network Discovery and Verification

        next-hop self;

    }

}

The first term in the r1 and r2 export policies results in r3 and r4 advertising their 10.0/16 
aggregate to r1 and r2 with the BGP next hop set to an IP address that exists within their Level 1 
area. Note that the next hop advertised to r1 differs from that sent to r2 in an effort to help 
promote optimal forwarding paths wherever possible. Because the next hop for the 10.0/16 
now resolves through a more specific route (as opposed to the 10.0/16 route itself), the route is 
no longer hidden and is therefore eligible for export to the P1 router by r1 and r2. The second 
policy term functions to set next hop self on the routes being learned from C1 peering. Though 
not shown, r3 now has similar r1 and r2 policies in place.

After deleting the local aggregate at r1 and r2, further testing confirms that all is well:

[edit]

lab@r1# run show route 10.0/16 

inet.0: 118087 destinations, 118094 routes (118087 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.0.0/16        *[BGP/170] 00:10:31, localpref 100, from 10.0.3.3

                      AS path: I

                    > to 10.0.4.13 via fe-0/0/1.0

                    [BGP/170] 00:10:34, localpref 100, from 10.0.3.4

                      AS path: I

                    > to 10.0.4.17 via fe-0/0/4.0

. . .

The 10.0/16 aggregate, as received from r3 and r4, is confirmed with the output just shown. 
You next verify that the aggregate is being correctly sent on to the P1 router:

[edit]

lab@r1# run show route advertising-protocol bgp 10.0.5.254 10.0/16 

inet.0: 118167 destinations, 118182 routes (118167 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 10.0.0.0/16             Self    

The output confirms the advertisement of the 10.0/16 aggregate to router P1. The next set 
of commands verifies reachability and forwarding paths from Level 1 router r1 to various 
internal and external destinations:

[edit]

lab@r1# run traceroute 10.0.9.7 

traceroute to 10.0.9.7 (10.0.9.7), 30 hops max, 40 byte packets

 1  10.0.4.13 (10.0.4.13)  0.409 ms  0.341 ms  0.266 ms



Case Study: IS-IS Network Discovery and Validation Techniques 81

 2  10.0.2.1 (10.0.2.1)  0.811 ms  1.054 ms  0.798 ms

 3  10.0.9.7 (10.0.9.7)  0.705 ms  0.648 ms  0.405 ms

[edit]

lab@r1# run traceroute 192.168.0.1 

traceroute to 192.168.0.1 (192.168.0.1), 30 hops max, 40 byte packets

 1  10.0.4.13 (10.0.4.13)  0.400 ms  0.293 ms  0.250 ms

 2  10.0.2.13 (10.0.2.13)  0.157 ms  0.153 ms  0.133 ms

 3  192.168.0.1 (192.168.0.1)  0.260 ms  0.231 ms  0.209 ms

[edit]

lab@r1# run traceroute 130.130.0.1

traceroute to 130.130.0.1 (130.130.0.1), 30 hops max, 40 byte packets

 1  10.0.4.13 (10.0.4.13)  0.392 ms  0.289 ms  0.248 ms

 2  130.130.0.1 (130.130.0.1)  0.172 ms  0.166 ms  0.144 ms

[edit]

lab@r1# run traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.4.13 (10.0.4.13)  0.388 ms  0.300 ms  0.247 ms

 2  10.0.2.13 (10.0.2.13)  0.160 ms  0.152 ms  0.130 ms

 3  220.220.0.1 (220.220.0.1)  0.246 ms  0.228 ms  0.208 ms

[edit]

lab@r1# run traceroute 200.200.0.1

traceroute to 200.200.0.1 (200.200.0.1), 30 hops max, 40 byte packets

 1  10.0.4.13 (10.0.4.13)  0.408 ms  0.291 ms  0.248 ms

 2  10.0.2.6 (10.0.2.6)  0.309 ms  0.276 ms  0.253 ms

 3  200.200.0.1 (200.200.0.1)  0.178 ms  0.180 ms  0.154 ms

The forwarding paths shown have all been optimal, with the exception of the extra hop 
through r3 that occurs when r1 traces routes to C1’s destinations. Closer inspection reveals that 
the extra hop is the result of C1’s 200.200/16 route resolving through the 10.0/16 aggregate, 
coupled with the fact that both r1 and r2 prefer the 10.0/16 advertisement from r3 to that 
learned from r4, due to r3’s lower RID. Because extra hops are sometimes inevitable when rely-
ing on aggregate or default routing, this condition is considered par for the course and, other 
than simply noting the condition, no additional actions are taken. With full reachability and 
optimal forwarding confirmed to all internal and external destinations, you have finished the 
validation aspects of the IS-IS based IGP discovery case study.

Although not shown here, you should quickly confirm that all IBGP and EBGP sessions are 
correctly established, and that no hidden route problems exist, before considering your baseline 
network operational. You can assume that there are no operational problems in the test bed 
at this time. To complete the IGP discovery case study, you must document your findings. 



82 Chapter 1 � Network Discovery and Verification

Figure 1.5 provides a summary of your IGP discovery case study findings. The figure also notes 
the operational issues that were discovered, and rectified, in this case study.

F I G U R E 1 . 5 Results from IGP discovery case study

Network Discovery Case Study Configuration

The complete case study configuration for all routers in the test bed is provided next. To keep 
things interesting, the configuration examples shown in subsequent chapters may use either the 
OSPF or the IS-IS baseline configuration. Differences between the chapter body and case 
study configurations, and any changes needed to provide proper IGP operation, are called out 
with highlights in Listings 1.8 through 1.14.

Listing 1.8: r1 IS-IS Baseline Configuration

lab@r1# show | no-more 

version 5.6R1.3;

system {

Notes:

Multi-level IS-IS, Areas 0001 and 0002 with ISO NET based on router number.

lo0 address of r3 and r4 not injected into Area 0001 to ensure optimal forwarding between 10.0.3.3 and 10.0.3.4.

Passive setting on r5's core interfaces for optimal Area 0002-to-core routing.

No authentication or route summarization. Routing policy at r5 to leak L1 externals (DC routes) to L2.

Suboptimal routing detected at the data center and at r1/r2 for some locations. This is the result of random nexthop
choice for data center's default, and the result of r1 and r2's preference for r3's RID over r4 with regard to the
10.0/16 route. This is considered normal behavior, so no corrective actions are taken.

Redistribution of static default route to data center from both r6 and r7. Redistribution of 192.168.0/24 through
192.168.3/24 routes from RIP into IS-IS by both r6 and r7.

All adjacencies are up, reachability problem discovered at r1 and r2 caused by local aggregate definition. Corrected
through IBGP policy to effect 10.0/16 route advertisement from r3 and r4 to r1 and r2; removed local aggregate
from r1 and r2.

Area 0001
L1

L2 Area 0002
L1

r2 r4
r7

r6

RIP v2

Data
Center

r5

r3r1

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

M5M5

M5M5

M5M5

M5M5

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

Data
Center



Case Study: IS-IS Network Discovery and Validation Techniques 83

    host-name r1;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r1-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {



84 Chapter 1 � Network Discovery and Verification

            family inet {

                address 10.0.5.1/24;

            }

            family iso;

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.14/30;

            }

            family iso;

        }

    }

    fe-0/0/2 {

        unit 0 {

            family inet {

                address 10.0.4.5/30;

            }

            family iso;

        }

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.4.18/30;

            }

            family iso;

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.1/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.6.1/32;



Case Study: IS-IS Network Discovery and Validation Techniques 85

            }

            family iso {

                address 49.0001.1111.1111.1111.00;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group p1 {

            type external;

            export ebgp-out;

            neighbor 10.0.5.254 {

                peer-as 65050;

            }

        }

    }

    isis {

        level 2 disable;

        interface fe-0/0/0.0 {

            passive;

        }



86 Chapter 1 � Network Discovery and Verification

        interface fe-0/0/1.0;

        interface fe-0/0/2.0;

        interface fe-0/0/3.0;

        interface lo0.0;

    }

}

policy-options {

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from community transit;

            then reject;

        }

    }

    community transit members 65412:420;

}

Note that the 10.0/16 local aggregate has been deleted from the routing-options stanza 
on r1, and that the first term in the ebgp-out policy is no longer needed; the term has been left 
in place because it is causing no harm.

Listing 1.9: r2 IS-IS Baseline Configuration

[edit]

lab@r2# show | no-more 

version 5.6R1.3;

system {

    host-name r2;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }



Case Study: IS-IS Network Discovery and Validation Techniques 87

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r2-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 10.0.5.2/24;

            }

            family iso;

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.10/30;



88 Chapter 1 � Network Discovery and Verification

            }

            family iso;

        }

    }

    fe-0/0/2 {

        speed 100m;

        unit 0 {

            family inet {

                address 10.0.4.2/30;

            }

            family iso;

        }

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.4.6/30;

            }

            family iso;

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.2/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.6.2/32;

            }

            family iso {

                address 49.0001.2222.2222.2222.00;

            }

        }

    }

}

routing-options {

    static {



Case Study: IS-IS Network Discovery and Validation Techniques 89

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.6.2;

            neighbor 10.0.6.1;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group p1 {

            type external;

            export ebgp-out;

            neighbor 10.0.5.254 {

                peer-as 65050;

            }

        }

    }

    isis {

        level 2 disable;

        interface fe-0/0/0.0 {

            passive;

        }

        interface fe-0/0/1.0;

        interface fe-0/0/2.0;

        interface fe-0/0/3.0;

        interface lo0.0;

    }

}

policy-options {

    policy-statement ebgp-out {

        term 1 {



90 Chapter 1 � Network Discovery and Verification

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from community transit;

            then reject;

        }

    }

    community transit members 65412:420;

}

Note that the 10.0/16 local aggregate has been deleted from the routing-options stanza on 
r2, and that the first term in the ebgp-out policy is no longer needed; the term has been left 
in place because it is causing no harm.

Listing 1.10: r3 IS-IS Baseline Configuration

[edit]

lab@r3# show | no-more 

version 5.6R1.3;

system {

    host-name r3;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }



Case Study: IS-IS Network Discovery and Validation Techniques 91

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r3-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 10.0.4.13/30;

            }

            family iso;

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.1/30;

            }

            family iso;

        }

    }

    fe-0/0/2 {

        unit 0 {

            family inet {



92 Chapter 1 � Network Discovery and Verification

                address 172.16.0.13/30;

            }

        }

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.2.14/30;

            }

            family iso;

        }

    }

    at-0/1/0 {

        atm-options {

            vpi 0 {

                maximum-vcs 64;

            }

        }

        unit 0 {

            point-to-point;

            vci 50;

            family inet {

                address 10.0.2.2/30;

            }

            family iso;

        }

    }

    so-0/2/0 {

        dce;

        encapsulation frame-relay;

        unit 100 {

            dlci 100;

            family inet {

                address 10.0.2.5/30;

            }

            family iso;

        }

    }

    fxp0 {

        unit 0 {

            family inet {



Case Study: IS-IS Network Discovery and Validation Techniques 93

                address 10.0.1.3/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.3.3/32;

            }

            family iso {

                address 49.0001.3333.3333.3333.00;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        advertise-inactive;

        group int {

            type internal;

            local-address 10.0.3.3;

            export nhs;

            neighbor 10.0.6.1 {

                export r1;

            }

            neighbor 10.0.6.2 {

                export r2;

            }

            neighbor 10.0.3.4;



94 Chapter 1 � Network Discovery and Verification

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group ext {

            import ebgp-in;

            export ebgp-out;

            neighbor 172.16.0.14 {

                peer-as 65222;

            }

        }

    }

    isis {

        interface fe-0/0/0.0 {

            level 2 disable;

        }

        interface fe-0/0/1.0 {

            level 2 disable;

        }

        interface fe-0/0/3.0 {

            level 1 disable;

        }

        interface at-0/1/0.0 {

            level 1 disable;

        }

        interface so-0/2/0.100 {

            level 1 disable;

        }

        interface lo0.0 {

            level 1 disable;

        }

    }

}

policy-options {

    policy-statement nhs {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.14;

            }

            then {



Case Study: IS-IS Network Discovery and Validation Techniques 95

                next-hop self;

            }

        }

    }

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

    }

    policy-statement ebgp-in {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.14;

            }

            then {

                community add transit;

            }

        }

    }

    policy-statement r1 {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then {

                next-hop 10.0.4.13;

                accept;

            }

        }

        term 2 {

            from {

                protocol bgp;

                neighbor 172.16.0.14;

            }

            then {



96 Chapter 1 � Network Discovery and Verification

                next-hop self;

            }

        }

    }

    policy-statement r2 {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then {

                next-hop 10.0.4.1;

                accept;

            }

        }

        term 2 {

            from {

                protocol bgp;

                neighbor 172.16.0.14;

            }

            then {

                next-hop self;

            }

        }

    }

    community transit members 65412:420;

}

Note that IBGP export policy changes were made on r3 to allow advertisement of the 10.0/16 
aggregate to r1 and r2 through IBGP with the next hop set to an area 0001 address.

Listing 1.11: r4 IS-IS Baseline Configuration

[edit]

lab@r4# show | no-more 

version 5.6R1.3;

system {

    host-name r4;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA



Case Study: IS-IS Network Discovery and Validation Techniques 97

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r4-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 172.16.0.5/30;

            }

        }

    }



98 Chapter 1 � Network Discovery and Verification

    fe-0/0/1 {

        unit 0 {

            family inet {

                address 10.0.4.9/30;

            }

            family iso;

        }

    }

    fe-0/0/2 {

        unit 0 {

            family inet {

                address 10.0.4.17/30;

            }

            family iso;

        }

    }

    fe-0/0/3 {

        unit 0 {

            family inet {

                address 10.0.2.18/30;

            }

            family iso;

        }

    }

    so-0/1/0 {

        encapsulation frame-relay;

        unit 100 {

            dlci 100;

            family inet {

                address 10.0.2.6/30;

            }

            family iso;

        }

    }

    so-0/1/1 {

        encapsulation ppp;

        unit 0 {

            family inet {

                address 10.0.2.10/30;

            }



Case Study: IS-IS Network Discovery and Validation Techniques 99

            family iso;

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.4/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.3.4/32;

            }

            family iso {

                address 49.0001.4444.4444.4444.00;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        advertise-inactive;

        group int {

            type internal;

            local-address 10.0.3.4;

            export nhs;



100 Chapter 1 � Network Discovery and Verification

            neighbor 10.0.6.1 {

                export r1;

            }

            neighbor 10.0.6.2 {

                export r2;

            }

            neighbor 10.0.3.3;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

        group c1 {

            type external;

            export ebgp-out;

            neighbor 172.16.0.6 {

                peer-as 65010;

            }

        }

    }

    isis {

        interface fe-0/0/1.0 {

            level 2 disable;

        }

        interface fe-0/0/2.0 {

            level 2 disable;

        }

        interface fe-0/0/3.0 {

            level 1 disable;

        }

        interface so-0/1/0.100 {

            level 1 disable;

        }

        interface so-0/1/1.0 {

            level 1 disable;

        }

        interface lo0.0 {

            level 1 disable;

        }

    }

}

policy-options {



Case Study: IS-IS Network Discovery and Validation Techniques 101

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

    }

    policy-statement nhs {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.6;

            }

            then {

                next-hop self;

            }

        }

    }

    policy-statement r1 {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then {

                next-hop 10.0.4.17;

                accept;

            }

        }

        term 2 {

            from {

                protocol bgp;

                neighbor 172.16.0.6;

            }

            then {

                next-hop self;

            }

        }

    }



102 Chapter 1 � Network Discovery and Verification

    policy-statement r2 {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then {

                next-hop 10.0.4.9;

                accept;

            }

        }

        term 2 {

            from {

                protocol bgp;

                neighbor 172.16.0.6;

            }

            then {

                next-hop self;

            }

        }

    }

}

Note that IBGP export policy changes were made on r4 to allow advertisement of the 10.0/16 
aggregate to r1 and r2 through IBGP with the next hop set to an area 0001 address.

Listing 1.12: r5 IS-IS Baseline Configuration

[edit]

lab@r5# show | no-more 

version 5.6R1.3;

system {

    host-name r5;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }



Case Study: IS-IS Network Discovery and Validation Techniques 103

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r5-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/0/0 {

        unit 0 {

            family inet {

                address 10.0.8.6/30;

            }

            family iso;

        }

    }

    fe-0/0/1 {

        unit 0 {

            family inet {



104 Chapter 1 � Network Discovery and Verification

                address 10.0.8.9/30;

            }

            family iso;

        }

    }

    so-0/1/0 {

        encapsulation ppp;

        unit 0 {

            family inet {

                address 10.0.2.9/30;

            }

            family iso;

        }

    }

    at-0/2/1 {

        atm-options {

            vpi 0 {

                maximum-vcs 64;

            }

        }

        unit 0 {

            point-to-point;

            vci 50;

            family inet {

                address 10.0.2.1/30;

            }

            family iso;

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.5/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.3.5/32;



Case Study: IS-IS Network Discovery and Validation Techniques 105

            }

            family iso {

                address 49.0002.5555.5555.5555.00;

            }

        }

    }

}

routing-options {

    static {

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.3.5;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.9.6;

            neighbor 10.0.9.7;

        }

    }

    isis {

        export l1-l2;

        interface fe-0/0/0.0 {

            level 2 disable;

        }

        interface fe-0/0/1.0 {

            level 2 disable;

        }

        interface so-0/1/0.0 {

            level 1 passive;

        }



106 Chapter 1 � Network Discovery and Verification

        interface at-0/2/1.0 {

            level 1 passive;

        }

        interface lo0.0;

    }

}

policy-options {

    policy-statement l1-l2 {

        term 1 {

            from {

                protocol isis;

                level 1;

                route-filter 192.168.0.0/22 longer;

            }

            to level 2;

            then accept;

        }

    }

}

Listing 1.13: r6 IS-IS Baseline Configuration

[edit]

lab@r6# show | no-more 

version 5.6R1.3;

system {

    host-name r6;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {



Case Study: IS-IS Network Discovery and Validation Techniques 107

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r6-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/1/0 {

        unit 0 {

            family inet {

                address 10.0.8.5/30;

            }

            family iso;

        }

    }

    fe-0/1/1 {

        unit 0 {

            family inet {

                address 10.0.2.13/30;

            }

            family iso;

        }

    }



108 Chapter 1 � Network Discovery and Verification

    fe-0/1/2 {

        unit 0 {

            family inet {

                address 10.0.8.2/30;

            }

            family iso;

        }

    }

    fe-0/1/3 {

        unit 0 {

            family inet {

                address 172.16.0.9/30;

            }

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.6/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.9.6/32;

            }

            family iso {

                address 49.0002.6666.6666.6666.00;

            }

        }

    }

}

routing-options {

    static {

        route 0.0.0.0/0 reject;

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }



Case Study: IS-IS Network Discovery and Validation Techniques 109

    aggregate {

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.9.6;

            export nhs;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.7;

        }

        group c2 {

            type external;

            export ebgp-out;

            neighbor 172.16.0.10 {

                peer-as 65020;

            }

        }

    }

    isis {

        export rip-isis;

        interface fe-0/1/0.0 {

            level 2 disable;

        }

        interface fe-0/1/1.0 {

            level 1 disable;

        }

        interface fe-0/1/2.0 {

            level 2 disable;

            level 1 passive;

        }

        interface lo0.0;

    }



110 Chapter 1 � Network Discovery and Verification

    rip {

        group dc {

            export static-rip;

            neighbor fe-0/1/2.0;

        }

    }

}

policy-options {

    policy-statement static-rip {

        term 1 {

            from {

                protocol static;

                route-filter 0.0.0.0/0 exact;

            }

            then accept;

        }

    }

    policy-statement rip-isis {

        term 1 {

            from {

                protocol rip;

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 upto /24;

            }

            then accept;

        }

    }



Case Study: IS-IS Network Discovery and Validation Techniques 111

    policy-statement nhs {

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.10;

            }

            then {

                next-hop self;

            }

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

}

Listing 1.14: r7 IS-IS Baseline Configuration

[edit]

lab@r7# show | no-more 

version 5.6R1.3;

system {

    host-name r7;

    authentication-order [ radius password ];

    ports {

        console type vt100;

    }

    root-authentication {

        encrypted-password "$1$RTyGDGYG$ukqr37VGRgtohedSlruOk/"; # SECRET-DATA

    }

    radius-server {

        10.0.1.201 secret "$9$jvkmT69pRhrz3hrev7Nik."; # SECRET-DATA

    }

    login {

        user lab {

            uid 2000;

            class superuser;

            authentication {

                encrypted-password "$1$L6ZKKWYI$GxEI/7YzXes2JXDcHJvz7/";

                   # SECRET-DATA



112 Chapter 1 � Network Discovery and Verification

            }

        }

    }

    services {

        ssh;

        telnet;

    }

    syslog {

        user * {

            any emergency;

        }

        file messages {

            any notice;

            authorization info;

        }

        file r7-cli {

            interactive-commands any;

            archive files 5;

        }

    }

}

interfaces {

    fe-0/3/0 {

        unit 0 {

            family inet {

                address 10.0.8.14/30;

            }

            family iso;

        }

    }

    fe-0/3/1 {

        unit 0 {

            family inet {

                address 10.0.8.10/30;

            }

            family iso;

        }

    }

    fe-0/3/2 {

        unit 0 {



Case Study: IS-IS Network Discovery and Validation Techniques 113

            family inet {

                address 172.16.0.1/30;

            }

        }

    }

    fe-0/3/3 {

        unit 0 {

            family inet {

                address 10.0.2.17/30;

            }

            family iso;

        }

    }

    fxp0 {

        unit 0 {

            family inet {

                address 10.0.1.7/24;

            }

        }

    }

    lo0 {

        unit 0 {

            family inet {

                address 10.0.9.7/32;

            }

            family iso {

                address 49.0002.7777.7777.7777.00;

            }

        }

    }

}

routing-options {

    static {

        route 0.0.0.0/0 reject;

        route 10.0.200.0/24 {

            next-hop 10.0.1.102;

            no-readvertise;

        }

    }

    aggregate {



114 Chapter 1 � Network Discovery and Verification

        route 10.0.0.0/16;

    }

    autonomous-system 65412;

}

protocols {

    bgp {

        group int {

            type internal;

            local-address 10.0.9.7;

            export nhs;

            neighbor 10.0.6.1;

            neighbor 10.0.6.2;

            neighbor 10.0.3.3;

            neighbor 10.0.3.4;

            neighbor 10.0.3.5;

            neighbor 10.0.9.6;

        }

        group c1 {

            type external;

            export ebgp-out;

            neighbor 172.16.0.2 {

                peer-as 65010;

            }

        }

    }

    isis {

        export rip-isis;

        interface fe-0/3/0.0 {

            level 2 disable;

            level 1 passive;

        }

        interface fe-0/3/1.0 {

            level 2 disable;

        }

        interface fe-0/3/3.0 {

            level 1 disable;

        }

        interface lo0.0;

    }

    rip {

        group dc {



Case Study: IS-IS Network Discovery and Validation Techniques 115

            export static-rip;

            neighbor fe-0/3/0.0;

        }

    }

}

policy-options {

    policy-statement static-rip {

        term 1 {

            from {

                protocol static;

                route-filter 0.0.0.0/0 exact;

            }

            then accept;

        }

    }

    policy-statement rip-isis {

        term 1 {

            from {

                protocol rip;

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

    policy-statement ebgp-out {

        term 1 {

            from {

                protocol aggregate;

                route-filter 10.0.0.0/16 exact;

            }

            then accept;

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 upto /24;

            }

            then accept;

        }

    }

    policy-statement nhs {



116 Chapter 1 � Network Discovery and Verification

        term 1 {

            from {

                protocol bgp;

                neighbor 172.16.0.2;

            }

            then {

                next-hop self;

            }

        }

        term 2 {

            from {

                route-filter 192.168.0.0/22 longer;

            }

            then accept;

        }

    }

}



Spot the Issues: Review Questions 117

Spot the Issues: Review Questions
1. Referring back to Figure 1.5, and the configuration snippet below, describe the number and type 

of adjacencies that you expect to find on r5. You may assume that r3, r4, r6, and r7 have a 
similar configuration:

[edit protocols isis]

lab@r5# show

export l1-l2;

level 1 disable;

interface fe-0/0/0.0;

interface fe-0/0/1.0;

interface so-0/1/0.0;

interface at-0/2/1.0;

interface lo0.0;

2. r5 has no IS-IS adjacencies. Can you spot the problems from the following configuration snippets?

[edit]

lab@r5# run show isis interface 

IS-IS interface database:

Interface       L CirID Level 1 DR         Level 2 DR        L1/L2 Metric

at-0/2/1.0      2   0x1 Disabled           Point to Point         10/10

fe-0/0/0.0      1   0x2 0000.0000.0000.02  Disabled               10/10

fe-0/0/1.0      1   0x3 0000.0000.0000.03  Disabled               10/10

lo0.0           0   0x1 Passive            Passive                 0/0

so-0/1/0.0      2   0x1 Disabled           Point to Point         10/10

[edit]

lab@r5# run show isis adjacency

[edit]

lab@r5# show interfaces 

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.8.6/30;

        }

        family iso;

    }

}



118 Chapter 1 � Network Discovery and Verification

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.8.9/30;

        }

        family iso;

    }

}

so-0/1/0 {

    encapsulation ppp;

    unit 0 {

        family inet {

            address 10.0.2.9/30;

        }

        family iso;

    }

}

at-0/2/1 {

    atm-options {

        vpi 0 {

            maximum-vcs 64;

        }

    }

    unit 0 {

        point-to-point;

        vci 50;

        family inet {

            address 10.0.2.1/30;

        }

        family iso;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.5/24;

        }

    }

}

lo0 {



Spot the Issues: Review Questions 119

    unit 0 {

        family inet {

            address 10.0.3.5/32;

        }

        family iso;

    }

}

[edit]

lab@r5# show protocols isis 

export l1-l2;

interface fe-0/0/0.0 {

    level 2 disable;

}

interface fe-0/0/1.0 {

    level 2 disable;

}

interface so-0/1/0.0 {

    level 1 disable;

}

interface at-0/2/1.0 {

    level 1 disable;

}

interface lo0.0;

3. Based on the topology demonstrated in this chapter and the output shown next, do you expect 
that all traffic generated by the data center router will follow an optimal path?

lab@dc> show route 0/0 

inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[RIP/100] 01:23:29, metric 2, tag 0

                      to 10.0.8.2 via fe-0/0/0.0

                    > to 10.0.8.14 via fe-0/0/1.0

4. Explain why the locally defined 10.0/16 aggregate on r1 and r2 worked fine with OSPF but not 
with IS-IS in the baseline topology.

5. Make at least three observations from the OSPF stanza shown next:

[edit protocols ospf]

lab@r3# show 

area 0.0.0.0 {



120 Chapter 1 � Network Discovery and Verification

    area-range 10.0.2.0/23;

    area-range 10.0.3.3/32 restrict;

    authentication-type md5; # SECRET-DATA

    interface at-0/1/0.0 {

        authentication-key "$9$zKS-n9peK8X7V"; # SECRET-DATA

    }

    interface lo0.0;

}

area 0.0.0.1 {

    nssa;

    interface all;

}



Spot the Issues: Answers to Review Questions 121

Spot the Issues: Answers to Review 
Questions
1. Because Level 1 has been disabled in the IS-IS instance, you should expect to see a total of four 

Level 2 adjacencies at r5. 

2. The problem with r5’s IS-IS configuration is the lack of a configured ISO NET. Although lo0 
is considered an IS-IS interface, and is defined in the IS-IS stanza, a NET is required for proper 
IS-IS operation. 

3. No. With the DC router receiving two equal-cost next hops for the default route, you should 
expect to see that some traffic incurs extra hops through either r6 or r7, depending on which 
next hop is installed at any given time. 

4. The key to the differing behaviors lies in the fact that network summaries (LSA Type 3s) were 
permitted in the OSPF stub area. The network summaries resulted in r1 and r2 learning about 
specific routes to all in-use 10.0/16 addresses. The 10.0/16 aggregate was never used due to the 
presence of the more specific routes, and therefore the presence of the aggregate did not cause 
any black holes. IS-IS, on the other hand, does not support the concept of network summaries, 
which makes an IS-IS Level 1 area function like an OSPF stub area with no summaries. Lacking 
summary routes, the 10.0/16 aggregate became the longest match for destinations outside of 
the Level 1 area. The reject next hop associated with the 10.0/16 aggregate route therefore 
resulted in a black hole. 

5. Based on this OSPF stanza, you can determine the following:

� r3 is an ABR serving areas 0 and 1.
� MD5-based authentication is in place in area 0 but not area 1.
� Area 0 routes matching 10.0.2.0/23 will be presented to area 1 as a single network summary.
� Area 1 will not have a summary route for the 10.0.3.3 loopback address of r3 due to the 

restrict keyword.
� All interfaces on r3, except the at-0/1/0 and the lo0 interfaces, have been placed into area 1.
� r3 will not generate a default route into the NSSA.





 

Chapter

 

2

 

MPLS and Traffic 
Engineering

 

JNCIE LAB SKILLS COVERED IN THIS 
CHAPTER:

�

 

LDP signaled LSPs

�

 

RSVP signaled LSPs

�

 

Constrained routing

�

 

Explicit Route Objects
�

 

Constrained Shortest Path First

�

 

Routing table integration

�

 

Prefix installation
�

 

Traffic engineering shortcuts
�

 

Prefix mapping

�

 

Traffic protection

�

 

Primary and secondary paths
�

 

Fast Reroute and link protection
�

 

Preemption

�

 

Miscellaneous MPLS capabilities and features



 

This chapter exposes you to a variety of JNCIE-level Multiple 
Protocol Label based Switching (MPLS) and traffic engineering 
(TE) configuration scenarios.

MPLS technology allows for the establishment of Label Switched Paths (LSPs) through an 
IP network in a manner similar to ATM or Frame Relay Virtual Circuits (VCs). Once these 
paths are established, ingress routers 

 

push

 

 a fixed-length MPLS label onto packets as they enter 
an LSP. Transit routers act only on the MPLS label, performing 

 

swap

 

 functions as they switch 
the labeled packet from port to port. The egress router normally receives an unlabeled packet 
as the result of the penultimate router performing a label 

 

pop 

 

in what is known as Penultimate 
Hop Popping (PHP). The unlabeled packet is then routed by the egress node, which performs 
a conventional, longest-match IP route lookup.

LSPs can be established through manual intervention or through the use of a signaling 
protocol. Manually established LSPs are similar to ATM PVCs, and are referred to as 

 

static

 

 
in the JUNOS software. Signaled LSPs are similar in concept to ATM Demand Connections 
(DCs, or SVCs), whereas a signaling protocol is used to establish the LSP’s state through 
the network in a dynamic fashion. MPLS signaling options supported by JUNOS software 
include the Label Distribution Protocol (LDP) and the Resource Reservation Protocol 
(RSVP).

Because the routing of the MPLS LSP can be controlled by factors other than the IGP’s view 
of the shortest path, MPLS allows for the engineering of paths through an IP network that 
do not follow the IGP’s view of the shortest path. The ability to force certain traffic over an 
LSP, which in turn follows an arbitrary path, is referred to as traffic engineering (TE). Traffic 
engineering is normally achieved through the use of RSVP in combination with Constrained 
Shortest Path First (CSPF) online path calculation, and/or the use of Explicit Route Objects 
(EROs), which are similar to source routing an IP packet.

MPLS can support the handling of non-IP traffic, or non-routable IP packets such as those 
using RFC 1918 private addressing, because transit Label Switching Routers (LSRs) switch the 
traffic based strictly on the fixed-length MPLS header; in other words, there is no requirement 
that the payload of an MPLS packet must contain a globally routable IP packet. The protocol/
addressing agnostic nature of MPLS makes it an ideal candidate for the support of both Layer 2 
and Layer 3 VPNs. Provider-provisioned VPNs are covered in a later chapter.

This chapter will demonstrate LSP signaling, routing table integration, and traffic protection 
options that are supported in the 5.6 release of the JUNOS software. Along the way, various 
MPLS troubleshooting and verification techniques are demonstrated. While JUNOS software 
supports the establishment of statically defined LSPs in a manner akin to an ATM PVC, this 
capability is rarely used in service provider networks due to a static LSP’s propensity toward 
being misconfigured, and the inability to ascertain the end-to-end operational status of a 
static LSP. This chapter does not address statically defined LSPs because their disadvantages 



 

MPLS and Traffic Engineering

 

125

 

make it very unlikely that you will need to deploy statically defined LSP during the JNCIE 
examination.

This chapter concludes with a case study designed to closely approximate a typical JNCIE 
MPLS and traffic engineering configuration scenario. The results of key operational mode 
commands are provided in the case study analysis section so that you can also compare the 
behavior of your network to a known good example. Example router configurations that meet 
all case study requirements are provided at the end of the case study for comparison with 
your own configurations.

The examples demonstrated in the chapter body are based on the IS-IS baseline topology 
left in place at the end of Chapter 1’s case study. If you are unsure as to the state of your 
test bed, you should take a few moments to load up and confirm the IS-IS baseline configura-
tion before proceeding. You should review your findings from the IS-IS IGP discovery case 
study before beginning your MPLS configuration. Figure 2.1 summarizes the results of your 
IS-IS IGP findings.

 

F I G U R E 2 . 1

 

Summary of IS-IS discovery findings

Notes:

Multi-level IS-IS, Areas 0001 and 0002 with ISO NET based on router number.

lo0 address of r3 and r4 not injected into Area 0001 to ensure optimal forwarding between 10.0.3.3 and 10.0.3.4.

Passive setting on r5's core interfaces for optimal Area 0002-to-core routing.

No authentication or route summarization. Routing policy at r5 to leak L1 externals (DC routes) to L2.

Suboptimal routing detected at the data center and at r1/r2 for some locations. This is the result of random nexthop
choice for data center's default, and the result of r1 and r2's preference for r3's RID over r4 with regard to the
10.0/16 route. This is considered normal behavior, so no corrective actions are taken.

Redistribution of static default route to data center from both r6 and r7. Redistribution of 192.168.0/24 through
192.168.3/24 routes from RIP into IS-IS by both r6 and r7.

All adjacencies are up, reachability problem discovered at r1 and r2 caused by local aggregate definition. Corrected
through IBGP policy to effect 10.0/16 route advertisement from r3 and r4 to r1 and r2; removed local aggregate
from r1 and r2.

Area 0001
L1

L2 Area 0002
L1

r2 r4
r7

r6

RIP v2

Data
Center

r5

r3r1

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

M5M5

M5M5

M5M5

M5M5

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

Data
Center



 

126

 

Chapter 2 �

 

MPLS and Traffic Engineering

 

LDP Signaled LSPs

 

You begin your MPLS configuration scenario by establishing an LDP signaled LSP between 

 

r6

 

 
and 

 

r7

 

 for the purpose of carrying traffic between customer locations C1 and C2. The criteria 
for this scenario are as follows:
�

 

Configure LDP on 

 

r5

 

, 

 

r6

 

, and 

 

r7

 

 to establish an LSP between 

 

r6

 

 and 

 

r7

 

.
�

 

Ensure that traffic between C1 and C2 uses the LDP signaled LSP when the ingress router 
is 

 

r6

 

 or 

 

r7

 

.
�

 

Use a 5-second keepalive interval, and ensure that LDP state is maintained should a routing 
restart occur.

�

 

Collect traffic statistics in a file called 

 

ldp-stats

 

 every 90 seconds.

 

Configuring Interfaces for MPLS Support

 

You begin this configuration task by enabling the 

 

mpls

 

 family on the logical units of the internal 
facing transit interfaces in use at 

 

r5

 

, 

 

r6

 

, and 

 

r7

 

. Refer to Figure 2.2 for the topology specifics 
needed to complete this configuration scenario. Although 

 

r4

 

 is part of the overall LDP con-
figuration topology, the configuration requirements indicated that LDP will not be configured 
on 

 

r4

 

 in this scenario.
Adding the 

 

mpls

 

 family to a given interface enables labeled packet processing for that interface. 
You do not need to include the 

 

mpls

 

 family on the lo0 interface to meet the requirements of 
this configuration example. The following commands correctly add the 

 

mpls

 

 family to the transit 
interfaces on 

 

r5

 

. The 

 

mpls

 

 family is added to all of 

 

r5

 

’s interfaces at this time under the 
assumption that 

 

r5

 

’s ATM and Packet Over SONET (POS) interfaces will require MPLS 
support in the near future, and because the presence of the 

 

mpls

 

 family will cause no harm 
in the event that your assumption does not pan out:

 

[edit]

lab@r5# 

 

edit interfaces

 

[edit interfaces]

lab@r5# 

 

set fe-0/0/0 unit 0 family mpls

 

[edit interfaces]

lab@r5# 

 

set fe-0/0/1 unit 0 family mpls

 

[edit interfaces]

lab@r5# 

 

set at-0/2/1 unit 0 family mpls

 

[edit interfaces]

lab@r5# 

 

set so-0/1/0 unit 0 family mpls



 

LDP Signaled LSPs

 

127

 

F I G U R E 2 . 2

 

LDP signaled LSPs

 

Similar commands are now entered on 

 

r6

 

 and 

 

r7

 

 to add the 

 

mpls

 

 family to their internal 
facing transit interfaces, because they are expected to require MPLS support. The 

 

mpls

 

 family 
is not specified on external interfaces (EBGP or data center–facing interfaces), in accordance 
with the requirements of this scenario; note that adding the 

 

mpls

 

 family to these interfaces 
should not break anything in this example. The completed interface configuration for r6 is 
shown with the MPLS-related changes highlighted. Though not shown here, r7 has a similar 
configuration at this time:

[edit]

lab@r6# show interfaces

M5M5

fe-0/0/3

fe-
0/3

/2
so-0/1/0

fe-0/1/3
172.16.0.8/30

fe-0/0/1

fe-
0/0

/0 fe-
0/1

/0

so
-0

/1/
1

17
2.1

6.0
.0/

30

172.16.0.4/30

fe-0/0/0

10.0.2.16/30

10.0.2.8/30 10.0.8.8/30

10.0.8.4/30

fe-0/3/3
fe-0/3/1.10

.18
r4 r7

r5

r6

.5

.9 .9

.6

.5

.9

.10

.17
.1

AS 65010
200.200/16

C1

M5M5 M5M5

Loopbacks

r4 = 10.0.3.4
r5 = 10.0.3.5
r6 = 10.0.9.6
r7 = 10.0.9.7

AS 65020
220.220/16

C2

M5M5



128 Chapter 2 � MPLS and Traffic Engineering

fe-0/1/0 {

    unit 0 {

        family inet {

            address 10.0.8.5/30;

        }

        family iso;

        family mpls;

    }

}

fe-0/1/1 {

    unit 0 {

        family inet {

            address 10.0.2.13/30;

        }

        family iso;

        family mpls;

    }

}

fe-0/1/2 {

    unit 0 {

        family inet {

            address 10.0.8.2/30;

        }

        family iso;

    }

}

fe-0/1/3 {

    unit 0 {

        family inet {

            address 172.16.0.9/30;

        }

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.6/24;

        }

    }

}



LDP Signaled LSPs 129

lo0 {

    unit 0 {

        family inet {

            address 10.0.9.6/32;

        }

        family iso {

            address 49.0002.6666.6666.6666.00;

        }

    }

}

With the interfaces of r5, r6, and r7 set to support the mpls family, you commit your 
changes and issue a show mpls interface command to check your work:

[edit interfaces]

lab@r5# run show mpls interface

MPLS not configured

[edit interfaces]

The (lack of) output indicates that the mere presence of the mpls family is not sufficient 
for the interface to be enabled for MPLS operation. This condition is addressed in the following 
section, “Enable MPLS Processing on the Router.” Before moving on, you issue a show 
interfaces terse command to confirm the presence of the mpls family on the internal facing 
transit interfaces at r5:

[edit interfaces]

lab@r5# run show interfaces terse

Interface               Admin Link Proto Local                 Remote

fe-0/0/0                up    up

fe-0/0/0.0              up    up   inet  10.0.8.6/30

                                   iso

                                   mpls

fe-0/0/1                up    up

fe-0/0/1.0              up    up   inet  10.0.8.9/30

                                   iso

                                   mpls

fe-0/0/2                up    down

fe-0/0/3                up    down

so-0/1/0                up    up

so-0/1/0.0              up    up   inet  10.0.2.9/30

                                   iso

                                   mpls



130 Chapter 2 � MPLS and Traffic Engineering

so-0/1/1                up    down

so-0/1/2                up    down

so-0/1/3                up    down

at-0/2/0                up    down

at-0/2/1                up    up

at-0/2/1.0              up    up   inet  10.0.2.1/30

                                   iso

                                   mpls

dsc                     up    up

fxp0                    up    up

fxp0.0                  up    up   inet  10.0.1.5/24

fxp1                    up    up

fxp1.0                  up    up   tnp   4

gre                     up    up

ipip                    up    up

lo0                     up    up

lo0.0                   up    up   inet  10.0.3.5            --> 0/0

                                   iso   49.0002.5555.5555.5555.00

lsi                     up    up

mtun                    up    up

pimd                    up    up

pime                    up    up

tap                     up    up

As with the addition of any protocol family, care must be taken to ensure 
that the correct logical unit is specified. In the examples shown thus far, all 
interfaces are using the default logical unit value 0, but this will not always 
be the case!

Enable MPLS Processing on the Router

The previous section ended with the determination that no interfaces are considered “MPLS 
capable” despite the addition of the mpls family to their logical units. This condition is the 
result of not enabling the MPLS process on the router itself. The mpls family allows interface-
level processing of labeled packets, but without an MPLS process on the router to back this 
up, the MPLS capabilities of an interface are moot. The following command, entered on r7, 
enables the MPLS process on the router for all interfaces associated with the mpls family. If 
desired, you can specify each interface explicitly. The use of the all keyword is quite safe, 



LDP Signaled LSPs 131

however, because only interfaces with the mpls family provisioned will be considered an 
MPLS interface:

[edit]

lab@r7# set protocols mpls interface all

[edit]

lab@r7# show protocols mpls

interface all;

[edit]

lab@r7# commit

commit complete

After the change is committed, you once again display the list of MPLS interfaces:

[edit]

lab@r7# run show mpls interface

Interface        State       Administrative groups

fe-0/3/1.0        Up         <none>

fe-0/3/3.0        Up         <none>

The output confirms that r7 now considers its fe-0/3/1 and fe-0/3/3 interfaces as MPLS 
capable. The lack of administrative groups is normal, considering the CSPF-related link 
coloring has not been configured yet. Before moving on to the next section, you should con-
firm that r5 and r6 also list the appropriate interfaces as MPLS enabled. The following 
capture confirms that r5 is correctly configured, and that all of its MPLS-enabled interfaces 
are functional:

[edit]

lab@r5# run show mpls interface

Interface        State       Administrative groups

fe-0/0/0.0       Up         <none>

fe-0/0/1.0       Up         <none>

so-0/1/0.0       Up         <none>

at-0/2/1.0       Up         <none>

The show mpls interface command is very useful when the goal is to quickly diagnose 
interface and MPLS instance–related problems. If an interface is absent from the command’s 
output, it is normally because that interface does not have the mpls family configured, or 
because the interface is not listed under the [edit protocols mpls] instance. A Dn indication 
in the State column tells you that the corresponding interface is in the down state, while 
also indicating that the interface has the mpls family configured and that it is listed in the 
mpls instance.



132 Chapter 2 � MPLS and Traffic Engineering

Enabling the LDP Instance

Your next set of commands creates the LDP instance on r7, configures the modified keepalive 
interval, and enables the collection of traffic statistics, in accordance with the requirements 
of this example:

[edit]

lab@r7# set protocols ldp interface fe-0/3/1

[edit]

lab@r7# set protocols ldp interface fe-0/3/3

[edit]

lab@r7# set protocols ldp keepalive-interval 5

[edit]

lab@r7# set protocols ldp traffic-statistics file ldp-stats

[edit]

lab@r7# set protocols ldp traffic-statistics interval 90

The LDP configuration at r7 is committed and displayed:

[edit]

lab@r7# show protocols ldp

traffic-statistics {

    file ldp-stats;

    interval 90;

}

keepalive-interval 5;

interface fe-0/3/1.0;

interface fe-0/3/3.0;

To meet the “maintain LDP state in the event of routing restart” aspects of this scenario, 
you must enable the graceful-restart feature under the main routing instance’s routing-
options stanza. The wording of this requirement intentionally avoids using the “graceful 
restart” term to test the candidate’s understanding of what the feature does without giving 
away the actual keyword used to configure it. Failing to configure graceful-restart under 
routing-options results in the LDP instance operating in helper mode only, which will not 
meet the requirements posed in this example:

[edit]

lab@r7# set routing-options graceful-restart

After committing the changes at r7, you issue commands to determine LDP neighbor 
and session status. Because r7 is currently the only router with an LDP instance, no LDP 



LDP Signaled LSPs 133

neighbors or sessions are currently displayed at r7:

lab@r7> show ldp session

lab@r7> show ldp neighbor

No neighbors or sessions are in place, but the correct LDP interface listing is returned, which 
is an auspicious start:

lab@r7> show ldp interface

Interface            Label space ID        Nbr count   Next hello

fe-0/3/1.0           10.0.9.7:0               0           4

fe-0/3/3.0           10.0.9.7:0               0           4

The lack of entries in the inet.3 routing table further confirms that no LDP LSPs have yet 
been established:

lab@r7> show route table inet.3

lab@r7>

The lack of LDP signaled LSPs is to be expected, considering that r7 has not detected any 
LDP neighbors or established any LDP sessions. With r7 apparently ready to go, you enable 
the LDP instance on r5 and r6 using commands similar to those demonstrated for r7. The 
resulting LDP configuration for r5 and r6 is shown next:

[edit]

lab@r5# show protocols ldp

traffic-statistics {

    file ldp-stats;

    interval 90;

}

keepalive-interval 5;

interface fe-0/0/0.0;

interface fe-0/0/1.0;

 [edit]

lab@r5# show routing-options

graceful-restart;

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

[edit]



134 Chapter 2 � MPLS and Traffic Engineering

Note that r5 does not have its so-0/1/0 interface listed under the LDP stanza, which is in 
keeping with r4 not running LDP. The LDP settings at r6 are examined next:

lab@r6# show protocols ldp

traffic-statistics {

    file ldp-stats;

    interval 90;

}

keepalive-interval 5;

interface fe-0/1/0.0;

interface fe-0/1/1.0;

[edit]

lab@r6# show routing-options

graceful-restart;

static {

    route 0.0.0.0/0 reject;

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

After committing the changes on all routers, your attention shifts to verification of the LDP 
signaled LSP, as documented in the next section.

Verifying LDP Signaled LSPs

The LDP protocol strives to automatically detect neighbors and establish LDP sessions, 
which are then used to advertise one or more forwarding equivalency classes (FECs) with 
MPLS labels, such that it is difficult not to automatically establish LSPs between the loop-
back addresses of all LDP-enabled routers. LDP is sometimes characterized as “RIP on 
steroids” for this automatic neighbor-to-neighbor FEC advertisement behavior. By default, 
the JUNOS software implementation of LDP advertises a FEC for /32 interface routes only. The 
use of LDP will normally result in each router having an LDP signaled LSP to the loopback 
address of all other routers running LDP as a result of this default behavior. The use of 
import and export policy can alter this default behavior, but such policy is not called for 
in this scenario.



LDP Signaled LSPs 135

You begin your LDP signaled LSP verification by confirming that r5 now lists both r6 and 
r7 as LDP neighbors:

lab@r5> show ldp neighbor

Address            Interface          Label space ID         Hold time

10.0.8.5           fe-0/0/0.0         10.0.9.6:0               14

10.0.8.10          fe-0/0/1.0         10.0.9.7:0               11

With both r6 and r7 detected as LDP neighbors, you expect to see that a TCP-based LDP ses-
sion has been established between r5 and routers r6 and r7:

lab@r5> show ldp session

  Address           State        Connection     Hold time

10.0.9.6            Operational  Open             25

10.0.9.7            Operational  Open             29

As expected, an LDP session has been established to both r6 and r7 from r5. Note that, by 
default, the session is associated with the remote router’s loopback address/RID. This behavior 
can be modified with the use of the transport-address keyword in the ldp stanza if needed. 
Adding the detail keyword to the previous command allows for verification of the modified 
keepalive interval and the support of both graceful restart and helper mode:

[edit]

lab@r5# run show ldp session 10.0.9.7 detail

Address: 10.0.9.7, State: Operational, Connection: Open, Hold time: 28

  Session ID: 10.0.3.5:0--10.0.9.7:0

  Next keepalive in 3 seconds

  Passive, Maximum PDU: 4096, Hold time: 30, Neighbor count: 1

  Keepalive interval: 5, Connect retry interval: 1

  Local address: 10.0.3.5, Remote address: 10.0.9.7

  Up for 00:00:30

  Local - Restart: enabled, Helper mode: enabled, Reconnect time: 60000

  Remote - Restart: enabled, Helper mode: enabled, Reconnect time: 60000

  Local maximum recovery time: 120000 msec

  Next-hop addresses received:

    10.0.8.10

    10.0.2.17

The output generated by r5 indicates that you have correctly set the keepalive interval and 
graceful restart aspects of the LDP protocol. The next command confirms that r5 has two 
LDP signaled LSPs that are associated with the loopback addresses of r6 and r7, respectively:

lab@r5> show route table inet.3

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both



136 Chapter 2 � MPLS and Traffic Engineering

10.0.9.6/32        *[LDP/9] 00:04:05, metric 1

                    > to 10.0.8.5 via fe-0/0/0.0

10.0.9.7/32        *[LDP/9] 00:04:24, metric 1

                    > to 10.0.8.10 via fe-0/0/1.0

As hoped for, two LDP signaled LSPs have been established at r5. These LSPs were estab-
lished as a result of r6 and r7 using these LDP sessions to advertise their lo0-based FEC 
along with their choice of MPLS label to r5. The lack of label-related actions (swap, push, 
pop, etc.) for the LDP signaled LSPs in the previous display is an indication that Penultimate 
Hop Popping (PHP) is in place. Because r5 is the penultimate hop for the LSPs that have been 
established to r6 and r7, no label operation occurs when packets are sourced at r5 and targeted 
at the loopback address of either r6 or r7. Put another way, no labels are pushed, popped, 
or swapped on an LSP that consists of a single hop. A quick look at the LDP database on r5 
confirms that both r6 and r7 have signaled a desire for PHP behavior by virtue of their advertising 
reserved label 3 in conjunction with their lo0 FECs:

lab@r5> show ldp database

Input label database, 10.0.3.5:0--10.0.9.6:0

  Label     Prefix

 100002     10.0.3.5/32

      3     10.0.9.6/32

 100003     10.0.9.7/32

Output label database, 10.0.3.5:0--10.0.9.6:0

  Label     Prefix

      3     10.0.3.5/32

 100004     10.0.9.6/32

 100003     10.0.9.7/32

Input label database, 10.0.3.5:0--10.0.9.7:0

  Label     Prefix

 100004     10.0.3.5/32

 100005     10.0.9.6/32

      3     10.0.9.7/32

Output label database, 10.0.3.5:0--10.0.9.7:0

  Label     Prefix

      3     10.0.3.5/32

 100004     10.0.9.6/32

 100003     10.0.9.7/32

The display can be confusing, owing to the fact that LDP does not implement split horizon, 
and therefore re-advertises the FEC it receives from a given peer back to that peer. This is 
normal behavior for LDP, as LDP’s reliance on the IGP to prevent loops means there is no need 



LDP Signaled LSPs 137

to implement some form of split horizon. Focusing on the highlighted portions of r5’s LDP 
database, we can see that:
� r7 has advertised a 10.0.9.7/32 FEC with label value 3. This entry appears in r5’s input 

database for the LDP session between r5 and r7. This 10.0.9.7 database entry results in 
the creation of an LSP between r5 and r7’s loopback address. The presence of this LSP 
is indicated by the 10.0.9.7 entry in r5’s inet.3 routing table (shown previously).

� r7 has sent the label bindings that it received from r5 back to r5, which accounts for 
r5’s input database indicating FECs for 10.0.3.5 and 10.0.9.6 for the 10.0.3.5:0--
10.0.9.7:0 LDP session.

� The output database on r5 indicates that r7 should have two LDP signaled LSPs: one with 
no label operation (PHP is signaled with label value 3) that is associated with r5 itself, and 
another that will push label 100004 onto packets destined for r6’s 10.0.9.6 loopback address.

To confirm this prediction, you analyze r7’s inet.3 routing table:

lab@r7> show route table inet.3

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.3.5/32        *[LDP/9] 00:17:52, metric 1

                    > to 10.0.8.9 via fe-0/3/1.0

10.0.9.6/32        *[LDP/9] 00:17:52, metric 1

                    > to 10.0.8.9 via fe-0/3/1.0, Push 100004

As predicted, two LDP signaled LSPs are present at r7. The highlights call out the label push 
operation associated with the 10.0.9.6/32 address. A quick display of the route to 10.0.9.6 con-
firms that r7 now has both an IGP entry in inet.0 and an LDP entry in inet.3 for this prefix:

lab@r7> show route 10.0.9.6

inet.0: 125622 destinations, 125628 routes (125622 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.9.6/32        *[IS-IS/15] 03:06:21, metric 20

                    > to 10.0.8.9 via fe-0/3/1.0

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.9.6/32        *[LDP/9] 00:20:30, metric 1

                    > to 10.0.8.9 via fe-0/3/1.0, Push 100004



138 Chapter 2 � MPLS and Traffic Engineering

So far, your LDP confirmation checks have indicated that all aspects of the LDP signaling 
configuration scenario are working as required. The final check of LDP operation is to verify 
that traffic flowing between customer locations uses the LDP signaled LSPs. Note that LDP 
signaled LSPs are not displayed in the output of the show mpls lsp command. The fact that 
only RSVP signaled LSPs are listed in the output of this command has been known to cause 
candidates to believe that their LDP signaled LSPs are broken!

[edit]

lab@r7# run show mpls lsp

Ingress LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

Egress LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

Candidates are often confused about when traffic will, or will not, be mapped 
to an LSP. As a general rule, only the traffic associated with BGP next hops 
that resolve through inet.3 will be transported over an LSP. Later portions 
of this chapter will detail MPLS routing table integration, but for now it is 
sufficient to state that with default settings, traceroutes from r7 to 10.0.9.6 
will not use the LSP, while traceroutes from r7 to BGP destinations that resolve 
to 10.0.9.6 as the BGP next hop will use the LSP.

You next verify that traffic between C1 and C2 is forwarded over the LDP signaled LSP 
between r6 and r7 by conducting traceroute testing from either the customer locations or 
the LSP endpoints themselves. The former approach is shown here, with this capture taken 
from C1:

lab@c1> traceroute 220.220.0.1 source 200.200.0.1

traceroute to 220.220.0.1 (220.220.0.1) from 200.200.0.1, 30 hops max, 40 byte 
packets

 1  172.16.0.5 (172.16.0.5)  0.385 ms  0.303 ms  0.295 ms

 2  10.0.2.5 (10.0.2.5)  0.342 ms  0.322 ms  0.315 ms

 3  10.0.2.13 (10.0.2.13)  0.266 ms  0.227 ms  0.223 ms

 4  220.220.0.1 (220.220.0.1)  0.342 ms  0.320 ms  0.319 ms

Though the traceroute from C1 to C2 succeeds, nothing in the output confirms the presence 
of LSP-based forwarding. Fortunately you happen to notice that the first hop in the traceroute 
points to r4, as opposed to r7. A forwarding decision such as this at C1 accounts for the lack 
of LSP hops in the traceroute. Failing to make this observation could lead to a candidate messing 
around with the LDP configurations at r5, r6, and r7, when the problem has nothing at all 
to do with LDP and MPLS! A show route command confirms your suspicions, by indicating 



LDP Signaled LSPs 139

that r4’s 220.220/16 advertisement is preferred over r7’s due to their respective router IDs:

lab@c1> show route 220.220.0.1 detail

inet.0: 125561 destinations, 251118 routes (125561 active, 0 holddown, 2 hidden)

220.220.0.0/16 (2 entries, 1 announced)

        *BGP    Preference: 170/-101

                Source: 172.16.0.5

                Nexthop: 172.16.0.5 via fe-0/0/0.0, selected

                State: <Active Ext>

                Local AS: 65010 Peer AS: 65412

                Age: 36:39

                Task: BGP_65412.172.16.0.5+179

                Announcement bits (2): 0-KRT 1-BGP.0.0.0.0+179

                AS path: 65412 65020 I

                Localpref: 100

                Router ID: 10.0.3.4

         BGP    Preference: 170/-101

                Source: 172.16.0.1

                Nexthop: 172.16.0.1 via fe-0/0/1.0, selected

                State: <NotBest Ext>

                Inactive reason: Router ID

                Local AS: 65010 Peer AS: 65412

                Age: 34:30

                Task: BGP_65412.172.16.0.1+2759

                AS path: 65412 65020 I

                Localpref: 100

                Router ID: 10.0.9.7

While this situation could be fixed with the manipulation of BGP attributes such as MED, 
a more direct solution is presented here:

lab@c1> traceroute 220.220.0.1 source 200.200.0.1 bypass-routing gateway 
172.16.0.1

traceroute to 220.220.0.1 (172.16.0.1) from 200.200.0.1, 30 hops max, 48 byte 
packets

 1  172.16.0.1 (172.16.0.1)  0.254 ms  0.158 ms  0.148 ms

 2  10.0.8.9 (10.0.8.9)  0.656 ms  0.577 ms  0.582 ms

     MPLS Label=100004 CoS=0 TTL=1 S=1

 3  10.0.8.5 (10.0.8.5)  0.350 ms  0.322 ms  0.320 ms

 4  220.220.0.1 (220.220.0.1)  0.436 ms  0.420 ms  0.416 ms

Excellent! The use of bypass-routing along with the specification of r7’s EBGP peering 
address as the gateway has resulted in C1 forwarding packets addressed to 220.220.0.1 
through r7. Further, the presence of MPLS-based forwarding between r7 and r6 is clearly 
indicated by the 100004 label value shown at hop 2 in the traceroute output. Recall that 



140 Chapter 2 � MPLS and Traffic Engineering

previous confirmation steps have determined that r7 should push label 10004 onto any packets 
that are associated with a BGP next hop of 10.0.9.6, and this is exactly what you are seeing!

You can also verify proper LSP forwarding from the LSP endpoints, as in this example taken 
from r6:

lab@r6> traceroute 10.0.9.7

traceroute to 10.0.9.7 (10.0.9.7), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.561 ms  0.351 ms  0.268 ms

 2  10.0.9.7 (10.0.9.7)  0.160 ms  0.162 ms  0.131 ms

The output from a traceroute to 10.0.9.7 confirms that, by default, traffic destined to the LSP 
endpoint is not actually subjected to LSP forwarding. By altering the traceroute target to target 
one of the routes being advertised by C1, the presence of LSP forwarding is again confirmed:

lab@r6> traceroute 200.200.0.1

traceroute to 200.200.0.1 (200.200.0.1), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.623 ms  0.504 ms  0.450 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 2  10.0.8.10 (10.0.8.10)  0.154 ms  0.154 ms  0.135 ms

 3  200.200.0.1 (200.200.0.1)  0.222 ms  0.206 ms  0.187 ms

The final verification task is to confirm that LDP statistics gathering is functioning in 
accordance with the scenario’s parameters. The following commands confirm that statistics 
gathering is enabled, and that the correct file is being used to house these statistics:

lab@r6> show ldp traffic-statistics

FEC                  Type            Packets          Bytes       Shared

 10.0.3.5/32         Transit               0              0           No

                     Ingress               0              0           No

 10.0.9.7/32         Transit               0              0           No

                     Ingress              21           1032           No

LDP statistics are being accumulated, so correct log file usage is confirmed next:

lab@r6> show log ldp-stats

Feb 13 03:53:02 trace_on: Tracing to "/var/log/ldp-stats" started

 FEC                 Type            Packets          Bytes       Shared

 10.0.3.5/32         Transit               0              0           No

                     Ingress               0              0           No

 10.0.9.7/32         Transit               0              0           No

                     Ingress               0              0           No

 Feb 13 03:54:33, read statistics for 2 FECs in 00:00:01 seconds (5 queries)

The output from r6 confirms that you have correctly configured LDP statistics gathering 
based on the specified criteria. You should confirm that r5 and r7 generate similar LDP statistics 
output before deciding to move on.

The results of your traceroute testing, taken in conjunction with the LDP neighbor and 
session status output shown previously, confirm that you have met all requirements for the 
LDP signaled LSP configuration scenario.



RSVP Signaled LSPs 141

LDP Summary

The LDP protocol is used to dynamically signal MPLS LSPs. You must configure family mpls 
support on your router interfaces, and enable a MPLS instance on the router before you can 
dynamically signal LSPs. The configuration and operation of LDP is pretty straightforward. At 
a minimum, you must configure an LDP instance and associate one or more MPLS-enabled 
interfaces with the LDP instance before LDP signaling can begin. Once configured, LDP will 
automatically detect neighbors and establish a TCP-based session to each neighbor for the 
purpose of establishing LSPs through the exchange of FECs. Heck, the hardest part about LDP 
is preventing the automatic establishment of LSPs to all other LDP-enabled routers! LDP relies 
on the IGP for loop detection and forwarding, which means that the LDP does not support 
traffic engineering in that the forwarding path of an LDP signaled LSP will always match that 
used by the IGP.

By default, JUNOS software will automatically advertise a FEC for /32 interface routes, 
which in most cases means that each router will advertise a FEC for its loopback address/
RID only.

Various commands are available to monitor the operation of LDP and to view the resulting 
label database. LDP signaled LSPs are placed into the inet.3 routing table by default. Because 
entries in inet.3 are used only for BGP next hop resolution, traffic sent to internal addresses, 
or the tunnel endpoint itself, will not be forwarded over the signaled LSP.

RSVP Signaled LSPs
This section covers various configuration topics that relate to the use of RSVP signaling for 
LSP establishment. You begin by adding basic RSVP functionality to the test bed; as the 
section progresses, you will be adding routing constraints in the form of Explicit Route Objects 
(EROs) and/or online path calculation using the Constrained Shortest Path First (CSPF) 
algorithm.

You begin your RSVP configuration scenario with the addition of an RSVP signaled LSP to 
the test bed. This LSP must adhere to these criteria:
� Use RSVP signaling to establish LSP r1–r7.
� Ensure that the LSP follows the IGP’s shortest path between r1 and r7.
� Configure the LSP to reserve 10Mbps of bandwidth.
� Configure r1 and r3 to authenticate their RSVP signaling exchanges using key jnx.

Configuring Baseline MPLS Support on Remaining Routers

Before adding RSVP signaling, it is suggested that you configure all routers in the test bed with 
baseline MPLS functionality. This baseline functionality can be added to each router as needed, 
but this author has found that all too often these basic configuration settings are overlooked 
when LSPs are later being added to your network, which can lead to lost time as you find 



142 Chapter 2 � MPLS and Traffic Engineering

yourself troubleshooting every LSP you try to establish. Refer to Figure 2.3 for the topology 
specifics needed to complete this scenario.

F I G U R E 2 . 3 RSVP signaling topology

You begin this configuration task by adding baseline MPLS functionality to all routers in 
the test bed. This is accomplished by configuring the mpls family on all remaining internal 
facing transit interfaces and by creating an MPLS instance on each router in the test bed. The 
command sequence shown next correctly adds the mpls family to r1’s internal facing transit 
interfaces. Note that MPLS is added to r1’s fe-0/0/0 interface at this time because the 10.0.5/24 
subnet is considered an internal prefix:

[edit]

lab@r1# edit interfaces

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

r5

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

fe-0/0/0
10.0.4.12/30

10.0.2.4/30

fe-0/0/1

fe-0/3/1

fe-0/3/3fe-0/0/3

fe-
0/3/2

10.0.2.12/30

10.0.2.0/30

10.0.8.4/30

10.0.8.8/3010.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.1 .14 .13 .14
.13

.9

.5

.6

.9

.1

.9

.10

.17

fe-0/0/3

fe-
0/0

/0
fe-

0/1
/0

fe-0/1/1

fe-0/1/3

172.16.0.8/30

.1
.5

.18

.2 .10 .910.0.4.8/30
10.0.2.16/30

172.16.0.0/30
172.16.0.4/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.18
fe-0/0/0

.5

.6 .10

.2
.5

r6

r4 r7

Loopbacks

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5
r6 = 10.0.9.6
r7 = 10.0.9.7

.6

so-0/2/0

AS 65010
200.200/16

C1

AS 65020
220.220/16

C2



RSVP Signaled LSPs 143

[edit interfaces]

lab@r1# set fe-0/0/0 unit 0 family mpls

[edit interfaces]

lab@r1# set fe-0/0/1 unit 0 family mpls

[edit interfaces]

lab@r1# set fe-0/0/2 unit 0 family mpls

[edit interfaces]

lab@r1# set fe-0/0/3 unit 0 family mpls

With protocol family support correctly configured on r1, you now define r1’s MPLS instance; 
be sure that you list all transit interfaces either explicitly, or implicitly, through the use of an 
interface all statement, as shown in this example:

[edit]

lab@r1# set protocols mpls interface all

The modified configuration for r1 is shown with the MPLS-related changes highlighted.

[edit]

lab@r1# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.5.1/24;

        }

        family iso;

        family mpls;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.14/30;

        }

        family iso;

        family mpls;

    }

}

fe-0/0/2 {

    unit 0 {

        family inet {



144 Chapter 2 � MPLS and Traffic Engineering

            address 10.0.4.5/30;

        }

        family iso;

        family mpls;

    }

}

fe-0/0/3 {

    unit 0 {

        family inet {

            address 10.0.4.18/30;

        }

        family iso;

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.1/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.6.1/32;

        }

        family iso {

            address 49.0001.1111.1111.1111.00;

        }

    }

}

[edit]

lab@r1# show protocols

mpls {

    interface all;

}

bgp {

    group int {



RSVP Signaled LSPs 145

        type internal;

        local-address 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

    group p1 {

        type external;

        export ebgp-out;

        neighbor 10.0.5.254 {

            peer-as 65050;

        }

    }

}

isis {

    level 2 disable;

    interface fe-0/0/0.0 {

        passive;

    }

    interface fe-0/0/1.0;

    interface fe-0/0/2.0;

    interface fe-0/0/3.0;

    interface lo0.0;

}

With the modifications committed, operational output from r1 confirms that all internal 
facing transit interfaces have been correctly enabled for MPLS:

[edit]

lab@r1# run show mpls interface

Interface        State       Administrative groups

fe-0/0/0.0       Up         <none>

fe-0/0/1.0       Up         <none>

fe-0/0/2.0       Up         <none>

fe-0/0/3.0       Up         <none>

Before proceeding to the next section, you should configure baseline MPLS support on r2, 
r3, and r4 using similar commands. Be sure to verify your work by listing the router’s MPLS 
interfaces after you commit your changes. You should not enable MPLS support on EBGP-
facing interfaces at r3, r4, or r6 at this time.



146 Chapter 2 � MPLS and Traffic Engineering

r4’s configuration is now displayed with the MPLS-related additions highlighted. Note 
the correct specification of unit 100 for its so-0/1.0 interface declaration in the mpls stanza; 
specifying the correct interface units is critical for proper operation.

[edit]

lab@r4# show protocols mpls

interface so-0/1/0.100;

interface so-0/1/1.0;

interface fe-0/0/1.0;

interface fe-0/0/2.0;

interface fe-0/0/3.0;

[edit]

lab@r4# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 172.16.0.5/30;

        }

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.9/30;

        }

        family iso;

        family mpls;

    }

}

fe-0/0/2 {

    unit 0 {

        family inet {

            address 10.0.4.17/30;

        }

        family iso;

        family mpls;

    }

}

fe-0/0/3 {

    unit 0 {

        family inet {



RSVP Signaled LSPs 147

            address 10.0.2.18/30;

        }

        family iso;

        family mpls;

    }

}

so-0/1/0 {

    encapsulation frame-relay;

    unit 100 {

        dlci 100;

        family inet {

            address 10.0.2.6/30;

        }

        family iso;

        family mpls;

    }

}

so-0/1/1 {

    encapsulation ppp;

    unit 0 {

        family inet {

            address 10.0.2.10/30;

        }

        family iso;

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.4/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.4/32;

        }

        family iso {

            address 49.0001.4444.4444.4444.00;



148 Chapter 2 � MPLS and Traffic Engineering

        }

    }

}

To confirm baseline MPLS functionality at r4, a show mpls interface command is 
issued:

[edit]

lab@r4# run show mpls interface

Interface        State       Administrative groups

fe-0/0/1.0       Up         <none>

fe-0/0/2.0       Up         <none>

fe-0/0/3.0       Up         <none>

so-0/1/0.100     Up         <none>

so-0/1/1.0       Up         <none>

The output indicates that r4’s interfaces and baseline MPLS functionality are properly 
configured for the current JNCIE test bed topology. You should ensure that all seven routers 
in the test bed have similar baseline MPLS functionality before proceeding to the next 
section.

Enabling RSVP Signaling

In order to successfully signal an LSP with RSVP, all routers in the LSP’s path must be config-
ured to support the RSVP protocol. While you can choose to enable RSVP on an as needed 
basis, it is recommended that you take the time to set up RSVP on all routers in the test bed 
before defining your first RSVP signaled LSP. Such preconfiguration often means that you will 
not have to spend time troubleshooting issues relating to the lack of RSVP support with each 
new LSP that is later added to the test bed.

Before deciding to add a given functionality to all routers in the test bed, you should verify 
that such actions are not outside the parameters of your particular configuration scenario. 
Because no RSVP-related restrictions are defined in this case, you decide to enable RSVP on all 
routers. You begin on r3 by configuring all of r3’s internal-facing transit interfaces as being 
RSVP capable. The keyword all could also be used in lieu of explicit interface listing. When 
using the all keyword, it is recommended that you explicitly disable RSVP support on the 
router’s fxp0 interface.

[edit]

lab@r3# set protocols rsvp interface fe-0/0/0

[edit]

lab@r3# set protocols rsvp interface fe-0/0/1

[edit]

lab@r3# set protocols rsvp interface fe-0/0/3



RSVP Signaled LSPs 149

[edit]

lab@r3# set protocols rsvp interface at-0/1/0

[edit]

lab@r3# set protocols rsvp interface so-0/2/0.100

Note that the default logical unit value of 0 is implied on all of r3’s RSVP interface declarations 
with the exception of the specification of the non-default unit 100 for r3’s so-0/2/0 interface. The 
changes are committed, and the RSVP-enabled interfaces are displayed to validate your work:

[edit]

lab@r3# commit

commit complete

[edit]

lab@r3# run show rsvp interface

RSVP interface: 5 active

                    Active                Static       Available  Reserved Highwater

Interface    State resv   Subscription  BW          BW         BW      mark

fe-0/0/0.0   Up    0              100%  100Mbps     100Mbps    0bps    0bps

fe-0/0/1.0   Up    0              100%  100Mbps     100Mbps    0bps    0bps

fe-0/0/3.0   Up    0              100%  100Mbps     100Mbps    0bps    0bps

at-0/1/0.0   Up    0              100%  155.52Mbps  155.52Mbps 0bps    0bps

so-0/2/0.100  Up    0              100%  155.52Mbps  155.52Mbps 0bps    0bps

The display correctly lists all of r3’s internal-facing transit interfaces as being RSVP capable. 
Note that all of the interfaces are listed as Up, and that by default all interfaces will allow 
100 percent of their bandwidth to be reserved by RSVP. You should enter similar commands on 
all remaining routers and verify that the correct interfaces are listed as Up in the show rsvp 
interfaces display before proceeding to the next section. The following capture shows a 
functional configuration for r2; note the use of the all keyword in this example, and the 
explicit disabling of the fxp0 interface to make sure no RSVP signaling exchanges can occur 
over the OoB network segment:

[edit]

lab@r2# show protocols rsvp

interface all;

interface fxp0.0 {

    disable;

}

After the changes are committed, the correct RSVP interface listing is confirmed. Note the 
absence of the fxp0 interface in the resulting output:

[edit]

lab@r2# run show rsvp interface

RSVP interface: 4 active



150 Chapter 2 � MPLS and Traffic Engineering

                     Active                 Static    Available  Reserved  Highwater

Interface   State   resv    Subscription  BW      BW         BW        mark

fe-0/0/0.0  Up      0       100%          100Mbps  100Mbps    0bps      0bps

fe-0/0/1.0  Up      0       100%          100Mbps  100Mbps    0bps      0bps

fe-0/0/2.0  Up      0       100%          100Mbps  100Mbps    0bps      0bps

fe-0/0/3.0  Up      0       100%          100Mbps  100Mbps    0bps      0bps

With all routers confirmed as supporting RSVP signaling on the correct interfaces, you 
decide to issue a RSVP neighbor command on r3:

[edit]

lab@r3# run show rsvp neighbor

RSVP neighbor: 0 learned

[edit]

lab@r3#

The lack of detected RSVP neighbors on r3 could lead the uninitiated to believe that 
something is wrong with their baseline MPLS and RSVP configurations. In reality, the lack 
of neighbors is not a symptom of problems at all, because RSVP neighbors are detected only 
when LSPs are actually signaled. For now, the lack of RSVP neighbors is considered par for the 
course, so you proceed to the next section.

Configuring RSVP Authentication

With RSVP signaling now enabled on all routers in the test bed, you could try to establish the 
LSP from r1 to r7 before adding additional constraints such as the bandwidth limits, and 
the need for authentication between r1 and r3. The upside to this approach is that many aspects 
of your baseline MPLS and RSVP configurations can be quickly validated by the ability to 
establish such a bare-bones RSVP signaled LSP. The downside to the “start basic and add 
restrictions later” approach is that, many times, a candidate will simply forget to revisit the 
specifics once the main aspects of the task are operational.

In this example, you decide to revisit the RSVP configuration of r1 and r3 now so that you do 
not forget to add RSVP authentication later. You start with r1 by specifying that authentication 
is to be used on the fe-0/0/1 interface:

[edit protocols rsvp]

lab@r1# set interface fe-0/0/1 authentication-key jnx

[edit protocol rsvp]

lab@r1# show

interface all;

interface fxp0.0 {

    disable;

}

interface fe-0/0/1.0 {

    authentication-key "$9$MKZL7Vji.mT3"; # SECRET-DATA

}



RSVP Signaled LSPs 151

You confirm that authentication is in effect on the correct interface(s) by adding the detailed 
switch to the show rsvp interface command:

[edit]

lab@r1# run show rsvp interface detail | find fe-0/0/1

fe-0/0/1.0  Index 3, State Ena/Up

  Authentication, NoAggregate, NoReliable, NoLinkProtection

  HelloInterval 9(second)

  Address 10.0.4.14

  ActiveResv 0, PreemptionCnt 0, Update threshold 10%

  Subscription 100%, StaticBW 100Mbps, AvailableBW 100Mbps

                          Total                   Last 5 seconds

  PacketType       Sent      Received        Sent            Received

  Path                0             0           0                   0

  PathErr             0             0           0                   0

  PathTear            0             0           0                   0

  Resv                0             0           0                   0

  ResvErr             0             0           0                   0

  ResvTear            0             0           0                   0

  Hello               0             0           0                   0

  Ack                 0             0           0                   0

  Srefresh            0             0           0                   0

  EndtoEnd RSVP       0             0           0                   0

You now add similar authentication to r3’s fe-0/0/0 interface:

[edit]

lab@r3# set protocols rsvp interface fe-0/0/0.0 authentication-key jnx

You commit the authentication-related changes to r3 and proceed to the next section.

Configuring and Verifying RSVP Signaled LSP

With all routers in the test bed ready to support RSVP signaling, and RSVP authentication 
in place between r1 and r3, it is now time to define the r1–r7 LSP in accordance with the 
requirements of this configuration scenario. The following commands are entered at r1, the LSP 
ingress node, to define the LSP:

[edit protocols mpls]

lab@r1# set label-switched-path r1-r7 to 10.0.9.7

[edit protocols mpls]

lab@r1# set label-switched-path r1-r7 bandwidth 10m

The resulting LSP configuration is shown. Note that the m suffix is added to the bandwidth 
argument to correctly request 10Mbps of bandwidth as opposed to 10bps:

[edit protocols mpls]

lab@r1# show



152 Chapter 2 � MPLS and Traffic Engineering

label-switched-path r1-r7 {

    to 10.0.9.7;

    bandwidth 10m;

}

interface all;

After committing the change, the status of the new LSP is determined:

lab@r1> show rsvp session

Ingress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Egress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

The output is somewhat of a buzzkill, in that the display indicates that the r1–r7 LSP has failed 
to be established. You should wait at least a minute or so before taking diagnostic or corrective 
actions, owing to RSVP’s default 30-second retry timer. After waiting another 30 seconds or so, you 
confirm that things have not improved, so you issue a show mpls lsp extensive command to get 
maximum information about what is, or is not, happening with your new RSVP signaled LSP:

lab@r1> show mpls lsp extensive

Ingress LSP: 1 sessions

10.0.9.7

  From: 0.0.0.0, State: Dn, ActiveRoute: 0, LSPname: r1-r7

  ActivePath: (none)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

  Primary                    State: Dn

    Bandwidth: 10Mbps

    Will be enqueued for recomputation in 28 second(s).

    1 Feb 14 05:05:09  CSPF failed: no route toward 10.0.9.7[12 times]

  Created: Fri Feb 14 04:54:22 2003

Total 1 displayed, Up 0, Down 1

Egress LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

The highlighted fields in the output provide a veritable silver bullet for your problem. It seems 
that r1 is unable to complete its online path calculation using the Constrained Shortest Path First 
(CSPF) algorithm, and therefore RSVP has never been notified that it should even attempt to signal 



RSVP Signaled LSPs 153

the LSP. In this case, the CSPF algorithm fails due to the lack of entries in the Traffic Engineering 
Database (TED) for routers outside of the Level 1 IS-IS area 0001. This is a normal occurrence for 
a Multi-Level IS-IS topology in that traffic engineering TLVs are not leaked between IS-IS levels.

In this case, CSPF is not even needed, because the requirements state that the r1–r7 LSP 
should be routed according to the IGP’s shortest path anyway. Given the current situation, you 
opt to disable CSPF with the following command:

[edit protocols mpls]

lab@r1# set label-switched-path r1-r7 no-cspf

[edit protocols mpls]

lab@r1# commit

commit complete

After the changes are committed, the status of the new LSP is confirmed:

[edit protocols mpls]

lab@r1# run show rsvp session detail

Ingress RSVP: 1 sessions

10.0.9.7

  From: 10.0.6.1, LSPstate: Up, ActiveRoute: 0

  LSPname: r1-r7, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100000

  Resv style: 1 FF, Label in: -, Label out: 100000

  Time left:    -,  Since: Fri Feb 14 05:14:41 2003

  Tspec: rate 10Mbps size 10Mbps peak Infbps m 20 M 1500

  Port number: sender 2 receiver 11897 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.4.13 (fe-0/0/1.0) 4 pkts

  RESV rcvfrom: 10.0.4.13  (fe-0/0/1.0) 4 pkts

  Record route: <self>  10.0.4.13  10.0.2.1  10.0.8.10

Total 1 displayed, Up 1, Down 0

Egress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Excellent! The LSP from r1 to r7 has been successfully established, as indicated by the 
highlighted portions of the capture. A quick display of r1’s inet.3 routing table confirms 
the presence of an RSVP signaled LSP to 10.0.9.7:

[edit]

lab@r1# run show route table inet.3



154 Chapter 2 � MPLS and Traffic Engineering

inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.9.7/32        *[RSVP/7] 00:30:33, metric 10

                    > to 10.0.4.17 via fe-0/0/1.0, label-switched-path r1-r7

Although the reservation of 10Mbps was confirmed in the show rsvp session detail 
display at r1 shown earlier, another quick check is performed on transit LSR r5 to provide 
definitive confirmation that all is well with the r1–r7 LSP:

[edit]

lab@r5# run show rsvp interface

RSVP interface: 4 active

                    Active                Static     Available  Reserved  Highwater

Interface   State  resv   Subscription  BW        BW         BW        mark

fe-0/0/0.0  Up         0          100%  100Mbps    100Mbps    0bps      0bps

fe-0/0/1.0  Up         1          100%  100Mbps    90Mbps     10Mbps    10Mbps

so-0/1/0.0  Up         0          100%  155.52Mbps 155.52Mbps 0bps      0bps

at-0/2/1.0  Up         0          100%  155.52Mbps 155.52Mbps 0bps      0bps

The highlighted entry confirms that r5 has a single RSVP reservation that consumes 10Mbps of 
bandwidth on its fe-0/0/1 interface. These results indicate that you have met the requirements 
of the RSVP signaled LSP configuration scenario.

Many candidates are surprised to find that a bandwidth constrained LSP can 
be established without the use of a Traffic Engineering Database (TED) and the 
CSPF algorithm. Because RSVP was intended to support Quality of Service 
(QoS) over the Internet, it always had built-in support for session-based band-
width reservations. Because RSVP lacks a network-wide view of the current 
state of network resources, there is a chance that no path in the network can 
honor the reservation, which causes the RSVP session to fail somewhere 
between ingress and egress routers. Note that the look-ahead capability of 
CSPF will prevent the transmission of a futile RSVP Path message because 
no ERO will be provided to RSVP for signaling when CSPF cannot find an end-
to-end path that honors the user’s constraints.

RSVP Troubleshooting

In this troubleshooting case study, the unconstrained RSVP LSP from r1 to r7 is being routed 
through r4 instead of r3; in this case the alteration in the LSP’s path is a function of deactivating 
r1’s fe-0/0/1 interface (not shown). Note that the LSP was being routed over r1’s fe-0/0/1 



RSVP Signaled LSPs 155

interface to r3 before the interface deactivation. You begin with a determination that the r1–r7 
LSP is down, and that r4 is now the first hop LSR:

[edit]
lab@r1# run show rsvp session detail
Ingress RSVP: 1 sessions

10.0.9.7
  From: 10.0.6.1, LSPstate: Dn, ActiveRoute: 0
  LSPname: r1-r7, LSPpath: Primary
  Suggested label received: -, Suggested label sent: -
  Recovery label received: -, Recovery label sent: -
  Resv style: 0 -, Label in: -, Label out: -
  Time left:    -,  Since: Fri Feb 14 05:21:19 2003
  Tspec: rate 10Mbps size 10Mbps peak Infbps m 20 M 1500
  Port number: sender 3 receiver 11897 protocol 0
  PATH rcvfrom: localclient
  PATH sentto: 10.0.4.17 (fe-0/0/3.0) 53 pkts
  Record route: <self>  ...incomplete
Total 1 displayed, Up 0, Down 1

Egress RSVP: 0 sessions
Total 0 displayed, Up 0, Down 0

Transit RSVP: 0 sessions
Total 0 displayed, Up 0, Down 0

The highlights confirm that the LSP has not been established, and that the routing of the new 
LSP made it as far as r4’s 10.0.4.17 address. In situations like these, RSVP tracing often provides 
valuable clues as to the nature of the problem. Armed with the knowledge that things seemed 
fine until the path message hit r4, you configure RSVP tracing on r4, as shown here:

[edit]
lab@r4# show protocols rsvp
traceoptions {
    file rsvp;
    flag error detail;
    flag path detail;
    flag pathtear detail;
}
interface all;
interface fxp0.0 {
    disable;
}

A few moments after you commit the tracing changes and begin monitoring the rsvp log file, 
the following output is observed:

[edit]
lab@r4# Feb 13 22:04:36 RSVP recv Path 10.0.6.1->10.0.9.7 Len=188 fe-0/0/2.0
Feb 13 22:04:36   Session7 Len 16 10.0.9.7(port/tunnel ID 11897) Proto 0
Feb 13 22:04:36   Hop      Len 12 10.0.4.18/0x0c044330
Feb 13 22:04:36   Time     Len  8 30000 ms
Feb 13 22:04:36   SessionAttribute Len 16 Prio (7,0) flag 0x0 "r1-r7"
Feb 13 22:04:36   Sender7  Len 12 10.0.6.1(port/lsp ID  3)
Feb 13 22:04:36   Tspec    Len 36 rate 10Mbps size 10Mbps peak Infbps m 20 M 1500



156 Chapter 2 � MPLS and Traffic Engineering

Feb 13 22:04:36   ADspec   Len 48
Feb 13 22:04:36   LabelRequest Len  8 EtherType 0x800
Feb 13 22:04:36   Properties Len 12 Primary path
Feb 13 22:04:36   RecRoute Len 12  10.0.4.18
Feb 13 22:04:37 RSVP send Path 10.0.6.1->10.0.9.7 Len=196 fe-0/0/3.0
Feb 13 22:04:37   Session7 Len 16 10.0.9.7(port/tunnel ID 11897) Proto 0
Feb 13 22:04:37   Hop      Len 12 10.0.2.18/0x0a778330
Feb 13 22:04:37   Time     Len  8 30000 ms
Feb 13 22:04:37   SessionAttribute Len 16 Prio (7,0) flag 0x0 "r1-r7"
Feb 13 22:04:37   Sender7  Len 12 10.0.6.1(port/lsp ID  3)
Feb 13 22:04:37   Tspec    Len 36 rate 10Mbps size 10Mbps peak Infbps m 20 M 1500
Feb 13 22:04:37   ADspec   Len 48
Feb 13 22:04:37   LabelRequest Len  8 EtherType 0x800
Feb 13 22:04:37   Properties Len 12 Primary path
Feb 13 22:04:37   RecRoute Len 20  10.0.2.18 10.0.4.18

The trace output makes it clear that r4 correctly received the path request from r1. The output 
goes on to indicate that the path request was sent on to r7 over r4’s fe-0/0/3 interface. With this 
information, the focus shifts to r7 as the problem, because we know the path message was 
correctly sent to r7 over its fe-0/3/3 interface, but all indications are that r7 has simply ignored 
the RSVP message.

After placing a similar RSVP tracing configuration into effect on r7, you note that nothing is 
displayed, even after several minutes. The lack of RSVP trace output should mean one of two 
things. Either r7 never received the path message due to a communications error, or r7 has 
silently discarded the path message due to a lack of RSVP support on the related interface—that 
is, policed discards are occurring. After successfully pinging r4’s fe-0/0/3 interface, communi-
cation over the 10.0.2.16/30 subnet is confirmed to be operational, so attention shifts to the 
RSVP configuration on r7. After displaying r7’s RSVP stanza, the problem becomes apparent: 
r7 is not running RSVP on its fe-0/3/3 interface after all!

[edit]
lab@r7# run ping 10.0.2.18 rapid count 5
PING 10.0.2.18 (10.0.2.18): 56 data bytes
!!!!!
--- 10.0.2.18 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.422/0.517/0.722/0.117 ms

[edit]
lab@r7# show protocols rsvp
traceoptions {
    file rsvp;
    flag path detail;
    flag error detail;
}
interface fe-0/3/1
interface fe-0/3/2

You decide to use the rename function to change the erroneous fe-0/3/2 statement to the correct 
value of fe-0/3/3. After committing your changes, the r1–r7 RSVP signaled LSP is correctly 
established over the alternative path through r4. In this example, the trace-related configuration 
is removed when the problem has been resolved. Leaving a tracing configuration in effect is 



Constrained Routing 157

Constrained Routing
The LSPs that you have created so far have all followed the shortest path contours dictated by 
your IGP’s view of the shortest path between any two points. In the case of LDP, you have no 
other choice, because LDP does not support traffic engineering. However, with RSVP signaling, 
you have the ability to force the routing of the path message, and therefore the routing of the 
LSP itself, using either Explicit Routing Objects (EROs), CSPF-based online calculation, or a 
combination of both. This section provides several JNCIE-level configuration scenarios that 
incorporate TE through constrained LSP routing.

Note that ERO-based routing constraints do not involve a Traffic Engineering Database 
(TED), or any type of SPF calculation. The use of EROs does not require the IGP extensions that 
are needed to build and maintain the TED, nor do they have issues with multiple TED domains, 
as are present in the current Multi-Level IS-IS network. On the other hand, successful ERO-
based constraints are predicated on the operator specifying a valid routing path for the LSP. For 
example, LSP establishment will fail if an incorrect strict hop is specified, or if a poorly specified 
ERO list results in the LSP wrapping back over its existing path.

usually pretty safe, but even so, it is suggested that you remove any configuration elements that 
are no longer required, just to reduce configuration clutter, if for no other reason. In certain 
cases, such as when you forget to remove an old OSPF tracing stanza while you also mistakenly 
redistribute an entire BGP table into your IGP, you may well wish you had deleted that unnec-
essary tracing setup after all. Here, the added tracing burden can only serve to tax an already 
strained platform, and although there should be no “chunk emission,” things are not made 
better by the presence of an ever-churning RSVP trace file.

[edit protocols rsvp]
lab@r7# delete traceoptions

[edit protocols rsvp]
lab@r7# rename interface fe-0/3/2 to interface fe-0/3/3

[edit protocols rsvp]
lab@r7# commit

[edit protocols rsvp]
lab@r7# run show rsvp session
Ingress RSVP: 0 sessions
Total 0 displayed, Up 0, Down 0

Egress RSVP: 1 sessions
To              From            State Rt Style Labelin Labelout LSPname
10.0.9.7        10.0.6.1        Up     0  1 FF       3        - r1-r7
Total 1 displayed, Up 1, Down 0

Transit RSVP: 0 sessions
Total 0 displayed, Up 0, Down 0



158 Chapter 2 � MPLS and Traffic Engineering

Troubleshooting CSPF-related failures requires a detailed understanding of the TED and the 
data structures that it contains. This is because the typical “no route to host” error message 
resulting from a failed CSPF run provides little in the way of clues as to what has gone wrong. 
Sometimes, disabling CSPF computations can help you troubleshoot because removing the online 
path calculation component generally results in the ingress node being able to at least begin 
signaling the LSP by sending a path message toward the LSP’s egress node. While the non-CSPF 
LSP is being routed toward the egress, you may see RSVP error messages and operational displays 
that help you locate the trouble spot in your network. You can always turn CSPF processing back 
on after you determine that the LSP can be successfully established without the use of CSPF.

Keep in mind that the result of a CSPF run is the failure to find either a path or a complete 
set of strict EROs that define the path chosen by the CSPF calculation. This means that when 
CSPF “fails,” there is nothing for RSVP to signal, which in turn means that commands such 
as show rsvp session are virtually useless when the problem relates to CSPF failures. CSPF 
failures can result from IGP TED support problems, the presence of multiple TED domains, 
errors in configuration with regard to bandwidth and link coloring, or simply having a network 
that cannot support the set of constraints you have decided to place on a given LSP. In some 
cases, it is a good idea to try relaxing the set of constraints when you suspect TED problems. 
After all, you are brought a bit closer to the nature of the problem when you discover that you 
can establish a 10Mbps LSP but not a 10,000Mbps LSP, especially when the test bed happens 
to be composed entirely of Fast Ethernet technology!

ERO Constraints

In this section, you will use Explicit Route Objects (EROs) to constrain the routing of an LSP. 
EROs function in a manner similar to a source routed packet, in that the presence of EROs in the 
RSVP Path message forces the path message to visit the list of nodes in the sequence in which 
they are specified. EROs can be either loose or strict. A loose hop allows the IGP to route from 
the current node to the loosely specified target node any way it wants. A strict hop, on the other 
hand, does not permit an IGP recursive lookup and will not allow the presence of intervening 
hops between the current node and the strictly specified target node.

When listing a node, you can use either a physical or a loopback address. Note that loopback 
addresses should not be used in conjunction with strict hops, because by definition a strict 
hop should be directly connected. Although some JUNOS software versions allow strict hops 
that pointed to a neighbor’s loopback address, the 5.6R1 version used in this test bed does not 
support loopback addresses as strict hops for non-CSPF LSPs. Because the CSPF algorithm 
generates a complete list of EROs that consists of interface addresses, you can use a strict hop 
ERO pointing to a neighbor’s loopback interface when CSPF is used to compute the LSP’s path.

To complete this configuration scenario, you must establish an LSP meeting these criteria:
� Establish LSP r2–r6, with r2 as the ingress and r6 as the egress.
� The LSP must transit both r7 and r5.

Configuring the ERO Constrained LSP

You begin by defining the new LSP on r2:

[edit protocols mpls]

lab@r2# set label-switched-path r2-r6 to 10.0.9.6 primary visit-r7-r5



Constrained Routing 159

The use of primary in this command indicates that a path definition named visit-r7-r5 exists, 
and that the primary LSP should be routed according to the EROs in the specified path definition.

Once again, CSPF is disabled on the new LSP. This is because the Multi-Level IS-IS topology 
in the current test bed results in the lack of a domain-wide TED, which in the case of an LSP 
from r2 to r6 will result in CSPF failures. Note that the restrictions in this configuration task 
did not explicitly prohibit the use of CSPF, nor do they explicitly state that ERO-based con-
straints should be used to constrain the LSP’s routing. The intent of this wording is to allow the 
candidate to sink into a mire of CSPF- and TED-related analysis, if they are so inclined. After 
all, a true expert will know when CSPF can, and cannot, be used:

[edit protocols mpls]

lab@r2# set label-switched-path r2-r6 no-cspf

You now define the visit-r7-r5 path, taking care that the EROs specified will not cause 
the LSP to visit the same link or node twice, because doing so will cause the LSP’s routing to fail 
due to Record Route Object (RRO)–based loop detection. In this example, you opt to use a 
combination of strict and loose hops that force the LSP to visit r4, then r7, then r5, and then the 
egress node, r6. There is no need to specify r6 in the ERO, because the egress node becomes 
the last “loose hop” in the routing of the RSVP Path message when the ERO list runs out. r4’s 
loopback address does not exist in IS-IS Level 1 area 0001, so a strict hop pointing at its fe-0/0/1 
interface starts the ERO list; note that EROs are considered strict by default. The last two hops 
are specified as loose to accommodate the indirect routing associated with loopback interfaces:

lab@r2# show

label-switched-path r2-r6 {

    to 10.0.9.6;

    no-cspf;

    primary visit-r7-r5;

}

path visit-r7-r5 {

    10.0.4.9;

    10.0.9.7 loose;

    10.0.3.5 loose;

}

interface all;

Verifying the ERO Constrained LSP

A few moments after the changes are committed at r2, the status of the LSP is displayed:

[edit protocols mpls]

lab@r2# run show mpls lsp detail

Ingress LSP: 1 sessions

10.0.9.6

  From: 10.0.6.2, State: Up, ActiveRoute: 1, LSPname: r2-r6

  ActivePath: visit-r7-r5 (primary)

  LoadBalance: Random



160 Chapter 2 � MPLS and Traffic Engineering

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary   visit-r7-r5      State: Up

    Received RRO:

          10.0.4.9 10.0.2.17 10.0.8.9 10.0.8.5

Total 1 displayed, Up 1, Down 0

Egress LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

The output confirms that the r2–r6 LSP is up, and that it transits r4, r7, and r5 on its way 
to r6, as required by the scenario’s configuration criteria. The output from the show rsvp 
session command provides an interesting contrast in the form of the user-provided ERO vs. 
the contents of the Record Route Object (RRO) as contained in the RSVP Path and Reservation 
(RESV) messages themselves. Although they might seem different to a casual observer, both 
of the address listings indicate that the same series of nodes are crossed by the LSP:

[edit protocols mpls]

lab@r2# run show rsvp session detail

Ingress RSVP: 1 sessions

10.0.9.6

  From: 10.0.6.2, LSPstate: Up, ActiveRoute: 1

  LSPname: r2-r6, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100004

  Resv style: 1 FF, Label in: -, Label out: 100004

  Time left:    -,  Since: Fri Feb 14 11:21:57 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 5 receiver 64567 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.4.9 (fe-0/0/1.0) 9 pkts

  RESV rcvfrom: 10.0.4.9  (fe-0/0/1.0) 9 pkts

  Explct route: 10.0.4.9 10.0.9.7 10.0.3.5

  Record route: <self>  10.0.4.9  10.0.2.17  10.0.8.9  10.0.8.5

Total 1 displayed, Up 1, Down 0

Egress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0



Constrained Routing 161

The output confirms that the r2-r6 LSP has been successfully signaled, as indicated by the 
Up indication for the LSPstate. Further, the display confirms that the LSP’s routing complies 
with the user-provided ERO constraints; the added highlights call out the contents of the 
user-provided ERO and the contents of the RRO.

As a final check, the LSP’s forwarding plane is tested by tracing the route to a BGP destination 
whose next hop resolves to the 10.0.9.6 egress address of the r2–r6 LSP. The 220.220/16 routes 
coming from C2 should be just the ticket in this case:

lab@r2> show route 220.220/16

inet.0: 125480 destinations, 125487 routes (125480 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

220.220.0.0/16     *[BGP/170] 08:12:49, MED 0, localpref 100, from 10.0.9.6

                      AS path: 65020 I

                    > to 10.0.4.9 via fe-0/0/1.0, label-switched-path r2-r6

As expected, the next hop self actions of r6’s IBGP export policy result in a BGP next 
hop of 10.0.9.6 for the 220.220/16 prefix advertisement within your AS. Because this next hop 
resolves through the inet.3 routing table on r2, the r2–r6 LSP has automatically been installed 
as the next hop for 220.220/16 destination. LSP forwarding is now confirmed:

lab@r2> traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.4.9 (10.0.4.9)  0.712 ms  0.541 ms  0.433 ms

     MPLS Label=100004 CoS=0 TTL=1 S=1

 2  10.0.2.17 (10.0.2.17)  0.272 ms  0.194 ms  0.156 ms

     MPLS Label=100009 CoS=0 TTL=1 S=1

 3  10.0.8.9 (10.0.8.9)  0.565 ms  0.524 ms  0.489 ms

     MPLS Label=100005 CoS=0 TTL=1 S=1

 4  10.0.8.5 (10.0.8.5)  0.206 ms  0.199 ms  0.180 ms

 5  220.220.0.1 (220.220.0.1)  0.292 ms  0.274 ms  0.258 ms

The LSP’s presence in the forwarding path is clearly indicated by the label-related output 
associated with hops 1 through 3. With the success of the traceroute, all aspects of the ERO 
constrained LSP scenario have been met.

Constrained Shortest Path First

In this section, you will use the CSPF algorithm to compute LSP paths through your network 
based on a variety of constraints. As mentioned previously, CSPF functions to locate optimal 
paths (Shortest Path First) after paths that fail to meet one or more user-provided constraints 
have been pruned from the SPF tree (constrained). As with link state routing protocols, the 
CSPF algorithm relies on a database that is shared among all routers in the TE domain. This 
database, which is known as the TED, is built through link state routing protocol extensions 
that allow for the flooding of information regarding available link bandwidth, link coloring, 
etc. In essence, the TED has everything contained in the OSPF or IS-IS database, and more!



162 Chapter 2 � MPLS and Traffic Engineering

Worthy of note is that the IS-IS routing protocol defaults to TE extension support while the OSPF 
protocol does not. Put another way, if you run IS-IS, you already have a TED, unless you have 
consciously decided to disable TE extensions. With OSPF, the exact opposite is true: you must issue 
a set protocols ospf traffic-engineering statement to instruct OSPF to build a TED.

The difference in default behavior stems from the nature of the two protocols, and the fact 
that OSPF requires a special LSA (opaque LSA type 10) to support TE extensions while IS-IS 
simply uses additional TLVs. Also of note is that you will be unable to use CSPF to calculate 
a full, end-to-end path, when the network contains multiple TE domains—that is, more than 
one TED view. Such a condition can arise when a network has multiple routing domains, or 
in the case of a Multi-Level or Multi-Area IS-IS or OSPF network, respectively, because TE 
information is not leaked between IS-IS levels or OSPF areas. A network that runs islands of 
OSPF and IS-IS, with BGP route redistribution between these islands, is an example of a net-
work with multiple routing domains. In a network such as this, no router will have a TED that 
completely describes an end-to-end path through the network! A router can have only one TED; 
it is possible to use both OSPF and IS-IS to populate the same TED, however.

When building LSPs that cross multiple TE domains, your best bet is to disable CSPF and use 
plain old EROs. Note that JUNOS software does offer support for LSP stitching. This feature 
functions to “glue” together an end-to-end LSP that comprises multiple TE domain segments, 
each of which was established by an independent CSPF process.

To be effective with CSPF-based path calculation, you must be familiar with the contents 
of the TED, and you must be able to effectively perform CSPF-based tracing. This is because 
most network problems will simply manifest themselves as a local CSPF failure regarding the 
inability to locate a route to the host, which simply means that no path meeting the constraints 
set forth for the LSP in question can be found in the router’s TED.

To resolve these problems effectively, your best bet involves TED analysis in an effort to 
locate the node that should meet the constraint in question, yet from the view of the TED, does 
not. Once so identified, you can concentrate your troubleshooting efforts on why that node 
is not being represented accurately in the TED.

A key point can be made here regarding the distinct roles played by RSVP, the IGP, and 
CSPF, in the context of bandwidth reservations. First, the IGP has no idea about the actual vs. 
reservable bandwidth supported by the various nodes and links in your network. RSVP, on the 
other hand, can request bandwidth reservations and control the level of oversubscription or 
undersubscription, but RSVP has no idea about the overall state of the network with regard to 
end-to-end reservable bandwidth.

Barring additional ERO constraints, RSVP will generate a path message requesting a given 
bandwidth reservation, and this request will propagate hop-by-hop according to the IGP’s view 
of the shortest path, until the reservation either succeeds or a node/link is encountered that does 
not have sufficient reservable bandwidth to honor the reservation. In the latter case, LSP setup 
fails and RSVP will try to re-signal it after expiration of the retry timer. The use of CSPF in 
conjunction with the network state maintained by the TED would have resulted in no RSVP 
signaling attempts in this example. This is because the CSPF algorithm’s ability to look at the 
entire network state, as represented by its local copy of the TED, will simply result in the ingress 
node’s determination that there is “no route to host.”

In many cases, the use of CSPF will be optional. This is to say that constrained LSP routing 
can be performed with EROs, as previously demonstrated. Features and capabilities that require 



Constrained Routing 163

CSPF include the computation of Fast Reroute detours, link bypass, LSP re-optimization, and 
the use of link coloring. Link colors are sometimes referred to as affinities or administration 
groups. In many cases, the configuration requirements given to a candidate will not mandate the 
use of CSPF, such that the candidate is free to decide how they prefer to constrain the routing 
of their RSVP signaled LSPs.

With the review of CSPF and online path calculation complete, it is time to get back to work. 
To complete the CSPF configuration scenario, you must establish an LSP that conforms to the 
following stipulations:
� Establish LSP r4–r3, with r4 as the ingress and r3 as the egress.
� Color the 10.0.2.4/30 link between r4 and r3 as blue.
� Ensure that the r4–r3 LSP never uses blue links.

Configuring Link Coloring

The requirement that LSP routing be constrained by link coloring indicates that you must use 
CSPF for this configuration scenario. Note that the LSP being established is confined to the 
L2 backbone, which represents a single TE domain. Confining the LSP to backbone routers will 
therefore allow the CSPF algorithm to succeed.

You begin by establishing a link coloring plan. In this case, you decide to color the 10.0.2.8/30 
and 10.0.2.0/30 links as red while making the 10.0.2.4/30 link blue in accordance with the 
restrictions imposed. The addition of red coloring is not strictly necessary in this example; you 
could merely color the 10.0.2.4/30 link as blue and then exclude blue links to force the LSP 
to transit r5. In this example, you will use a combination of exclude and include statements to 
play it extra safe. You must also decide on the set of numeric values that will mapped to the 
user-friendly blue and red mnemonics. Use care to ensure that the color-to-numeric mappings 
are entered consistently on all routers to avoid problems and confusion down the road!

Although the actual spelling of the mnemonic color is a purely local matter, it is highly 
recommended that you use consistent spelling and case to minimize confusion should you later 
find yourself analyzing the contents of the TED. Figure 2.4 details the topology for the CSPF 
configuration scenario.

F I G U R E 2 . 4 CSPF topology and link coloring

M5M5

M5M5

M5M5

r4

red

r5

r3

red

blue

blue

Link Color Value

4

red 8

Loopbacks

r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5



164 Chapter 2 � MPLS and Traffic Engineering

Table 2.1 shows your choice of numeric-to-mnemonic color mappings:

Note that the numeric values that are assigned to represent the link colors are based on a 
bit-mask. This is to say that blue will be 0010 while red is 0100. Note that the bit 0 is not 
available for use in link coloring, such that all binary values are offset by 1, which makes a 
decimal “4” equal to a binary “10,” as opposed to “100.” If a link were to be colored as both 
red and blue, the resulting bit-mask would be 0110. The following commands correctly define 
the color-to-numeric mappings at r3:

[edit protocols mpls]

lab@r3# set admin-groups blue 4

[edit protocols mpls]

lab@r3# set admin-groups red 8

The new administration groups are now displayed:

[edit protocols mpls]

lab@r3# show

admin-groups {

    blue 4;

    red 8;

}

interface at-0/1/0.0;

interface fe-0/0/0.0;

interface fe-0/0/1.0;

interface fe-0/0/3.0;

interface so-0/2/0.100;

With the groups defined on r3, you now associate each of its core interfaces with the correct 
administrative group:

[edit protocols mpls]

lab@r3# set interface so-0/2/0.100 admin-group blue

[edit protocols mpls]

lab@r3# set interface at-0/1/0.0 admin-group red

[edit protocols mpls]

lab@r3# show

T A B L E 2 . 1 Numeric to Color Mappings

Color Numeric Value Comment

blue 4 Color for the direct link between r4 and r3

red 8 Color for remaining core links



Constrained Routing 165

admin-groups {

    blue 4;

    red 8;

}

interface at-0/1/0.0 {

    admin-group red;

}

interface fe-0/0/0.0;

interface fe-0/0/1.0;

interface fe-0/0/3.0;

interface so-0/2/0.100 {

    admin-group blue;

}

After committing the changes, you can easily check your interface to link color associations, 
as shown here:

[edit protocols mpls]

lab@r3# run show mpls interface

Interface        State       Administrative groups

fe-0/0/0.0       Up         <none>

fe-0/0/1.0       Up         <none>

fe-0/0/3.0       Up         <none>

at-0/1/0.0       Up          red

so-0/2/0.100     Up          blue

Before moving on, you decide to inspect the TED on r3 to verify that the link coloring is 
accurately reported:

[edit protocols mpls]

lab@r3# run show ted database extensive r3.00

TED database: 14 ISIS nodes 7 INET nodes

NodeID: r3.00(10.0.3.3)

  Type: Rtr, Age: 219 secs, LinkIn: 5, LinkOut: 5

  Protocol: IS-IS(2)

    To: r5.00(10.0.3.5), Local: 10.0.2.2, Remote: 10.0.2.1

      Color: 0x100 red

      Metric: 10

      Static BW: 155.52Mbps

      Reservable BW: 155.52Mbps

      Available BW [priority] bps:

       [0] 145.52Mbps   [1] 145.52Mbps   [2] 145.52Mbps   [3] 145.52Mbps

       [4] 145.52Mbps   [5] 145.52Mbps   [6] 145.52Mbps   [7] 145.52Mbps

      Interface Switching Capability Descriptor(1):

        Switching type: Packet

        Encoding type: Packet



166 Chapter 2 � MPLS and Traffic Engineering

        Maximum LSP BW [priority] bps:

         [0] 145.52Mbps   [1] 145.52Mbps   [2] 145.52Mbps   [3] 145.52Mbps

         [4] 145.52Mbps   [5] 145.52Mbps   [6] 145.52Mbps   [7] 145.52Mbps

    To: r6.03, Local: 10.0.2.14, Remote: 0.0.0.0

      Color: 0 <none>

      Metric: 10

      Static BW: 100Mbps

      Reservable BW: 100Mbps

      Available BW [priority] bps:

       [0] 100Mbps      [1] 100Mbps      [2] 100Mbps      [3] 100Mbps

       [4] 100Mbps      [5] 100Mbps      [6] 100Mbps      [7] 100Mbps

      Interface Switching Capability Descriptor(1):

        Switching type: Packet

        Encoding type: Packet

        Maximum LSP BW [priority] bps:

         [0] 100Mbps      [1] 100Mbps      [2] 100Mbps      [3] 100Mbps

         [4] 100Mbps      [5] 100Mbps      [6] 100Mbps      [7] 100Mbps

    To: r4.00(10.0.3.4), Local: 10.0.2.5, Remote: 10.0.2.6

      Color: 0x10 blue

      Metric: 10

      Static BW: 155.52Mbps

      Reservable BW: 155.52Mbps

      Available BW [priority] bps:

       [0] 155.52Mbps   [1] 155.52Mbps   [2] 155.52Mbps   [3] 155.52Mbps

       [4] 155.52Mbps   [5] 155.52Mbps   [6] 155.52Mbps   [7] 155.52Mbps

      Interface Switching Capability Descriptor(1):

        Switching type: Packet

        Encoding type: Packet

        Maximum LSP BW [priority] bps:

         [0] 155.52Mbps   [1] 155.52Mbps   [2] 155.52Mbps   [3] 155.52Mbps

         [4] 155.52Mbps   [5] 155.52Mbps   [6] 155.52Mbps   [7] 155.52Mbps

  Protocol: IS-IS(1)

    To: r2.03, Local: 10.0.4.1, Remote: 0.0.0.0

      Color: 0 <none>

      Metric: 10

      Static BW: 100Mbps

      Reservable BW: 100Mbps

      Available BW [priority] bps:

       [0] 100Mbps      [1] 100Mbps      [2] 100Mbps      [3] 100Mbps

       [4] 100Mbps      [5] 100Mbps      [6] 100Mbps      [7] 100Mbps

      Interface Switching Capability Descriptor(1):

        Switching type: Packet



Constrained Routing 167

        Encoding type: Packet

        Maximum LSP BW [priority] bps:

         [0] 100Mbps      [1] 100Mbps      [2] 100Mbps      [3] 100Mbps

         [4] 100Mbps      [5] 100Mbps      [6] 100Mbps      [7] 100Mbps

    To: r1.02, Local: 10.0.4.13, Remote: 0.0.0.0

      Color: 0 <none>

      Metric: 10

      Static BW: 100Mbps

      Reservable BW: 100Mbps

      Available BW [priority] bps:

       [0] 100Mbps      [1] 100Mbps      [2] 100Mbps      [3] 100Mbps

       [4] 100Mbps      [5] 100Mbps      [6] 100Mbps      [7] 100Mbps

      Interface Switching Capability Descriptor(1):

        Switching type: Packet

        Encoding type: Packet

        Maximum LSP BW [priority] bps:

         [0] 100Mbps      [1] 100Mbps      [2] 100Mbps      [3] 100Mbps

         [4] 100Mbps      [5] 100Mbps      [6] 100Mbps      [7] 100Mbps

The display confirms that r3’s contribution to the TED is accurate with regard to its link 
coloring values. You should take a few minutes to marvel at the wealth of information con-
tained in the TED entry for a given node. With r3’s operation confirmed, similar changes are 
now made to r4 and r5. The changes made to r5’s configuration are highlighted here:

[edit protocols mpls]

lab@r5# show

admin-groups {

    blue 4;

    red 8;

}

interface all;

interface at-0/2/1.0 {

    admin-group red;

}

interface so-0/1/0.0 {

    admin-group red;

}

You confirm that all core links at r3, r4, and r5 are correctly colored before proceeding to 
the next section.

Configuring and Verifying a CSPF Constrained LSP

With administrative group coloring in place, you now define the color-constrained LSP on r4:

[edit protocols mpls]

lab@r4# set label-switched-path r4-r3 to 10.0.3.3



168 Chapter 2 � MPLS and Traffic Engineering

[edit protocols mpls]

lab@r4# set label-switched-path r4-r3 admin-group include red

[edit protocols mpls]

lab@r4# set label-switched-path r4-r3 admin-group exclude blue

The first command in this sequence defines the LSP’s name and egress point. The next two 
commands associate this LSP with the need to include red links while also excluding blue links. 
The resulting LSP configuration is displayed next:

[edit protocols mpls]

lab@r4# show label-switched-path r4-r3

to 10.0.3.3;

admin-group {

    include red;

    exclude blue;

}

After a commit, the RSVP session status for the new LSP is displayed:

lab@r4> show rsvp session ingress detail

Ingress RSVP: 1 sessions

10.0.3.3

  From: 10.0.3.4, LSPstate: Up, ActiveRoute: 125496

  LSPname: r4-r3, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100006

  Resv style: 1 FF, Label in: -, Label out: 100006

  Time left:    -,  Since: Fri Feb 14 19:19:18 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 42938 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.2.9 (so-0/1/1.0) 9 pkts

  RESV rcvfrom: 10.0.2.9  (so-0/1/1.0) 8 pkts

  Explct route: 10.0.2.9 10.0.2.2

  Record route: <self>  10.0.2.9  10.0.2.2

Total 1 displayed, Up 1, Down 0

The output confirms LSP establishment, and that the LSP’s routing correctly avoids the 
forbidden blue link between r3 and r4. Additional confirmation regarding color-based 
constraints is provided in the output of the show mpls lsp extensive command:

lab@r4> show mpls lsp extensive name r4-r3

Ingress LSP: 1 sessions

10.0.3.3

  From: 10.0.3.4, State: Up, ActiveRoute: 125510, LSPname: r4-r3



Constrained Routing 169

  ActivePath:  (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary                    State: Up

    Include: red    Exclude: blue

    Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)

          10.0.2.9 S 10.0.2.2 S

    Received RRO:

          10.0.2.9 10.0.2.2

    5 Feb 14 19:19:18  Selected as active path

    4 Feb 14 19:19:18  Record Route:  10.0.2.9 10.0.2.2

    3 Feb 14 19:19:18  Up

    2 Feb 14 19:19:18  Originate Call

    1 Feb 14 19:19:18  CSPF: computation result accepted

  Created: Fri Feb 14 19:13:50 2003

Total 1 displayed, Up 1, Down 0

Egress LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit LSP: 1 sessions

Total 0 displayed, Up 0, Down 0

The operational output shown in this section confirms that all aspects of the CSPF configu-
ration scenario have been met.

CSPF Troubleshooting

This real world scenario will demonstrate techniques that are useful when troubleshooting 
CSPF-related problems. To simulate a configuration error, the link coloring has been removed 
from r5’s at-0/2/1 interface. The result is a CSPF failure at r4 because there is no longer a path 
between r4 and r3 including the red color. You confirm that r4 is unable to reestablish the 
r4–r3 LSP after clearing all ingress LSPs at r4:

lab@r4> clear mpls lsp

lab@r4> show mpls lsp extensive name r4-r3
Ingress LSP: 1 sessions

10.0.3.3
  From: 0.0.0.0, State: Dn, ActiveRoute: 0, LSPname: r4-r3
  ActivePath: (none)
  LoadBalance: Random



170 Chapter 2 � MPLS and Traffic Engineering

  Encoding type: Packet, Switching type: Packet, GPID: IPv4
  Primary                    State: Dn
    Include: red    Exclude: blue
    Will be enqueued for recomputation in 27 second(s).
    8 Feb 14 19:31:00  CSPF failed: no route toward 10.0.3.3
    7 Feb 14 19:31:00  Clear Call
    6 Feb 14 19:31:00  Deselected as active
    5 Feb 14 19:19:18  Selected as active path
    4 Feb 14 19:19:18  Record Route:  10.0.2.9 10.0.2.2
    3 Feb 14 19:19:18  Up
    2 Feb 14 19:19:18  Originate Call
    1 Feb 14 19:19:18  CSPF: computation result accepted
  Created: Fri Feb 14 19:19:00 2003
Total 1 displayed, Up 0, Down 1

Egress LSP: 0 sessions
Total 0 displayed, Up 0, Down 0

Transit LSP: 1 sessions
Total 0 displayed, Up 0, Down 0

Note that the CSPF failure is conveyed in the form of a rather generic message that simply 
states there is no route toward 10.0.3.3. The use of CSPF tracing on the ingress node often 
provides you with an indication of the problem. A typical CSPF tracing configuration is shown 
here, along with the trace output for a failed CSPF run.

[edit protocols mpls]
lab@r4# show traceoptions
file cspf;
flag cspf;
flag cspf-link;
flag cspf-node;
lab@r4# run monitor start cspf

lab@r4# run clear mpls lsp

[edit protocols mpls]
lab@r4#
*** cspf ***
Feb 14 19:46:06       CSPF adding path r4-r3(primary ) to CSPF queue 1
Feb 14 19:46:06       CSPF creating CSPF job
Feb 14 19:46:06       CSPF job starting
Feb 14 19:46:06       CSPF for path r4-r3(primary ), starting at r4.00
Feb 14 19:46:06         path include: 0x00000100
Feb 14 19:46:06         path exclude: 0x00000010
Feb 14 19:46:06         bandwidth: 0bps; setup priority: 0; random
Feb 14 19:46:06       CSPF final destination 10.0.3.3
Feb 14 19:46:06       CSPF starting from r4.00 (10.0.3.4) to 10.0.3.3, hoplimit 254
Feb 14 19:46:06         constrains include 0x00000100
Feb 14 19:46:06         constrains exclude 0x00000010
Feb 14 19:46:06       Node r4.00 (10.0.3.4) metric 0, hops 0, 
                       avail 32000 32000 32000 32000
Feb 14 19:46:06       Link 10.0.2.6->10.0.2.5(r3.00/10.0.3.3) metric 10 color
                         0x00000010 bw 155.52Mbps
Feb 14 19:46:06       Reverse Link for 10.0.2.6->10.0.2.5 is 10.0.2.5->10.0.2.6
Feb 14 19:46:06         link fails include 0x00000100
Feb 14 19:46:06       Link 10.0.2.10->10.0.2.9(r5.00/10.0.3.5) metric 10 color 
                         0x00000100 bw 155.52Mbps



Constrained Routing 171

Feb 14 19:46:06       Reverse Link for 10.0.2.10->10.0.2.9 is 10.0.2.9->10.0.2.10
Feb 14 19:46:06         link's interface switch capability descriptor #1
Feb 14 19:46:06           encoding: Packet, switching: Packet
Feb 14 19:46:06         link passes constraints
Feb 14 19:46:06       Link 10.0.4.17->0.0.0.0(r1.04/0.0.0.0) metric 10 color
                         0x00000000 bw 100Mbps
Feb 14 19:46:06       Reverse Link for 10.0.4.17->0.0.0.0 is 0.0.0.0->0.0.0.0
Feb 14 19:46:06         link fails include 0x00000100
Feb 14 19:46:06       Link 10.0.2.18->0.0.0.0(r4.04/0.0.0.0) metric 10 color
                         0x00000000 bw 100Mbps
Feb 14 19:46:06       Reverse Link for 10.0.2.18->0.0.0.0 is 0.0.0.0->0.0.0.0
Feb 14 19:46:06         link fails include 0x00000100
Feb 14 19:46:06       Link 10.0.4.9->0.0.0.0(r2.02/0.0.0.0) metric 10 color
                         0x00000000 bw 100Mbps
Feb 14 19:46:06       Reverse Link for 10.0.4.9->0.0.0.0 is 0.0.0.0->0.0.0.0
Feb 14 19:46:06         link fails include 0x00000100
Feb 14 19:46:06     Node r5.00 (10.0.3.5) metric 10, hops 1,
                       avail 32000 32000 32000 32000
Feb 14 19:46:06       Link 10.0.2.9->10.0.2.10(r4.00/10.0.3.4) metric 10 color
                         0x00000100 bw 155.52Mbps
Feb 14 19:46:06         skipped: end point already visited
Feb 14 19:46:06       Link 10.0.2.1->10.0.2.2(r3.00/10.0.3.3) metric 10 color
                         0x00000000 bw 155.52Mbps
Feb 14 19:46:06       Reverse Link for 10.0.2.1->10.0.2.2 is 10.0.2.2->10.0.2.1
Feb 14 19:46:06         link fails include 0x00000100
Feb 14 19:46:06 CSPF completed in 0.001409s
Feb 14 19:46:06 CSPF couldn't find a route to 10.0.3.3
Feb 14 19:46:06 CSPF job done!

*** monitor and syslog output disabled, press ESC-Q to enable ***

The highlights in the CSPF tracing output call out that the 10.0.2.8/30 link between r4 and r5 
passes the administrative group constraints, while the 10.0.2.0/30 link between r5 and r3 does 
not (this is the link with no color assigned). Though not highlighted, you can also see that 
the 10.0.2.4/30 link between r4 and r3 does not meet the include constraint either. Another 
useful approach for troubleshooting TED problems involves the selective filtering of the TED’s 
contents, which is designed to allow you to focus on what is missing. The following example 
makes heavy use of JUNOS CLI matching functionality to achieve this goal. Note that this 
command can be entered on any router in the same TE domain because the contents of the TED 
should be consistent among all routers within a given TE domain.

lab@r3> show ted database extensive r5.00 | match "(NodeID|To:|Color)"
NodeID: r5.00(10.0.3.5)
    To: r3.00(10.0.3.3), Local: 10.0.2.1, Remote: 10.0.2.2
      Color: 0 <none>
    To: r4.00(10.0.3.4), Local: 10.0.2.9, Remote: 10.0.2.10
      Color: 0x100 red

The filtered output, which was obtained at r3, clearly indicates that only one of r5’s core 
interfaces is correctly associated with a link color. It is interesting to note that r5’s Level 1 inter-
faces are not represented in r3’s TED. This is due to the fact that TE extensions are not leaked 
between IS-IS levels, making r5’s Level 1 interfaces unknown to the L2 TED. Before moving 
on, r5’s link coloring configuration is restored, allowing the reestablishment of the color 
constrained LSP.



172 Chapter 2 � MPLS and Traffic Engineering

RSVP Summary

This section provided details on the configuration and verification of constrained and uncon-
strained RSVP signaled LSPs. In this section, you learned how to create a RSVP instance, how 
to enable RSVP support on a particular interface, and how to define a LSP that reserves a 
specified amount of bandwidth along its path. Subsequent examples demonstrated how to 
use EROs, and CSPF-related administrative groups, to constrain the routing of a RSVP 
signaled LSP.

You were exposed to a variety of operational mode commands that are useful in determining 
the operational status of a RSVP LSP. This section also demonstrated how RSVP and CSPF 
tracing can be used to assist in troubleshooting RSVP-related control plane problems.

Routing Table Integration
This section provides several configuration scenarios designed to demonstrate common LSP 
routing table integration options. To begin, it should be noted that the default LSP routing 
table integration rules serve to make LSPs invisible for internal traffic because internal traffic is 
aware only of the inet.0 routing table and signaled LSPs are placed into the inet.3 table by 
default. Only BGP is aware of the inet.3 routing table, and BGP uses the inet.3 table only 
for purposes of resolving BGP next hops. The default LSP routing table integration behavior has 
been demonstrated previously in this chapter; in summary, it can be stated that only traffic 
associated with a BGP next hop, which resolves through the inet.3 table, will be aware of, and 
therefore be able to make use of, signaled LSPs.

When multiple equal-cost LSPs exist to the same destination, the default behavior is to 
randomly balance traffic over the group of LSPs on a per-prefix basis. This section also 
demonstrates how this default behavior can be modified.

Installing Prefixes

By default, the only prefix installed in the inet.3 routing table is the /32 address associated 
with the LSP endpoint. You can add additional prefixes to the inet.3 table using the install 
keyword when defining the LSP. Once such a prefix has been placed into the inet.3 routing 
table, it becomes available for use in BGP next hop resolution. Including the active key-
word when installing a prefix results in the prefix-to-LSP mapping being installed in the 
main inet.0 routing table, where it can be used for both external (BGP) and internal (IGP) 
destinations. The following configuration task demonstrates the former, “BGP use only,” 
scenario.

To complete this task, you must configure an LSP that meets these requirements:
� Build LSP r6–r1, with r6 as the ingress that transits r5.
� Ensure that traffic to 120.120/16 destinations uses the r6–r1 LSP.
� You must not add a next hop self policy at r1 to meet the LSP forwarding requirements.

Refer to Figure 2.5 for topology details as needed.



Routing Table Integration 173

F I G U R E 2 . 5 Routing table integration

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

fe
-0

/0
/1

fe
-0

/0
/0

r1 r2

Lo
op

ba
ck

s

r3

r5

fe-
0/0

/3

fe
-0

/0
/0

r1
 =

 1
0.

0.
6.

1
r2

 =
 1

0.
0.

6.
2

r3
 =

 1
0.

0.
3.

3
r4

 =
 1

0.
0.

3.
4

r5
 =

 1
0.

0.
3.

5
r6

 =
 1

0.
0.

9.
6

r7
 =

 1
0.

0.
9.

7

fe
-0

/0
/1

fe
-0

/0
/1

fe
-0

/0
/2

10.0.5/24

10.0.4.4/30

fe
-0

/0
/3

fe
-0

/0
/0

10
.0

.4
.1

2/
30

10
.0

.2
.4

/3
0

fe
-0

/0
/1

fe
-0

/3
/1

fe
-0

/0
/0

(192.168.0-3)

fe
-0

/0
/1

fe
-0

/3
/3

fe
-0

/0
/310

.0
.2

.1
2/

30

10
.0

.2
.0

/3
0

10
.0

.8
.4

/3
0

10
.0.

8.0
/3

0

fe-
0/

1/
2

10
.0

.8
.8

/3
0

10
.0

.2
.8

/3
0

so-0/2/0

so
-0/

1/1
so

-0
/1

/0

so
-0

/1
/0

at-
0/

1/
0

at-
0/

2/
1

.1
.1

4
.1

3
.1

4
.1

3

.9

.5

.6

.9

.1

.9

.1
0

10
.0.

8.1
2/3

0

fe-
0/3

/0

.1
4

.1
3.1

.2

.1
7

fe
-0

/0
/3

fe-
0/0

/0
fe-

0/1
/0

fe
-0

/1
/1

.1
.5

.1
8

.2
.1

0
.9

10
.0

.4
.8

/3
0

10
.0

.2
.1

6/
30

10
.0.

4.1
6/3

0fe-
0/0/1

fe-
0/0/2

10.0.4.0/30
fe-

0/0
/2

.2
.1

7

.1
8

.6
.1

0

.2
.5

r6

Da
ta

Ce
nt

er
(IS

-IS
)

r4
r7

.6

.2
54

AS
 6

50
50

12
0.

12
0/

16

P1



174 Chapter 2 � MPLS and Traffic Engineering

The tricky aspect of this task relates to the fact that your LSP terminates on r1, but the BGP 
next hop associated with the 120.120/16 routes is not being overwritten to reflect r1’s RID. 
This means that the 10.0.5.254 BGP next hop associated with the 120.120/16 route cannot 
be resolved through the inet.3 table at r6, and therefore traffic to P1 will not be forwarded 
through the r6–r1 LSP. To meet the requirements posed, you will have to find a way to get P1’s 
BGP next hop into r6’s inet.3 table because you are not able to rewrite the BGP next hop 
at r1.

You begin by defining a baseline LSP at r6; no prefixes are installed at this time to better 
demonstrate the before and after operation:

[edit protocols mpls]

lab@r6# set label-switched-path r6-r1 to 10.0.6.1 no-cspf

[edit protocols mpls]

lab@r6# set label-switched-path r6-r1 primary use-r5

[edit protocols mpls]

lab@r6# set path use-r5 10.0.3.5 loose

The LSP configuration is now displayed. Note that CSPF has been disabled (CSPF would 
be condemned to fail due to the presence of multiple TE domains in the current test bed) and 
that the routing of the LSP is constrained through an ERO to transit r5:

[edit protocols mpls]

lab@r6# show

label-switched-path r6-r1 {

    to 10.0.6.1;

    no-cspf;

    primary use-r5;

}

path use-r5 {

    10.0.3.5 loose;

}

interface all;

Once committed, the r6–r1 LSP is confirmed operational:

[edit protocols mpls]

lab@r6# run show mpls lsp ingress

Ingress LSP: 1 sessions

To              From            State Rt ActivePath       P     LSPname

10.0.6.1        10.0.9.6        Up     0                  *     r6-r1

Total 1 displayed, Up 1, Down 0

The contents of the inet.3 table is displayed at r6:

[edit protocols mpls]

lab@r6# run show route table inet.3



Routing Table Integration 175

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.3.5/32        *[LDP/9] 00:03:44, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0

10.0.6.1/32        *[RSVP/7] 00:04:10, metric 20

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r1

10.0.9.7/32        *[LDP/9] 00:03:44, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0, Push 100001

As expected, the r6–r1 LSP has been installed in r6’s inet.3 routing table for use in resolving 
BGP next hops that match the LSP’s egress address of 10.0.6.1. Inspection of the BGP next 
hop currently attached to the 120.120/16 route, as advertised into your AS by r1, clearly 
indicates why inet.3-based BGP next hop resolution for this route cannot succeed at r6:

[edit protocols mpls]

lab@r6# run show route 120.120/16 detail

inet.0: 125587 destinations, 125593 routes (125587 active, 0 holddown, 0 hidden)

Restart Complete

120.120.0.0/16 (2 entries, 1 announced)

        *BGP    Preference: 170/-101

                Source: 10.0.6.1

                Next hop: 10.0.2.14 via fe-0/1/1.0, selected

                Protocol next hop: 10.0.5.254 Indirect next hop: 84cfc78 69

                State: <Active Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 4:24:31    Metric: 0       Metric2: 30

                Task: BGP_65412.10.0.6.1+179

                Announcement bits (4): 0-KRT 1-LDP 6-BGP.0.0.0.0+179 7-Resolve 
inet.0

                AS path: 65050 I

                Localpref: 100

                Router ID: 10.0.6.1

         BGP    Preference: 170/-101

                Source: 10.0.6.2

                Next hop: 10.0.2.14 via fe-0/1/1.0, selected

                Protocol next hop: 10.0.5.254 Indirect next hop: 84cfc78 69

                State: <NotBest Int Ext>

                Inactive reason: Router ID

                Local AS: 65412 Peer AS: 65412

                Age: 4:24:23    Metric: 0       Metric2: 30



176 Chapter 2 � MPLS and Traffic Engineering

                Task: BGP_65412.10.0.6.2+179

                AS path: 65050 I

                Localpref: 100

                Router ID: 10.0.6.2

The 10.0.5.254 protocol next hop in the command’s output reflects the fact that r1 is not 
overwriting the BGP next hop advertised to it from the P1 router. The absence of the 10.0.5.254 
prefix in r6’s inet.3 table means that the r6–r1 LSP will not be used when forwarding traffic 
to P1 destinations. This lack of LSP forwarding is confirmed at r6:

[edit protocols mpls]

lab@r6# run traceroute 120.120.0.1

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets

 1  10.0.2.14 (10.0.2.14)  0.591 ms  0.372 ms  0.283 ms

 2  10.0.4.14 (10.0.4.14)  0.160 ms  0.160 ms  0.128 ms

 3  120.120.0.1 (120.120.0.1)  0.240 ms  0.220 ms  0.207 ms

As predicted, traffic to 120.120/16 is not mapped to the r6–r1 LSP. You now modify r6’s 
configuration to effect the installation of the 10.0.5.254/32 prefix into its inet.3 routing table:

[edit protocols mpls]

lab@r6# set label-switched-path r6-r1 install 10.0.5.254

[edit]

lab@r6# show protocols mpls

label-switched-path r6-r1 {

    to 10.0.6.1;

    install 10.0.5.254/32;

    no-cspf;

    primary use-r5;

}

path use-r5 {

    10.0.3.5 loose;

}

interface all;

Proper operation is confirmed after committing the changes on r6:

[edit protocols mpls]

lab@r6# run show route table inet.3

inet.3: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.3.5/32        *[LDP/9] 00:11:36, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0



Routing Table Integration 177

10.0.5.254/32      *[RSVP/7] 00:00:43, metric 20

                    > to 10.0.2.14 via fe-0/1/0.0, label-switched-path r6-r1

10.0.6.1/32        *[RSVP/7] 00:00:43, metric 20

                    > to 10.0.2.14 via fe-0/1/0.0, label-switched-path r6-r1

10.0.9.7/32        *[LDP/9] 00:11:36, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0, Push 100001

Excellent! The 10.0.5.254 BGP next hop, as associated with P1’s 120.120/16 route, is 
now resolvable through r6’s inet.3 table, which should result in r6 using the r6–r1 LSP 
when forwarding to 120.120/16 destinations. Traceroute testing now confirms the required 
LSP-forwarding behavior:

[edit protocols mpls]

lab@r6# run traceroute 120.120.0.1

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.736 ms  0.562 ms  0.438 ms

     MPLS Label=100026 CoS=0 TTL=1 S=1

 2  10.0.2.10 (10.0.2.10)  0.657 ms  0.500 ms  0.444 ms

     MPLS Label=100031 CoS=0 TTL=1 S=1

 3  10.0.4.18 (10.0.4.18)  0.158 ms  0.152 ms  0.137 ms

 4  120.120.0.1 (120.120.0.1)  0.245 ms  0.242 ms  0.215 ms

Installing Prefixes as Active

You will now modify r6’s configuration so that the r6–r1 LSP is used for both external 
(120.120/16) and internal (10.0.5/24) destinations, according to this additional criterion:
� Ensure that traffic sent from r6 to the 10.0.5/25 subnet also takes the r6–r1 LSP.

To meet this requirement, you must install the r6–r1 LSP into the main inet.0 routing table 
so that the LSP can be used for both non-BGP traffic and for BGP next hop resolution (BGP 
resolves its next hops through both inet.3 and inet.0, with the preference being inet.3-based 
resolutions). The next statements result in the 10.0.5/24 entry being moved from inet.3 into 
the inet.0 table:

[edit protocols mpls]

lab@r6# delete label-switched-path r6-r1 install 10.0.5.254

[edit protocols mpls]

lab@r6# set label-switched-path r6-r1 install 10.0.5/24 active

[edit]

lab@r6# show protocols mpls

label-switched-path r6-r1 {

    to 10.0.6.1;

    install 10.0.5.0/24 active;



178 Chapter 2 � MPLS and Traffic Engineering

    no-cspf;

    primary use-r5;

}

path use-r5 {

    10.0.3.5 loose;

}

interface all;

Verifying Active Prefixes

After the changes are committed, the presence of the r6–r1 LSP is confirmed in r6’s inet.0 table:

[edit]

lab@r6# run show route 10.0.5/24

inet.0: 125624 destinations, 125631 routes (125624 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[RSVP/7] 00:01:26, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r1

                    [IS-IS/18] 00:14:52, metric 30

                    > to 10.0.2.14 via fe-0/1/1.0

To provide final verification that all requirements have been met, traceroutes are conducted 
to 10.0.5/24 destinations as well as to the EBGP destinations that are associated with P1:

lab@r6> traceroute 10.0.5.1

traceroute to 10.0.5.1 (10.0.5.1), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.802 ms  0.610 ms  0.490 ms

     MPLS Label=100026 CoS=0 TTL=1 S=1

 2  10.0.2.10 (10.0.2.10)  0.663 ms  0.525 ms  0.449 ms

     MPLS Label=100031 CoS=0 TTL=1 S=1

 3  10.0.5.1 (10.0.5.1)  0.169 ms  0.163 ms  0.139 ms

lab@r6> traceroute 120.120.0.1

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.638 ms  0.476 ms  0.453 ms

     MPLS Label=100026 CoS=0 TTL=1 S=1

 2  10.0.2.10 (10.0.2.10)  0.521 ms  0.467 ms  0.622 ms

     MPLS Label=100031 CoS=0 TTL=1 S=1

 3  10.0.4.18 (10.0.4.18)  0.170 ms  0.170 ms  0.140 ms

 4  120.120.0.1 (120.120.0.1)  0.253 ms  0.237 ms  0.219 ms

The presence of LSP forwarding for the specified internal and external destinations confirms 
that you have met the requirements of this configuration scenario.



Routing Table Integration 179

Use care when configuring traffic engineering for internal destinations. In 
some cases, forwarding internal traffic over an LSP can cause things to break. 
Although not a problem with the JUNOS software version 5.6R1 used to 
develop this book, installing a router’s loopback address as active has been 
known to break RSVP signaling in previous software versions. In these earlier 
versions, another router’s RSVP Path message that identifies r1 as the egress 
node could be forwarded through the r6–r1 LSP (due to LSPs being preferred 
over an equivalent IGP route). However, the lack of valid RRO entries in the 
resulting path message will result in RSVP signaling failures.

Traffic Engineering Shortcuts

Traffic engineering shortcuts provide a functionality that is similar to that of using install. 
The main difference is that TE shortcuts result in the automatic installation of all prefixes that 
are considered downstream of the LSP egress point into the inet.3 or inet.0 routing table 
based on the specifics of the configuration. Put another way, you might analogize install with 
the use of a scalpel that provides precise control over what routes are added to inet.3 or 
inet.0, while TE shortcuts are more akin to using a chain saw.

The automatic installation of downstream prefixes relies on the presence of a link state 
routing protocol with complete knowledge of the routing domain. This is because downstream 
prefixes are computed by determining what routes would be reached on a SPF tree, when the LSP 
is considered as a point-to-point link between the ingress and egress nodes. Keep an eye out for 
networks with partial Link State Databases (LSDBs), such as in the case of the Multi-Level 
IS-IS topology currently in use, because their lack of complete topology knowledge will likely 
result in problems with TE shortcuts.

To complete this scenario, you must modify the configuration of r6 according to these 
stipulations:
� Do not use install at r6.
� Ensure that traffic sent to the 10.0.5/24 and 120.120/16 destinations is forwarded over an 

LSP that transits r5.

The restriction on the use of install means that you will need to use TE shortcuts to 
meet the requirements of this scenario. The fact that r6 does not receive IS-IS L1 LSPs from 
r1 makes this task problematic. With the current r6–r1 LSP, TE shortcuts will have no effect 
because r6 does not see r1 as a node on its shortest path tree. This is demonstrated in the output 
shown next:

lab@r6# run show isis database r1

IS-IS level 1 link-state database:

  0 LSPs

IS-IS level 2 link-state database:

  0 LSPs



180 Chapter 2 � MPLS and Traffic Engineering

[edit]

lab@r6# run show isis database r3

IS-IS level 1 link-state database:

  0 LSPs

IS-IS level 2 link-state database:

LSP ID                      Sequence Checksum Lifetime Attributes

r3.00-00                        0x27   0xeea5      995 L1 L2

  1 LSPs

To achieve the goals of this scenario, you need to redefine the LSP’s egress to be r3, because 
r3 does appear in r6’s shortest path tree. You begin by removing the r1–r6 LSP configuration 
at r6:

[edit protocols mpls]

lab@r6# delete label-switched-path r6-r1

A new LSP that terminates on r3 is now defined. Note that this LSP still references the 
existing use-r5 path:

[edit protocols mpls]

lab@r6# set label-switched-path r6-r3 to 10.0.3.3 no-cspf

[edit protocols mpls]

lab@r6# set label-switched-path r6-r3 primary use-r5

The new LSP configuration is displayed:

[edit protocols mpls]

lab@r6# show

label-switched-path r6-r3 {

    to 10.0.3.3;

    no-cspf;

    primary use-r5;

}

path use-r5 {

    10.0.3.5 loose;

}

interface all;

After committing the changes, the inet.3 routing table is displayed at r6 to confirm estab-
lishment of the r6–r3 LSP:

[edit]

lab@r6# run show route table inet.3

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

Restart Complete



Routing Table Integration 181

+ = Active Route, - = Last Active, * = Both

10.0.3.3/32        *[RSVP/7] 00:00:07, metric 10

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.3.5/32        *[LDP/9] 00:28:38, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0

To enable TE shortcut computations, the IS-IS protocol instance at r6 is modified as 
shown next:

[edit protocols isis]

lab@r5# set traffic-engineering shortcuts

When the inet.3 table is again displayed, the effect of traffic-engineering shortcuts 
becomes obvious, even to the most casual of observers:

[edit]

lab@r6# run show route table inet.3

inet.3: 14 destinations, 15 routes (14 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.2.4/30        *[IS-IS/18] 00:17:25, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.2.16/30       *[IS-IS/18] 00:17:25, metric 30

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.3.3/32        *[RSVP/7] 00:19:21, metric 10

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

                    [IS-IS/18] 00:17:25, metric 10

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.3.4/32        *[IS-IS/18] 00:17:25, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.3.5/32        *[LDP/9] 00:19:04, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0

10.0.4.0/30        *[IS-IS/18] 00:17:25, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.4.4/30        *[IS-IS/18] 00:17:25, metric 30

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.4.8/30        *[IS-IS/18] 00:17:25, metric 30

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.4.12/30       *[IS-IS/18] 00:17:25, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.4.16/30       *[IS-IS/18] 00:17:25, metric 30

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3



182 Chapter 2 � MPLS and Traffic Engineering

10.0.5.0/24        *[IS-IS/18] 00:17:25, metric 30

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.6.1/32        *[IS-IS/18] 00:17:25, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.6.2/32        *[IS-IS/18] 00:17:25, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

10.0.9.7/32        *[LDP/9] 00:15:16, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0, Push 100029

The display indicates that most of the prefixes associated with the L2 backbone and L1 
area 0001 have been installed into r6’s inet.3 table with the r6–r3 LSP as the next hop. While 
closer to your goal, internal traffic will not take the LSP, because only BGP looks into inet.3. 
This is confirmed with a quick traceroute:

[edit]

lab@r6# run traceroute 10.0.5.1

traceroute to 10.0.5.1 (10.0.5.1), 30 hops max, 40 byte packets

 1  10.0.2.14 (10.0.2.14)  0.410 ms  0.299 ms  0.244 ms

 2  10.0.5.1 (10.0.5.1)  0.165 ms  0.151 ms  0.132 ms

To meet all the requirements of this scenario, your TE shortcuts must be moved into the r6’s 
inet.0 table. This is achieved with the addition of a bgp-igp statement issued at the edit 
protocols mpls hierarchy, as shown here:

[edit]

lab@r6# set protocols mpls traffic-engineering bgp-igp

[edit]

lab@r6# show protocols mpls

traffic-engineering bgp-igp;

label-switched-path r6-r3 {

    to 10.0.3.3;

    no-cspf;

    primary use-r5;

}

path use-r5 {

    10.0.3.5 loose;

}

interface all;

After the commit, the results are confirmed:

[edit]

lab@r6# run show route table inet.3



Routing Table Integration 183

[edit]

lab@r6#

The inet.3 table is now empty because the bgp-igp statement has caused the contents of 
inet.3 to be moved into the inet.0 routing table, as confirmed here:

[edit]

lab@r6# run show route 10.0.5/24

inet.0: 125636 destinations, 125645 routes (125636 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[IS-IS/18] 00:00:17, metric 30

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r3

The final verification involves some traceroute testing to the 10.0.5/24 internal destination, 
as well as to the 120.120/16 external route:

[edit]

lab@r6# run traceroute 10.0.5.1

traceroute to 10.0.5.1 (10.0.5.1), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.812 ms  0.552 ms  0.506 ms

     MPLS Label=100027 CoS=0 TTL=1 S=1

 2  10.0.2.2 (10.0.2.2)  0.487 ms  0.499 ms  0.441 ms

 3  10.0.5.1 (10.0.5.1)  0.350 ms  0.227 ms  0.442 ms

[edit]

lab@r6# run traceroute 120.120.0.1

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.638 ms  0.489 ms  0.431 ms

     MPLS Label=100027 CoS=0 TTL=1 S=1

 2  10.0.2.2 (10.0.2.2)  0.656 ms  0.634 ms  0.410 ms

 3  10.0.4.14 (10.0.4.14)  0.305 ms  0.679 ms  0.407 ms

 4  120.120.0.1 (120.120.0.1)  0.508 ms  0.701 ms  0.404 ms

The traceroute output confirms that LSP forwarding is now in place between r6 and the 
specified prefixes. The heavy-handed nature of TE shortcuts results in various other destina-
tions also being mapped to the r6–r3 LSP, however. This is one of the reasons why TE shortcuts 
can be problematic, making the use of install generally preferred. Another side effect of 
TE shortcuts on r6 is the fact that the LDP signaled LSP that terminates on r7 has also been 
moved into the inet.0 routing table, as shown next:

[edit]

lab@r6# run show route 10.0.9.7



184 Chapter 2 � MPLS and Traffic Engineering

inet.0: 125637 destinations, 125646 routes (125637 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both

10.0.9.7/32        *[LDP/9] 00:11:10, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0, Push 100029

                    [IS-IS/15] 00:11:07, metric 20

                    > to 10.0.8.6 via fe-0/1/0.0

[edit]

lab@r6# run traceroute 10.0.9.7

traceroute to 10.0.9.7 (10.0.9.7), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.649 ms  3.877 ms  0.445 ms

     MPLS Label=100029 CoS=0 TTL=1 S=1

 2  10.0.9.7 (10.0.9.7)  0.165 ms  0.155 ms  0.133 ms

The traceroute test confirms that internal traffic is now able to use r6’s LDP and RSVP 
signaled LSPs. Due to the inherent sloppiness of TE shortcuts, especially when combined with 
traffic-engineering bgp-igp, the r6–r3 LSP and its related TE shortcut configuration 
are removed from r6 before proceeding to the next configuration task:

[edit]

lab@r6# delete protocols mpls label-switched-path r6-r3

[edit]

lab@r6# delete protocols mpls path use-r5

[edit]

lab@r6# delete protocols mpls traffic-engineering

[edit]

lab@r6# delete protocols isis traffic-engineering shortcuts

Prefix Mapping

When multiple, equal-cost LSPs exist between ingress and egress nodes, the default JUNOS 
software behavior is to randomly load-balance the associated traffic over each such LSP. In 
some cases, it may be desirable to map specific prefixes to specific LSPs, such as in the case of 
a multi-level service offering that is achieved through diverse LSP routing that results in differing 
QoS levels.

Generally speaking, there are two main ways to map traffic to a particular LSP, at least when 
Filter Based Forwarding (FBF) is not a consideration (FBF is covered in Chapter 3, “Firewall Filter 
and Traffic Sampling”). The most common prefix-to-LSP mapping technique involves 



Routing Table Integration 185

forwarding table policy at the LSP ingress node (the receiver of the routes), typically making 
use of route filter or community-based match conditions to map traffic to a particular LSP. 
The other common approach involves BGP next hop manipulation at the LSP egress node (the 
advertiser of the routes) such that the default BGP next hop resolution behavior at the LSP 
ingress results in the mapping of a given prefix to the desired LSP.

To complete the LSP prefix mapping scenario, you must configure your network to meet 
these criteria:
� Establish LSP r7–r3, ensuring that the LSP transits r5.
� Establish LSP r7–r3–prime, ensuring that the LSP transits r5 and r6.
� Map all routes with a netmask less than /25 to the r7–r3 LSP; map all remaining routes to 

the r7–r3–prime LSP.

In this example, traffic will be mapped to each LSP based on the LSP ingress policy, as 
opposed to BGP next hop manipulation at the LSP’s egress.

Configuring LSP-to-Prefix Mapping

You begin by establishing the two LSPs from r7 to r3, taking care to ensure that both of them 
meet the stipulated routing constraints. While CSPF could be used to control LSP routing, 
this author believes that it is more expedient to simply use ERO-based routing constraints 
in this case. The following commands define the r7–r3 LSP and create the use-r5 path that 
will constrain the LSP’s routing:

[edit protocols mpls]

lab@r7# set label-switched-path r7-r3 to 10.0.3.3 no-cspf

[edit protocols mpls]

lab@r7# set label-switched-path r7-r3 primary use-r5

[edit protocols mpls]

lab@r7# set path use-r5 10.0.3.5 loose

r7’s modified configuration is shown next, with the recent changes highlighted:

[edit protocols mpls]

lab@r7# show

label-switched-path r7-r3 {

    to 10.0.3.3;

    no-cspf;

    primary use-r5;

}

path use-r5 {

    10.0.3.5 loose;

}

interface all;



186 Chapter 2 � MPLS and Traffic Engineering

The next set of commands defines the r7–r3–prime LSP, and the corresponding use–r5–r6 
path that will force the LSP’s routing through r5 and r6 as required by the specifics of this 
example:

[edit protocols mpls]

lab@r7# set label-switched-path r7-r3-prime to 10.0.3.3 no-cspf

[edit protocols mpls]

lab@r7# set label-switched-path r7-r3-prime primary use-r5-r6

[edit protocols mpls]

lab@r7# set path use-r5-r6 10.0.3.5 loose

[edit protocols mpls]

lab@r7# set path use-r5-r6 10.0.9.6 loose

The modified configuration at r7 is shown next with the recent changes highlighted:

[edit protocols mpls]

lab@r7# show

label-switched-path r7-r3 {

    to 10.0.3.3;

    no-cspf;

    primary use-r5;

}

label-switched-path r7-r3-prime {

    to 10.0.3.3;

    no-cspf;

    primary use-r5-r6;

}

path use-r5 {

    10.0.3.5 loose;

}

path use-r5-r6 {

    10.0.3.5 loose;

    10.0.9.6 loose;

}

interface all;

Before concerning yourself with prefix mapping, you commit the initial changes and verify 
the correct establishment of both the LSPs between r7 and r3:

[edit protocols mpls]

lab@r7# run show rsvp session ingress detail

Ingress RSVP: 2 sessions



Routing Table Integration 187

10.0.3.3

  From: 10.0.9.7, LSPstate: Up, ActiveRoute: 63126

  LSPname: r7-r3, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100009

  Resv style: 1 FF, Label in: -, Label out: 100009

  Time left:    -,  Since: Mon Feb 17 06:08:28 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 58625 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.8.9 (fe-0/3/1.0) 18 pkts

  RESV rcvfrom: 10.0.8.9  (fe-0/3/1.0) 19 pkts

  Explct route: 10.0.8.9 10.0.3.5

  Record route: <self>  10.0.8.9  10.0.2.2

10.0.3.3

  From: 10.0.9.7, LSPstate: Up, ActiveRoute: 62349

  LSPname: r7-r3-prime, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100010

  Resv style: 1 FF, Label in: -, Label out: 100010

  Time left:    -,  Since: Mon Feb 17 06:18:57 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 58629 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.8.9 (fe-0/3/1.0) 1 pkts

  RESV rcvfrom: 10.0.8.9  (fe-0/3/1.0) 1 pkts

  Explct route: 10.0.8.9 10.0.3.5 10.0.9.6

  Record route: <self>  10.0.8.9  10.0.8.5  10.0.2.14

Total 2 displayed, Up 2, Down 0

The highlights call out the fact that both LSPs have been established and that their routing 
is in accordance with the restrictions posed for this scenario. Also of note is the number of 
active prefixes shown for the two LSPs; the count values of 63126 and 62349 displayed for the 
r7–r3 and r7–r3–prime LSPs, respectively, represent a nearly ideal split of the 125,000 or 
so BGP routes currently being advertised by r3. Some fancy CLI footwork affirms the count 
values and provides some additional detail:

lab@r7> show route source-gateway 10.0.3.3

inet.0: 125529 destinations, 125535 routes (125529 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both



188 Chapter 2 � MPLS and Traffic Engineering

3.0.0.0/8          *[BGP/170] 00:02:46, localpref 100, from 10.0.3.3

                      AS path: 65222 10458 14203 701 7018 80 I

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

                      to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3-
prime

4.0.0.0/8          *[BGP/170] 01:25:16, localpref 100, from 10.0.3.3

                      AS path: 65222 10458 14203 3561 1 I

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

                      to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3-prime

6.1.0.0/16         *[BGP/170] 01:25:16, localpref 100, from 10.0.3.3

                      AS path: 65222 10458 14203 3561 701 668 7170 1455 I

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

                      to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3-
prime

. . .

The output confirms the presence of two equal-cost LSPs available for load balancing to BGP 
prefixes learned from 10.0.3.3.

By default, RSVP LSPs are assigned a metric that is equal to the IGP’s best route 
to that destination. You can manually set the metric of an RSVP signaled LSP 
with the metric keyword under the edit protocols mpls label-switched-path 
path-name hierarchy. LDP LSPs are assigned a metric of 1 by default. Use 
the track-igp-metric command under the edit protocols ldp hierarchy to 
have LDP signaled LSPs track the IGP metric to a given destination.

In the case of this truncated output, the routes shown have all been mapped to the r7–r3 
LSP. Armed with the specifics of the display syntax, CLI-matching functions are now used to 
verify the default prefix-to-LSP mapping counts:

lab@r7> show route source-gateway 10.0.3.3 | match > | match "(r7-r3$)" | count

Count: 63135 lines

lab@r7>

In this example, the active forwarding next hops for the routes learned from 10.0.3.3 (match-
ing is based on the presence of the > character) are piped to a regular expression (regx) that 
matches only on r7–r3. In this example, the lines that match the regx are then piped to the CLI 
count function, yielding the value of 63135. Adjusting the syntax to match on the second LSP 
yields the following output:

lab@r7> show route source-gateway 10.0.3.3 | match > | match r7-r3-prime | count

Count: 62338 lines

lab@r7>



Routing Table Integration 189

With knowledge of the default LSP load balancing behavior at r7, you move on to the prefix 
mapping aspects of this configuration task. You begin by creating the first term in the new 
lsp-map policy:

[edit]

lab@r7# edit policy-options policy-statement lsp-map

[edit policy-options policy-statement lsp-map]

lab@r7# set term 1 from protocol bgp

[edit policy-options policy-statement lsp-map]

lab@r7# set term 1 from neighbor 10.0.3.3

[edit policy-options policy-statement lsp-map]

lab@r7# set term 1 from route-filter 0/0 upto /23

[edit policy-options policy-statement lsp-map]

lab@r7# set term 1 then install-nexthop lsp r7-r3

[edit policy-options policy-statement lsp-map]

lab@r7# set term 1 then accept

The first term in the lsp-map policy is now displayed:

[edit policy-options policy-statement lsp-map]

lab@r7# show term 1

from {

    protocol bgp;

    neighbor 10.0.3.3;

    route-filter 0.0.0.0/0 upto /24;

}

then {

    install-nexthop lsp r7-r3;

    accept;

}

The match conditions in the first term ensure that only BGP routes learned from r3 (10.0.3.3) 
will be subjected to the effects of the LSP mapping policy. This level of matching selectivity 
is not strictly necessary here, as BGP routes learned from other peerings will not resolve to the 
BGP next hop of 10.0.3.3, therefore making them ineligible for LSP forwarding over either 
the r7–r3 or the r7–r3–prime LSPs. The route filter line matches only on the prefix length, 
as the 0.0.0.0/0 initial match conditions indicate a “do not care” for the actual prefix value. 
The highlighted accept action is critical for proper mapping operation. Without the terminat-
ing action, routes matching the first term will continue to be evaluated by your forwarding table 
policy, and this can result in remapping the prefixes to another LSP.



190 Chapter 2 � MPLS and Traffic Engineering

Despite indications to the contrary, use of from neighbor 10.0.3.3 as part of 
the policy’s match condition did not result in the desired behavior. According 
to the documentation set, the neighbor keyword allows the specification of 
a directly, or indirectly, connected BGP peer when used as part of a from match 
condition. While it is unclear at the time of this writing whether the problem 
relates to incorrect software behavior, or a less-than-perfect documentation 
set, the main point is that you should never take the result of any configuration 
for granted! The successful JNCIE candidate will always take a moment to 
confirm the correct operation of their configurations.

You now add a second policy term to the lsp–map policy, which functions to match on all 
routes that were not accepted by the first term for mapping to the r7–r3–prime LSP. In this 
case, the route filter statement is not strictly necessary (the term’s goal, after all, is to match 
on all remaining routes); it is included here for general consistency with the first term. Note that 
the ordering of the terms is significant in this example. Listing the second term first would cause 
all routes to be mapped to the r7–r3–prime LSP. The accept action in the second term is 
also important. Without it, routes matching term 2 would fall through to the default policy, 
where they would end up being balanced between the two LSPs.

The completed lsp-map policy is now displayed:

[edit policy-options policy-statement lsp-map]

lab@r7# show

term 1 {

    from {

        protocol bgp;

        neighbor 10.0.3.3;

        route-filter 0.0.0.0/0 upto /24;

    }

    then {

        install-nexthop lsp r7-r3;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 10.0.3.3;

        route-filter 0.0.0.0/0 upto /32;

    }

    then {

        install-nexthop lsp r7-r3-prime;

        accept;

    }

}



Routing Table Integration 191

You must apply your prefix mapping policy to the main routing instance’s forwarding table 
in order for it to take effect. The following command correctly applies the lsp–map policy 
as export:

[edit routing-options]

lab@r7# set forwarding-table export lsp-map

[edit routing-options]

lab@r7# show

graceful-restart;

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

    route 0.0.0.0/0 reject;

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

forwarding-table {

    export lsp-map;

}

Verifying LSP-to-Prefix Mapping

After committing the changes related to the lsp–map policy, you verify its effect using the same 
commands demonstrated previously when the default prefix mapping behavior was explored. 
You start by inspecting the number of routes now shown as active for each LSP in the output 
of the show rsvp session ingress detail command:

[edit]

lab@r7# run show rsvp session ingress detail

Ingress RSVP: 2 sessions

10.0.3.3

  From: 10.0.9.7, LSPstate: Up, ActiveRoute: 118034

  LSPname: r7-r3, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100009

  Resv style: 1 FF, Label in: -, Label out: 100009

  Time left:    -,  Since: Mon Feb 17 06:08:28 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500



192 Chapter 2 � MPLS and Traffic Engineering

  Port number: sender 1 receiver 58625 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.8.9 (fe-0/3/1.0) 159 pkts

  RESV rcvfrom: 10.0.8.9  (fe-0/3/1.0) 159 pkts

  Explct route: 10.0.8.9 10.0.3.5

  Record route: <self>  10.0.8.9  10.0.2.2

10.0.3.3

  From: 10.0.9.7, LSPstate: Up, ActiveRoute: 7447

  LSPname: r7-r3-prime, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100010

  Resv style: 1 FF, Label in: -, Label out: 100010

  Time left:    -,  Since: Mon Feb 17 06:18:57 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 58629 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.8.9 (fe-0/3/1.0) 144 pkts

  RESV rcvfrom: 10.0.8.9  (fe-0/3/1.0) 144 pkts

  Explct route: 10.0.8.9 10.0.3.5 10.0.9.6

  Record route: <self>  10.0.8.9  10.0.8.5  10.0.2.14

Total 2 displayed, Up 2, Down 0

The highlights call out the dramatic change in the distribution of prefix-to-LSP mappings for 
the BGP routes learned from r3. The JUNOS software CLI-matching function is used to provide 
some additional spot checks of the lsp–map policy’s operation:

[edit]

lab@r7# run show route source-gateway 10.0.3.3 | match "(/|>)"

3.0.0.0/8          *[BGP/170] 00:04:26, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

4.0.0.0/8          *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

6.1.0.0/16         *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

6.2.0.0/22         *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

6.3.0.0/18         *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

6.4.0.0/16         *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

6.5.0.0/19         *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3



Routing Table Integration 193

6.8.0.0/20         *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

6.9.0.0/20         *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

6.10.0.0/15        *[BGP/170] 03:20:22, localpref 100, from 10.0.3.3

                    > to 10.0.8.9 via fe-0/3/1.0, label-switched-path r7-r3

. . .

All of the routes shown in this truncated display have prefix lengths equal to, or less than, 
the cutoff length of /24, and all are correctly shown as being mapped to the r7–r3 LSP in this 
example. The next command counts the routes that are learned from 10.0.3.3 with mask 
lengths in the range of 25–32:

[edit]

lab@r7# run show route source-gateway 10.0.3.3 | match "

   (/25|/26|/27|/28|/29|/30|/31|/32)" | count

Count: 7449 lines

The results confirm that the prefix mapping policy at r7 is working in accordance with all 
criteria specified for this scenario.

Summary of Routing Table Integration

By default, signaled LSPs are placed into the inet.3 routing table where they can be used for 
BGP next hop resolution only.

Although not shown in this chapter, you should note that a statically defined 
LSP is placed into the inet.0 routing table where it can be used by internal and 
external traffic.

This default behavior results in LSP-based forwarding for external prefixes only. Note that 
failing to set the BGP next hop to self on routers with external peers normally results in 
IGP forwarding (as opposed to LSP forwarding), due to the EBGP peer’s next hop not being 
present in the inet.3 routing table.

This section provided an example of how the default behavior can be modified using the 
install option to manually place prefix-to-LSP entries into the inet.3 table, and also showed 
how the active keyword can be used to place these manually defined entries into the inet.0 
routing table where they can be used to evoke LSP forwarding for both internal and external 
destinations.

The use of traffic-engineering shortcuts, both with the default bgp and with the 
bgp-igp switch, was also demonstrated. TE shortcuts rely on a link state IGP with knowledge 
of the prefixes that are reachable downstream of the LSP egress point. By default, TE shortcuts 
install all downstream prefixes into the inet.3 table where they can be used for BGP next 
hop resolution. Configuring bgp-igp causes the contents of the inet.3 table to be moved into 
inet.0, which makes the LSP visible to both internal and external prefixes.



194 Chapter 2 � MPLS and Traffic Engineering

Note that TE shortcuts pose problems when you need to be selective about what prefixes 
should, or should not, be mapped to a particular LSP, especially when you have an ingress node 
with a less-than-complete knowledge of the link state topology. Incomplete knowledge of 
the link state topology occurs in a multi-level IS-IS network and in a multi-area OSPF network.

Traffic Protection
JUNOS software supports a variety of mechanisms that can be used to “protect” traffic 
associated with an LSP. Traffic protection options include secondary paths, Fast Reroute 
(FRR), link protection, fate sharing, and preemption.

This section will provide various configuration scenarios that demonstrate key MPLS 
protection features and capabilities.

Secondary Paths

Secondary LSP paths are used to provide a backup for a primary LSP path. You can define 
as many secondary paths as you like, but only one secondary LSP path will be established at any 
given time. You can have only one primary path definition, however. When multiple secondary 
definitions exist, the secondary LSP paths are signaled according to their setup priority and, 
in the event of a priority tie, the order in which they are listed.

A secondary path can be placed in a standby state, whereas the LSP is established before 
the primary path fails. The default behavior is to signal and establish a secondary path after the 
primary path is detected as down. Traffic will automatically revert back to the primary path 
when it is reestablished and remains established for at least 60 seconds. To prevent traffic from 
reverting back to a path that has previously failed, define only secondary LSPs.

When CSPF is used to calculate LSP paths, the routing of a secondary path will automatically 
avoid using path elements that are common to the corresponding primary LSP when possible. 
When diverse routing is mandated, you should make use of EROs to ensure that the primary 
and secondary paths will not share particular elements. This is especially true when CSPF is not 
in use.

To complete this configuration task, you must modify the configuration of r1 to meet these 
requirements:
� Protect the r1–r7 LSP with a secondary path.
� Ensure that both the primary and secondary paths are established.
� Make both LSPs reserve 70Mbps of bandwidth while making sure that their bandwidth 

reservations are not double-counted.
� You must not use EROs to control the routing of the LSPs.

Based on the criteria specified, you must configure a secondary path that will be placed in 
the standby state. Diverse routing for the two paths is not required, and the use of EROs has 
been prohibited. This is significant, because attempting to use CSPF will result in LSP setup 
failure, due to the lack of a domain-wide TED in r1.



Traffic Protection 195

The following commands delete the existing r1–r7 LSP definition at r1 and redefine the new 
primary path:

[edit protocols mpls]

lab@r1# delete label-switched-path r1-r7

[edit protocols mpls]

lab@r1# set label-switched-path r1-r7 no-cspf to 10.0.9.7 primary r1-r7

[edit protocols mpls]

lab@r1# set label-switched-path r1-r7 bandwidth 70M

The bandwith parameter is specified at the LSP level in this case, because both the primary 
and secondary paths are expected to reserve the same amount of bandwidth. The same logic 
holds for the no-cspf specification, which is also defined at the LSP level. You now define 
a null r1–r7 path to allow your configuration to commit. You must define a named path when 
setting a LSP as primary or secondary because these keywords must be followed by the 
specification of a named path. The restriction on EROs in this example forces the definition of 
an empty path:

[edit protocols mpls]

lab@r1# set path r1-r7

The modified LSP configuration is now shown on r1:

lab@r1# show

label-switched-path r1-r7 {

    to 10.0.9.7;

    bandwidth 70m;

    no-cspf;

    primary r1-r7;

}

path r1-r7;

interface all;

Before adding the secondary LSP, you commit your changes and verify establishment of the 
r1–r7 primary LSP:

[edit]

lab@r1# run show mpls lsp ingress extensive

Ingress LSP: 1 sessions

10.0.9.7

  From: 10.0.6.1, State: Up, ActiveRoute: 0, LSPname: r1-r7

  ActivePath: r1-r7 (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4



196 Chapter 2 � MPLS and Traffic Engineering

 *Primary   r1-r7            State: Up

    Bandwidth: 70Mbps

    Received RRO:

          10.0.4.13 10.0.2.6 10.0.2.17

    4 Feb 19 04:30:36  Selected as active path

    3 Feb 19 04:30:36  Record Route:  10.0.4.13 10.0.2.6 10.0.2.17

    2 Feb 19 04:30:36  Up

    1 Feb 19 04:30:36  Originate Call

  Created: Wed Feb 19 04:27:50 2003

Total 1 displayed, Up 1, Down 0

The output confirms that the new path has been established with the required reservation of 
70Mbps. The primary path indication is also highlighted. A quick look at the RSVP interface 
state further confirms the presence of reserved bandwidth:

[edit]

lab@r1# run show rsvp interface

RSVP interface: 4 active

                   Active                 Static   Available   Reserved   Highwater

Interface  State  resv    Subscription  BW       BW         BW         mark

fe-0/0/0.0    Up     0            100%  100Mbps  100Mbps     0bps       0bps

fe-0/0/1.0    Up     1            100%  100Mbps  30Mbps      70Mbps     70Mbps

fe-0/0/2.0    Up     0            100%  100Mbps  100Mbps     0bps       0bps

fe-0/0/3.0    Up     0            100%  100Mbps  100Mbps     0bps       20Mbps

With the primary path correctly established, you move on to configure the secondary path:

[edit protocols mpls]

lab@r1# set label-switched-path r1-r7 secondary r1-r7-prime standby

Note the use of the standby keyword in the secondary path’s definition. This causes the 
router to try to establish the secondary path, regardless of the operational state of the primary 
path; standby secondary behavior is required by the criteria in this example. As with the pri-
mary named path, you also define a null named path for the secondary:

[edit protocols mpls]

lab@r1# set path r1-r7-prime

The additions to r1’s configuration are now displayed, with highlights added to the entries 
relating to the secondary LSP:

[edit protocols mpls]

lab@r1# show

label-switched-path r1-r7 {

    to 10.0.9.7;

    bandwidth 70m;

    no-cspf;

    primary r1-r7;



Traffic Protection 197

    secondary r1-r7-prime {

        standby;

    }

}

path r1-r7;

path r1-r7-prime;

interface all;

Verifying Secondary Path

After committing the changes on r1, you display the RSVP session status to determine if both 
primary and secondary paths have been established:

[edit protocols mpls]

lab@r1# run show rsvp session ingress detail

Ingress RSVP: 2 sessions

10.0.9.7

  From: 10.0.6.1, LSPstate: Up, ActiveRoute: 0

  LSPname: r1-r7, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100002

  Resv style: 1 FF, Label in: -, Label out: 100002

  Time left:    -,  Since: Wed Feb 19 04:48:48 2003

  Tspec: rate 70Mbps size 70Mbps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 53606 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.4.13 (fe-0/0/1.0) 6 pkts

  RESV rcvfrom: 10.0.4.13  (fe-0/0/1.0) 6 pkts

  Record route: <self>  10.0.4.13  10.0.2.6  10.0.2.17

10.0.9.7

  From: 10.0.6.1, LSPstate: Dn, ActiveRoute: 0

  LSPname: r1-r7, LSPpath: Secondary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: -

  Resv style: 0 -, Label in: -, Label out: -

  Time left:    -,  Since: Wed Feb 19 04:49:17 2003

  Tspec: rate 70Mbps size 70Mbps peak Infbps m 20 M 1500

  Port number: sender 2 receiver 53607 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.4.17 (fe-0/0/3.0) 5 pkts

  Record route: <self>  ...incomplete

Total 2 displayed, Up 1, Down 1



198 Chapter 2 � MPLS and Traffic Engineering

Not good. While the display correctly indicates that two ingress RSVP sessions to 10.0.9.7 
are defined at r1, the display also makes it clear that the secondary path has not been success-
fully established. The output from a show mpls lsp command provides a critical clue to the 
nature of the problem. Generally speaking, when troubleshooting RSVP and/or CSPF problems 
you should try the show mpls lsp command with the extensive switch:

[edit protocols mpls]

lab@r1# run show mpls lsp ingress extensive

Ingress LSP: 1 sessions

10.0.9.7

  From: 10.0.6.1, State: Up, ActiveRoute: 0, LSPname: r1-r7

  ActivePath: r1-r7 (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary   r1-r7            State: Up

    Bandwidth: 70Mbps

    Received RRO:

          10.0.4.13 10.0.2.6 10.0.2.17

    4 Feb 19 04:48:48  Selected as active path

    3 Feb 19 04:48:48  Record Route:  10.0.4.13 10.0.2.6 10.0.2.17

    2 Feb 19 04:48:48  Up

    1 Feb 19 04:48:48  Originate Call

  Standby   r1-r7-prime      State: Dn

    Bandwidth: 70Mbps

    2 Feb 19 04:57:08  10.0.4.17: Requested bandwidth unavailable[15 times]

    1 Feb 19 04:49:17  Originate Call

  Created: Wed Feb 19 04:39:53 2003

Total 1 displayed, Up 1, Down 0

The highlighted entries make it clear that the secondary path cannot be established due to 
insufficient bandwidth being available for the reservation at 10.0.4.17 (r4). Considering that 
the Fast Ethernet link between r1 and r4 operates at 100Mbps, and that 2×70Mbps equals 
140Mbps, this error should not be too surprising. While you could adjust the RSVP subscription 
percentage on the other routers in the test bed to allow RSVP oversubscription, this would 
be in violation of the requirement that the bandwidth for the two LSPs not be double-counted.

The following command changes the RSVP reservation style from the default Fixed Filter 
(FF) to a Shared Explicit (SE) style; SE style reservations allow resources to be shared among 
multiple LSPs that share a common Session Object parameter. Note that the adaptive keyword 
is specified at the LSP level in this case, because your goal is to evoke an SE style reservation 
for both the primary and secondary paths:

[edit protocols mpls]

lab@r1# set label-switched-path r1-r7 adaptive



Traffic Protection 199

After the changes are committed, the status of the secondary path is once again 
displayed:

[edit protocols mpls]

lab@r1# run show mpls lsp ingress extensive

Ingress LSP: 1 sessions

10.0.9.7

  From: 10.0.6.1, State: Up, ActiveRoute: 0, LSPname: r1-r7

  ActivePath: r1-r7 (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary   r1-r7            State: Up

    Bandwidth: 70Mbps

    Received RRO:

          10.0.4.13 10.0.2.6 10.0.2.17

    4 Feb 19 05:21:38  Selected as active path

    3 Feb 19 05:21:38  Record Route:  10.0.4.13 10.0.2.6 10.0.2.17

    2 Feb 19 05:21:38  Up

    1 Feb 19 05:21:38  Originate Call

  Standby   r1-r7-prime      State: Up

    Bandwidth: 70Mbps

    Received RRO:

          10.0.4.13 10.0.2.1 10.0.8.10

    3 Feb 19 05:22:08  Record Route:  10.0.4.13 10.0.2.1 10.0.8.10

    2 Feb 19 05:22:08  Up

    1 Feb 19 05:22:08  Originate Call

  Created: Wed Feb 19 05:21:03 2003

Total 1 displayed, Up 1, Down 0

The output now indicates that both LSPs have been successfully established, and that each 
has correctly reserved 70Mbps of bandwidth. To provide added confirmation that the band-
width reservation is being shared, you verify the use of a SE style reservation, and that a single 
70Mbps bandwidth reservation is supporting the needs of both LSPs. The following commands 
are entered on r3, but they could be entered anywhere along the path of the LSPs:

[edit]

lab@r3# run show rsvp session transit

Transit RSVP: 2 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.7        10.0.6.1        Up     1  1 SE  100003   100009 r1-r7

10.0.9.7        10.0.6.1        Up     1  1 SE  100004   100008 r1-r7

Total 2 displayed, Up 2, Down 0



200 Chapter 2 � MPLS and Traffic Engineering

The highlights confirm the presence of two transit LSPs at r3 with common Session Object 
attributes (the LSP name and egress point), and that both LSPs were signaled to use a SE style 
of reservation.

[edit]

lab@r3# run show rsvp interface

RSVP interface: 5 active

                   Active               Static      Available  Reserved  Highwater

Interface   State resv   Subscription  BW          BW         BW       mark

fe-0/0/0.0  Up         0         100%  100Mbps     100Mbps    0bps     0bps

fe-0/0/1.0  Up         0         100%  100Mbps     100Mbps    0bps     0bps

fe-0/0/3.0  Up         0         100%  100Mbps     100Mbps    0bps     0bps

at-0/1/0.0  Up         1         100%  155.52Mbps  85.52Mbps  70Mbps   70Mbps

so-0/2/0.100Up         1         100%  155.52Mbps  85.52Mbps  70Mbps   70Mbps

The RSVP reservation state at r3 indicates that diverse routing of the LSPs has occurred 
due to the presence of two equal-cost routes from r3 to 10.0.9.7. To confirm that band-
width will not be double-counted, you can temporarily down one of the interfaces at r3 
to force the LSPs into taking a common path. Alternatively, you can also display the RSVP 
interface state at r1, assuming that it routes both LSPs over the same interface, which 
is the case in this example. In this case, the “temporarily down an interface” approach is 
demonstrated:

[edit]

lab@r3# deactivate interfaces so-0/2/0

[edit]

lab@r3# commit

commit complete

After deactivating r3’s so-0/2/0 interface, you confirm that both LSPs are correctly 
reestablished:

[edit]

lab@r3# run show mpls lsp transit

Transit LSP: 2 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.7        10.0.6.1        Up     1  1 SE  100005   100009 r1-r7

10.0.9.7        10.0.6.1        Up     1  1 SE  100004   100008 r1-r7

Total 2 displayed, Up 2, Down 0

Both LSPs are up, so RSVP interface status is displayed to confirm that bandwidth is correctly 
shared among the primary and secondary paths:

[edit]

lab@r3# run show rsvp interface

RSVP interface: 4 active



Traffic Protection 201

                    Active                 Static    Available   Reserved  Highwater

Interface   State  resv    Subscription  BW        BW         BW        mark

fe-0/0/0.0  Up          0          100%  100Mbps   100Mbps    0bps      0bps

fe-0/0/1.0  Up          0          100%  100Mbps   100Mbps    0bps      0bps

fe-0/0/3.0  Up          0          100%  100Mbps   100Mbps    0bps      0bps

at-0/1/0.0  Up          1          100%  155.52Mbps 85.52Mbps 70Mbps    70Mbps

The presence of a single reservation using a total of 70Mbps of bandwidth confirms that you 
have met the requirements of the secondary LSP configuration scenario. Before proceeding 
to the next section, be sure to reactive r3’s so-0/2/0 interface:

[edit]

lab@r3# rollback 1

load complete

[edit]

lab@r3# commit

commit complete

Fast Reroute and Link Protection

Fast Reroute (FRR) provides a mechanism by which nodes use information contained in their 
TED, along with the CSPF algorithm, to attempt to compute detours around a LSP’s down-
stream link and its associated downstream node. In the event of a LSP failure, a node with an 
established FRR path can divert traffic over the detour while the primary LSP is reestablished. 
The JUNOS software implementation of Fast Reroute is proprietary.

Fast Reroute can protect against failures that may occur along the entire path of the LSP, 
excepting the catastrophic failure of either the ingress or the egress nodes, of course. Note 
that CSPF does not have to be used to compute the LSP’s path at the ingress node to support 
Fast Reroute functionality; intervening nodes can use their TED to locate detour paths, when 
available, regardless of whether the ingress node has used CSPF or not.

In contrast, link protection strives to protect a specific interface, and any appropriately 
designated LSPs that happen to make use of that interface, by establishing a LSP that bypasses 
the protected interface in the event of its failure. Link protection guards against the failure 
of interfaces that have been explicitly configured for link protection. For an individual LSP to 
take advantage of a protected interface, you must explicitly configure the ingress LSR to identify 
that LSP as one that should be subjected to link protection.

Link protection also makes use of a TED and the CSPF algorithm—in this case, to compute 
a shortest path around the protected interface back to the adjacent node. Unlike Fast Reroute, 
link protection allows the specification of EROs that can be used to influence the outcome of 
the CSPF process. Link protection is not proprietary to Juniper Networks, so it can be deployed 
in a multi-vendor environment.

A key point to consider when dealing with both Fast Reroute and link protection is the need 
for a TED with sufficient information to allow a successful CSPF calculation of the Fast Reroute 
detour or the bypass LSP. Keep this point in mind as you proceed through this configuration 



202 Chapter 2 � MPLS and Traffic Engineering

example, as the Multi-Level IS-IS topology currently in play sports multiple TED views, depending 
on the router in question. For example, r5’s TED consists of the Level 1 information in area 0002, 
as well as the Level 2 information from the backbone. In contrast, r4 does not receive the 
L1 LSPs from area 0002, and therefore its TED view of r7 does not include the 10.0.8.8/20 link, 
as shown here:

[edit]

lab@r4# run show ted database detail r7.0

TED database: 14 ISIS nodes 7 INET nodes

NodeID: r7.00(10.0.9.7)

  Type: Rtr, Age: 456 secs, LinkIn: 1, LinkOut: 1

  Protocol: IS-IS(2)

    To: r4.04, Local: 10.0.2.17, Remote: 0.0.0.0

The same command issued on r5 clearly shows that the two routers have differing TED 
views of r7:

[edit]

lab@r5# run show ted database detail r7.0

TED database: 9 ISIS nodes 5 INET nodes

NodeID: r7.00(10.0.9.7)

  Type: Rtr, Age: 552 secs, LinkIn: 2, LinkOut: 2

  Protocol: IS-IS(2)

    To: r4.04, Local: 10.0.2.17, Remote: 0.0.0.0

  Protocol: IS-IS(1)

Figure 2.6 graphically depicts the various TED “views” that are in place in the current 
Multi-Level IS-IS test bed.

F I G U R E 2 . 6 Varying TED views

Area 49.00001 TED Area 49.00002 TED Backbone (L2) TED

Area 0001
L1

L2 Area 0002
L1

r2 r4

r7

r6
r5

r3r1

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5



Traffic Protection 203

To provide an example of how this condition can affect a Fast Reroute computation, 
consider the case of r4 attempting to compute a detour around its fe-0/0/3 interface for a 
LSP that terminates on r7. In this case, r4 will not be able to compute a detour through r5, due 
to the absence of the 10.0.8.8/30 link in its TED.

To complete this configuration scenario, you must configure the following functionality:
� Establish LSP r6–r4, with r6 as the ingress and r4 as the egress.
� Ensure that the LSP uses the 10.0.2.4/30 link, and that it does not transit r5.
� Without using a secondary LSP, ensure that a failure of r3’s so-0/2/0.100 interface does not 

disrupt LSP-based forwarding.

In this example, the use of either Fast Reroute or link protection is implied through the 
restriction on secondary LSP usage, combined with the need for continued LSP forwarding in 
the event of the failure of a specific interface that lies along the primary LSP’s path. Note that 
Fast Reroute is generally preferred to link bypass when the goal is to protect the entire primary 
path. The specifics of the topology make either approach workable, so both techniques are 
demonstrated and verified in the following sections.

Configuring Fast Reroute

You begin with the definition of the new LSP at r6. Note that CSPF is not disabled in this example, 
and that a primary path is defined to constrain the LSP’s routing through r3 in accordance with 
the scenario’s requirements. r6 can use CSPF to calculate the path to r4 in this example, because 
its TED contains information for both the Level 1 area 0002 and the backbone:

[edit protocols mpls]

lab@r6# set label-switched-path r6-r4 to 10.0.3.4

[edit protocols mpls]

lab@r6# set label-switched-path r6-r4 primary r6-r4

[edit protocols mpls]

lab@r6# set path r6-r4 10.0.3.3 loose

Support for Fast Reroute is now configured:

[edit protocols mpls]

lab@r6# set label-switched-path r6-r4 fast-reroute

The resulting LSP configuration is displayed next with added highlights:

[edit protocols mpls]

lab@r6# show

label-switched-path r6-r4 {

    to 10.0.3.4;

    fast-reroute;

    primary r6-r4;

}



204 Chapter 2 � MPLS and Traffic Engineering

path r6-r4 {

    10.0.3.3 loose;

}

interface all;

Verifying Fast Reroute

After committing the changes, verification begins at the ingress node with confirmation of an 
operational LSP that transits r3:

[edit protocols mpls]

lab@r6# run show rsvp session ingress detail

Ingress RSVP: 1 sessions

10.0.3.4

  From: 10.0.9.6, LSPstate: Up, ActiveRoute: 0

  LSPname: r6-r4, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100008

  Resv style: 1 FF, Label in: -, Label out: 100008

  Time left:    -,  Since: Wed Feb 19 10:25:29 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 43294 protocol 0

  FastReroute desired

  PATH rcvfrom: localclient

  PATH sentto: 10.0.2.14 (fe-0/1/1.0) 38 pkts

  RESV rcvfrom: 10.0.2.14  (fe-0/1/1.0) 37 pkts

  Explct route: 10.0.2.14 10.0.2.6

  Record route: <self>  10.0.2.14  10.0.2.6

    Detour is Up

    Detour PATH sentto: 10.0.8.6 (fe-0/1/0.0) 37 pkts

    Detour RESV rcvfrom: 10.0.8.6  (fe-0/1/0.0) 35 pkts

    Detour Explct route: 10.0.8.6 10.0.2.10

    Detour Record route: <self>  10.0.8.6  10.0.2.10

    Detour Label out: 100012

Total 1 displayed, Up 1, Down 0

Worthy of note in this display is the indication that r6 has computed a detour around r3 
through r5. To confirm that a detour also exists around r3’s so-0/2/0.100 interface, a similar 
command is issued at r3, this time using the transit switch and some additional CLI filtering 
to reduce clutter:

[edit protocols rsvp]

lab@r3# run show rsvp session transit detail name r6-r4

Transit RSVP: 3 sessions



Traffic Protection 205

10.0.3.4

  From: 10.0.9.6, LSPstate: Up, ActiveRoute: 1

  LSPname: r6-r4, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 3

  Resv style: 1 FF, Label in: 100008, Label out: 3

  Time left:  154,  Since: Wed Feb 19 02:18:49 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 43294 protocol 0

  FastReroute desired

  PATH rcvfrom: 10.0.2.13  (fe-0/0/3.0) 59 pkts

  PATH sentto: 10.0.2.6 (so-0/2/0.100) 55 pkts

  RESV rcvfrom: 10.0.2.6  (so-0/2/0.100) 58 pkts

  Explct route: 10.0.2.6

  Record route: 10.0.2.13  <self>  10.0.2.6

    Detour is Up

    Detour PATH sentto: 10.0.4.2 (fe-0/0/1.0) 54 pkts

    Detour RESV rcvfrom: 10.0.4.2  (fe-0/0/1.0) 52 pkts

    Detour Explct route: 10.0.4.2 10.0.4.9

    Detour Record route: 10.0.2.13  <self>  10.0.4.2  10.0.4.9

    Detour Label out: 100000

The presence of a functional Fast Reroute detour around r3’s so-0/2.0.100 interface con-
firms that you have met the requirements of this configuration task using FRR. Note that the 
CSPF algorithm has chosen the Level 1 path through r2 instead of the L2 path through r5. 
This is the result of L1 routes having a lower, and therefore more preferred, global preference 
setting. Note that you have no way to control the routing of a Fast Reroute detour with the 
JUNOS software version in use in the test bed.

Configuring Link Protection

With the Fast Reroute approach confirmed, you now set out to meet the requirements of this 
task using link protection. You begin by removing the Fast Reroute configuration at r6:

[edit protocols mpls]

lab@r6# delete label-switched-path r6-r4 fast-reroute

Before adding the interface-related link protection settings at r3, you first flag the r6–r4 LSP as 
being a candidate for link protection with the following command. Note that link protection is 
interface based, and that only LSPs that are so flagged will be able to make use of the bypass LSP:

[edit protocols mpls]

lab@r6# set label-switched-path r6-r4 link-protection

The resulting configuration change is displayed with highlights added:

[edit protocols mpls]

lab@r6# show



206 Chapter 2 � MPLS and Traffic Engineering

label-switched-path r6-r4 {

    to 10.0.3.4;

    link-protection;

    primary r6-r4;

}

path r6-r4 {

    10.0.3.3 loose;

}

interface all;

With the ingress node correctly configured to request the use of a bypass LSP, you now move 
to r3 to configure link protection for its so-0/2/0.100 interface. Note that link protection is 
a per-interface setting under the edit protocols rsvp hierarchy.

[edit protocols rsvp]

lab@r3# set interface so-0/2/0.100 link-protection

The modified configuration at r3 is displayed next:

[edit protocols rsvp]

lab@r3# show

interface fe-0/0/0.0 {

    authentication-key "$9$ME-L7Vji.mT3"; # SECRET-DATA

}

interface fe-0/0/1.0;

interface fe-0/0/3.0;

interface at-0/1/0.0;

interface so-0/2/0.100 {

    link-protection;

}

If required, you can control the routing of the bypass LSP by adding EROs under the 
link-protection stanza. In this example, the mere existence of a bypass LSP is sufficient 
to get you credit on the exam, so you leave the routing of the bypass to the default CSPF path 
selection criteria.

Verifying Link Protection

After committing the changes on r3 and r6, you begin your confirmation steps at r6, where an 
operational ingress LSP is affirmed:

[edit]

lab@r6# run show rsvp session ingress detail

Ingress RSVP: 1 sessions

10.0.3.4

  From: 10.0.9.6, LSPstate: Up, ActiveRoute: 0



Traffic Protection 207

  LSPname: r6-r4, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100003

  Resv style: 1 SE, Label in: -, Label out: 100003

  Time left:    -,  Since: Thu Feb 20 00:59:34 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 21419 protocol 0

  Link protection desired

  PATH rcvfrom: localclient

  PATH sentto: 10.0.2.14 (fe-0/1/1.0) 7 pkts

  RESV rcvfrom: 10.0.2.14  (fe-0/1/1.0) 9 pkts

  Explct route: 10.0.2.14 10.0.2.6

  Record route: <self>  10.0.2.14  10.0.2.6

Total 1 displayed, Up 1, Down 0

The output confirms that the r6–r4 LSP has been correctly established, and that its routing 
complies with the requirement that it transits r3 to make use of its so-0/2/0.100 interface. 
The added highlights also indicate that the LSP is correctly flagged as a candidate for link 
protection. You now move to r3 to confirm the establishment of the bypass LSP:

[edit protocols rsvp]

lab@r3# run show rsvp session ingress detail

Ingress RSVP: 1 sessions

10.0.3.4

  From: 10.0.3.3, LSPstate: Up, ActiveRoute: 0

  LSPname: Bypass_to_10.0.2.6

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100001

  Resv style: 1 SE, Label in: -, Label out: 100001

  Time left:    -,  Since: Wed Feb 19 16:55:36 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 55608 protocol 0

  Type: Bypass LSP

  PATH rcvfrom: localclient

  PATH sentto: 10.0.4.2 (fe-0/0/1.0) 9 pkts

  RESV rcvfrom: 10.0.4.2  (fe-0/0/1.0) 9 pkts

  Explct route: 10.0.4.2 10.0.4.9

  Record route: <self>  10.0.4.2  10.0.4.9

Total 1 displayed, Up 1, Down 0

The display indicates that r3 has successfully established a bypass LSP to r4 in an effort to 
protect its so-0/2/0.100 interface. The output also indicates that the bypass LSP has been routed 



208 Chapter 2 � MPLS and Traffic Engineering

through Level 1 area 0001 using r2. Note that bypass LSPs are not listed under the show mpls 
lsp command because link protection is strictly an RSVP thing.

[edit protocols rsvp]

lab@r3# run show mpls lsp ingress extensive

Ingress LSP: 0 sessions

Total 0 displayed, Up 0, Down 0

The routing path and operational state of the r6–r4 LSP, combined with the successful 
establishment of a bypass LSP protecting r3’s so-0/2/0.100 interface, confirms that you have met 
all the criteria for this configuration task.

Preemption

LSP priority settings determine the relative setup priority of an LSP, and also control the likelihood 
of that LSP being torn down in an effort to establish a new, higher-priority LSP. Preemption is 
normally used when LSPs reserve bandwidth to ensure that high-priority LSPs can be estab-
lished in the face of reduced network capacity. Setup priority is also used to influence the order 
in which LSPs are signaled; higher-priority LSPs are established first in the event of a reboot 
or manual clearing of RSVP sessions.

The default preemption behavior results in low-priority LSPs being torn down when a new 
higher-priority LSP must be signaled and there is insufficient bandwidth to accommodate all 
LSPs. Setting preemption to aggressive modifies this behavior by allowing preemption in the 
event of bandwidth reduction as well as the need to establish a new LSP. Preemption can 
also be disabled. Preemption operates based on two LSP priority settings, namely the LSP’s 
setup and hold priority. An LSP’s setup priority determines the order in which it is signaled, and 
the likelihood of it being able to preempt an already established LSP. The LSP’s hold priority 
determines whether the LSP can be preempted by another LSP with a high setup priority. 
Put simply, setup priority determines the likelihood of this LSP preempting another session, 
while the hold priority determines whether this LSP can in turn be preempted by another 
session.

Priority settings range from 0–7, with 0 being the strongest and 7 being the weakest. By 
default, all LSPs use the weakest setup priority (0) and the strongest hold priority (7), such that 
preemption is not possible. To enable LSP preemption, you must elevate a new LSP’s setup 
priority, while also lowering the hold priority of existing LSPs.

To complete this configuration scenario, you must configure r5 according to the following 
criteria:
� Establish LSP r5–r1 and r5–r1–prime with r5 as ingress and r1’s 10.0.4.5 fe-0/0/2 inter-

face address as the egress.
� Configure each LSP to reserve 100Mbps of bandwidth.
� Make sure that r5 signals the r5–r1 LSP first, and ensure that the r5–r1 LSP is established 

in favor of the r5–r1–prime LSP.
� Use a single ERO that forces the LSPs routing through r3.



Traffic Protection 209

Configuring Preemption

The restriction on ERO usage results in r5 attempting to establish both LSPs over a common 
path. With their 200Mbps aggregate bandwidth requirement, something will have to give. You 
begin your configuration on the ingress router by defining the new LSPs and the required 
explicit path through r3. Note that CSPF is turned off, due to previously described TED issues.

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1 to 10.0.4.5 no-cspf

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1 bandwidth 100m

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1 primary r5-r1

[edit protocols mpls]

lab@r5# set path r5-r1 10.0.3.3 loose

The r5–r1–prime LSP is now defined, along with its explicit path:

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1-prime to 10.0.4.5 no-cspf

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1-prime bandwidth 100m

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1-prime primary r5-r1-prime

[edit protocols mpls]

lab@r5# set path r5-r1-prime 10.0.3.3 loose

The current LSP configuration at r5 is now displayed with the recent additions highlighted:

[edit protocols mpls]

lab@r5# show

admin-groups {

    blue 4;

    red 8;

}

label-switched-path r5-r1 {

    to 10.0.4.5;

    bandwidth 100m;

    no-cspf;



210 Chapter 2 � MPLS and Traffic Engineering

    primary r5-r1;

}

label-switched-path r5-r1-prime {

    to 10.0.4.5;

    bandwidth 100m;

    no-cspf;

    primary r5-r1-prime;

}

path r5-r1 {

    10.0.3.3 loose;

}

path r5-r1-prime {

    10.0.3.3 loose;

}

interface all;

interface at-0/2/1.0 {

    admin-group red;

}

interface so-0/1/0.0 {

    admin-group red;

}

Before modifying any LSP setup and hold priorities, you commit the changes made thus far 
to verify the network’s behavior with the default priority settings:

[edit protocols mpls]

lab@r5# run show mpls lsp ingress detail

Ingress LSP: 2 sessions

10.0.4.5

  From: 10.0.3.5, State: Up, ActiveRoute: 0, LSPname: r5-r1

  ActivePath: r5-r1 (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary   r5-r1            State: Up

    Bandwidth: 100Mbps

    Received RRO:

          10.0.2.2 10.0.4.14

10.0.4.5

  From: 10.0.3.5, State: Dn, ActiveRoute: 0, LSPname: r5-r1-prime

  ActivePath: (none)



Traffic Protection 211

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

  Primary   r5-r1-prime      State: Dn

    Bandwidth: 100Mbps

    2 Feb 19 11:42:28  Requested bandwidth unavailable[13 times]

Total 2 displayed, Up 1, Down 1

As predicted, r5 is not able to simultaneously establish both LSPs due to insufficient band-
width at r1’s fe-0/0/1 interface. In this example, the r5–r1 LSP was successfully established, 
but the default priority settings currently in effect result in this behavior being non-deterministic. 
To confirm, you temporarily deactivate the r5–r1 LSP, thereby allowing the establishment 
of the r5–r1–prime LSP:

[edit protocols mpls]

lab@r5# deactivate label-switched-path r5-r1

[edit protocols mpls]

lab@r5# commit

commit complete

[edit protocols mpls]

lab@r5# activate label-switched-path r5-r1

[edit protocols mpls]

lab@r5# commit

commit complete

As expected, you now find that the r5–r1–prime LSP has been established, this time to the 
detriment of the r5–r1 LSP:

[edit protocols mpls]

lab@r5# run show mpls lsp ingress detail

Ingress LSP: 2 sessions

10.0.4.5

  From: 10.0.3.5, State: Up, ActiveRoute: 0, LSPname: r5-r1-prime

  ActivePath: r5-r1-prime (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary   r5-r1-prime      State: Up

    Bandwidth: 100Mbps

    Received RRO:

          10.0.2.2 10.0.4.2 10.0.4.5



212 Chapter 2 � MPLS and Traffic Engineering

10.0.4.5

  From: 10.0.3.5, State: Dn, ActiveRoute: 0, LSPname: r5-r1

  ActivePath: (none)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

  Primary   r5-r1            State: Dn

    Bandwidth: 100Mbps

    2 Feb 19 11:48:58  Requested bandwidth unavailable[4 times]

Total 2 displayed, Up 1, Down 1

You now modify the priority settings to ensure that the r5–r1 LSP can preempt the 
r5–r1–prime LSP when needed:

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1 priority 4 0

The previous command modifies the setup priority for the r5–r1 LSP from the default 
value of 7 (weak) to a setting of 4 (medium). The hold priority is left at the default setting 
of 0 (strong) in this case. A similar command is now used to adjust the hold priority for the 
r5–r1–prime LSP:

[edit protocols mpls]

lab@r5# set label-switched-path r5-r1-prime priority 7 5

The modified configuration at r5 is now displayed:

[edit protocols mpls]

lab@r5# show

admin-groups {

    blue 4;

    red 8;

}

label-switched-path r5-r1 {

    to 10.0.4.5;

    bandwidth 100m;

    no-cspf;

    priority 4 0;

    primary r5-r1;

}

label-switched-path r5-r1-prime {

    to 10.0.4.5;

    bandwidth 100m;

    no-cspf;

    priority 7 5;

    primary r5-r1-prime;

}



Traffic Protection 213

path r5-r1 {

    10.0.3.3 loose;

}

path r5-r1-prime {

    10.0.3.3 loose;

}

interface all;

interface at-0/2/1.0 {

    admin-group red;

}

interface so-0/1/0.0 {

    admin-group red;

}

With a hold priority of 5, the r5–r1–prime LSP should be torn down to accommodate the 
higher setup priority (4) of the r5–r1 LSP. With the changes committed, proper operation is 
easily verified:

[edit protocols mpls]

lab@r5# run show mpls lsp ingress extensive

Ingress LSP: 2 sessions

10.0.4.5

  From: 10.0.3.5, State: Up, ActiveRoute: 0, LSPname: r5-r1

  ActivePath: r5-r1 (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary   r5-r1            State: Up

    Priorities: 4 0

    Bandwidth: 100Mbps

    Received RRO:

          10.0.2.2 10.0.4.2 10.0.4.5

    4 Feb 19 12:11:24  Selected as active path

    3 Feb 19 12:11:24  Record Route:  10.0.2.2 10.0.4.2 10.0.4.5

    2 Feb 19 12:11:24  Up

    1 Feb 19 12:11:24  Originate Call

  Created: Wed Feb 19 12:11:11 2003

10.0.4.5

  From: 10.0.3.5, State: Dn, ActiveRoute: 0, LSPname: r5-r1-prime

  ActivePath: (none)

  LoadBalance: Random



214 Chapter 2 � MPLS and Traffic Engineering

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

  Primary   r5-r1-prime      State: Dn

    Priorities: 7 5

    Bandwidth: 100Mbps

    8 Feb 19 12:15:27  Requested bandwidth unavailable[19 times]

    7 Feb 19 12:11:24  ResvTear received

    6 Feb 19 12:11:24  Requested bandwidth unavailable

    5 Feb 19 12:11:24  Session preempted

    4 Feb 19 12:11:24  Down

    3 Feb 19 12:11:24  Record Route:  10.0.2.2 10.0.4.14

    2 Feb 19 12:11:24  Up

    1 Feb 19 12:11:24  Originate Call

  Created: Wed Feb 19 12:11:11 2003

Total 2 displayed, Up 1, Down 1

The display confirms that the setup and hold priorities have been modified, and also con-
firms that the r5–r1–prime LSP has been preempted by the r5–r1 LSP. This behavior is in full 
accordance with the requirements of the configuration scenario.

Summary of Traffic Protection

JUNOS software supports a wide range of options that are used to protect and prioritize LSPs. 
This section demonstrated the use of secondary paths, and how the standby option results in 
the pre-establishment of a secondary path to minimize disruption in the event of primary path 
failure. The section also detailed how Fast Reroute and link protection can be used to protect 
an LSP’s path, or particular interfaces, without the need for secondary paths. The need for 
CSPF computations to support both Fast Reroute and link protection was described in detail, 
as were issues that can occur when dealing with a network comprising multiple TE domains.

The section ended with an example of LSP preemption, which demonstrated how LSP setup 
and hold priorities work in conjunction with RSVP preemption to help ensure that high-priority 
paths are established first, and remain established, in the face of insufficient network bandwidth. 
The difference between normal and aggressive preemption was also described.

Miscellaneous MPLS Capabilities 
and Features
This section provides various MPLS configuration tasks that will demonstrate MPLS features 
not incorporated into the previous configuration scenarios.

To complete this section, you must modify your network to meet these requirements:
� Make changes only to the ingress router and ensure that the topology of the r2–r6 LSP is 

not displayed in traceroute tests.



Miscellaneous MPLS Capabilities and Features 215

� Configure the r5–r1 LSP so that you can validate the data plane without using external 
prefixes or modifying default routing table integration.

� Ensure that r6 performs a pop operation on all LSPs for which it serves as the egress node.
� Modify the r4–r3 LSP at r4 so it reserves a minimum of 1Mbps of bandwidth while ensur-

ing that the bandwidth reservation can be automatically adjusted during periods of high 
traffic volume.

The first configuration task requires that you hide the presence of LSP forwarding for 
traceroutes conducted over the r2–r6 LSP. In theory, this goal can be achieved using either 
the no-propagate-ttl or no-decrement-ttl configuration options. However, because 
no-propagate-ttl must be configured at all nodes along the LSP’s path, you will have to 
use the no-decrement-ttl approach due to the restriction that you modify only the ingress 
router’s configuration.

Before altering the default traceroute behavior of the r2–r6 LSP, you perform a quick test to 
verify that LSP forwarding is still in effect, and to serve as a contrast to the behavior you hope 
to soon achieve:

[edit]

lab@r2# run traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.4.9 (10.0.4.9)  0.676 ms  9.119 ms  0.433 ms

     MPLS Label=100009 CoS=0 TTL=1 S=1

 2  10.0.2.17 (10.0.2.17)  0.182 ms  0.175 ms  0.155 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 3  10.0.8.9 (10.0.8.9)  0.571 ms  0.515 ms  0.492 ms

     MPLS Label=100016 CoS=0 TTL=1 S=1

 4  10.0.8.5 (10.0.8.5)  0.212 ms  0.205 ms  0.186 ms

 5  220.220.0.1 (220.220.0.1)  0.300 ms  0.283 ms  0.265 ms

The results confirm LSP forwarding to C2 routes, making the LSP’s topology open 
for all to see. You now modify r2’s configuration by flagging the r2–r6 LSP as having 
no-decrement-ttl:

[edit protocols]

lab@r2# set mpls label-switched-path r2-r6 no-decrement-ttl

[edit protocols]

lab@r2# show mpls label-switched-path r2-r6

to 10.0.9.6;

no-decrement-ttl;

no-cspf;

primary visit-r7-r5;

After committing the changes, you verify that the LSP’s path is now hidden to traceroutes:

[edit]

lab@r2# commit



216 Chapter 2 � MPLS and Traffic Engineering

commit complete

[edit]

lab@r2# run traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  220.220.0.1 (220.220.0.1)  0.547 ms  0.350 ms  0.290 ms

As expected, only a single hop is shown for traceroute testing to C2 prefixes. Having changed 
the configuration of only the ingress router, you have met all requirements for this task.

The next configuration requirement dictates that you be able to test the data plane (LSP 
forwarding) of the r5–r1 LSP without changing the default LSP routing table integration behavior 
at r5, and without using external destinations as the target of your testing. The only way to 
accomplish this goal is to use MPLS pings, which are a relatively new JUNOS software feature. 
However, the results of your first MPLS ping attempt indicate that nothing in the JNCIE lab 
is as simple as it first appears:

[edit]

lab@r5# run ping mpls rsvp r5-r1

.....

--- lsping statistics ---

5 packets transmitted, 0 packets received, 100% packet loss

The most frustrating part of the MPLS ping failure is that show commands indicate that the 
LSP is operational and you are unable to verify the LSP’s data plane by tracing the path to 
P1’s 120.120/16 routes, if only for peace of mind, due to the current state of the test bed! Recall 
that traffic from r5 to 120.120/16 destinations does not use the r5–r1 LSP because the BGP 
next hop of 10.0.5.254 cannot be resolved through r5’s inet.3 routing table. Having been 
precluded from altering the default routing table integration behavior on r5, there is little you 
can do to change this situation.

[edit]

lab@r5# run traceroute 120.120.0.1

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets

 1  10.0.2.10 (10.0.2.10)  0.823 ms  0.668 ms  0.602 ms

 2  10.0.4.10 (10.0.4.10)  0.540 ms  0.550 ms  0.500 ms

 3  120.120.0.1 (120.120.0.1)  0.618 ms  0.634 ms  0.581 ms

Traffic from r5 to 120.120/16 destinations is not using the r5–r1 LSP because the associated 
BGP next hop of 10.0.5.254 cannot be resolved in r5’s inet.3 table.

[edit]

lab@r5# run show route table inet.3

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

Restart Complete

+ = Active Route, - = Last Active, * = Both



Miscellaneous MPLS Capabilities and Features 217

10.0.4.5/32        *[RSVP/7] 04:37:00, metric 30

                    > via at-0/2/1.0, label-switched-path r5-r1

10.0.9.6/32        *[LDP/9] 03:42:09, metric 1

                    > to 10.0.8.5 via fe-0/0/0.0, Push 0

10.0.9.7/32        *[LDP/9] 03:42:34, metric 1

                    > to 10.0.8.10 via fe-0/0/1.0

Given these particulars, it would seem that an MPLS ping really is the only way for you to 
verify the LSP’s data plane after all. The trick to getting MPLS pings to work lies in understanding 
that the MPLS ping mechanism always targets a destination address of 127.0.0.1. The lack 
of a 127.0.0.1 loopback address assignment on the egress router’s lo0 interface will result in 
the silent discard of the MPLS ping requests. You rectify this situation with the addition of the 
127.0.0.1 loopback address to r1’s loopback interface:

[edit interfaces]

lab@r1# set lo0 unit 0 family inet address 127.0.0.1

[edit]

lab@r1# commit

commit complete

[edit]

lab@r1# run show interfaces terse lo0

Interface               Admin Link Proto Local                 Remote

lo0                     up    up

lo0.0                   up    up   inet  10.0.6.1            --> 0/0

                                         127.0.0.1           --> 0/0

                                   iso   49.0001.1111.1111.1111.00

After assigning a loopback address to r1, the MPLS ping test is repeated at r5:

[edit]

lab@r5# run ping mpls rsvp r5-r1

!!!!!

--- lsping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

The 100 percent success rate leaves little to be desired! The data plane of the r5–r1 LSP has 
been confirmed in full accordance with all restrictions.

Your next assignment is to configure the network so that r6 performs a pop function for all 
traffic arriving on its egress LSPs. The wording of the task is designed to test a candidate’s MPLS 
knowledge, in that even understanding what is being asked for requires that the candidate be 
familiar with Penultimate Hop Popping (PHP) and the significance of the explicit and implicit 
null label values 0 and 3, respectively. Before changing the configuration of r6, you first confirm 



218 Chapter 2 � MPLS and Traffic Engineering

that r6 has requested the default PHP behavior for its LDP and RSVP signaled egress LSPs:

[edit]

lab@r6# run show ldp database

Input label database, 10.0.9.6:0--10.0.3.5:0

  Label     Prefix

      3     10.0.3.5/32

 100000     10.0.9.6/32

 100003     10.0.9.7/32

Output label database, 10.0.9.6:0--10.0.3.5:0

  Label     Prefix

 100007     10.0.3.5/32

      3     10.0.9.6/32

 100008     10.0.9.7/32

[edit]

lab@r6# run show rsvp session egress

Egress RSVP: 1 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.6        10.0.6.2        Up     0  1 FF       3        - r2-r6

Total 1 displayed, Up 1, Down 0

The presence of the implicit null label (3) in both displays indicates that r6 is currently 
performing no label pop operations on its egress LSP traffic due to PHP behavior. You now 
modify r6’s configuration so it will signal its desire to receive an explicit null label (0), which 
it will then pop in full accordance with the requirements of this configuration task:

[edit]

lab@r6# set protocols ldp explicit-null

[edit]

lab@r6# set protocols mpls explicit-null

To Pop or Not to Pop?

While PHP behavior is a fine default, you may need to configure the use of an explicit null label 
for compatibility with the MPLS implementations of equipment made by other companies. 
You may also want to leave a null MPLS label for processing at the egress node when MPLS 
CoS, based on the use of the EXP bits in the shim header, is in effect. By leaving a MPLS label 
on the packet, the egress node is able to classify and queue based on the settings of the MPLS 
EXP bits as opposed to the Diffserv/ToS bits in the IP header.



Miscellaneous MPLS Capabilities and Features 219

The changes to r6’s configuration are now displayed:

[edit]

lab@r6# show protocols ldp

traffic-statistics {

    file ldp-stats;

    interval 90;

}

explicit-null;

keepalive-interval 5;

interface fe-0/1/0.0;

interface fe-0/1/1.0;

[edit]

lab@r6# show protocols mpls

explicit-null;

label-switched-path r6-r4 {

    to 10.0.3.4;

    link-protection;

    primary r6-r4;

}

path r6-r4 {

    10.0.3.3 loose;

}

interface all;

After a commit, the results are easily verified:

[edit]

lab@r6# run show ldp database

Input label database, 10.0.9.6:0--10.0.3.5:0

  Label     Prefix

      3     10.0.3.5/32

 100000     10.0.9.6/32

 100003     10.0.9.7/32

Output label database, 10.0.9.6:0--10.0.3.5:0

  Label     Prefix

 100009     10.0.3.5/32

      0     10.0.9.6/32

 100010     10.0.9.7/32



220 Chapter 2 � MPLS and Traffic Engineering

[edit]

lab@r6# run show rsvp session egress

Egress RSVP: 1 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.6        10.0.6.2        Up     0  1 FF       0        - r2-r6

The use of the explicit null label for r6’s LDP and RSVP signaled egress LSPs indicates you 
have successfully completed this task.

Attention to detail is important! Many candidates who are presented with a 
configuration task such as this one will correctly configure the explicit null label 
for one signaling protocol or the other, but few will correctly modify the behavior 
of both signaling protocols!

The final task in this section requires that you modify the r4–r3 LSP so that it will adaptively 
request bandwidth reservations based on actual LSP usage. To achieve this goal, you need to 
make use of the JUNOS software auto-bandwidth feature. This feature causes a new LSP 
to be signaled when the actual utilization rate of the LSP no longer matches the existing LSP’s 
current bandwidth reservation. In operation, a new fixed filter (FF) style reservation with a 
higher (or lower) bandwidth reservation is signaled when MPLS statistics indicate that the actual 
LSP bandwidth utilization no longer matches the LSP’s reserved bandwidth. Once the new LSP 
is established, traffic is switched over and the original LSP is torn down. Configuration settings 
allow you to limit the LSP’s minimum and maximum bandwidth reservation.

You begin configuration of automatic bandwidth by enabling the gathering of MPLS statistics 
for use by the auto-bandwidth feature:

[edit protocols mpls]

lab@r4# set statistics auto-bandwidth

[edit protocols mpls]

lab@r4# set statistics file mpls-stats

You now modify the r4–r3 LSP so that it uses the auto-bandwidth feature, being careful 
to specify a minimum bandwidth of 1Mbps under the lsp-name portion of the hierarchy:

[edit protocols mpls label-switched-path r4-r3]

lab@r4# set auto-bandwidth minimum-bandwidth 1M

The automatic bandwidth related changes are now displayed with highlights:

[edit protocols mpls]

lab@r4# show

statistics {

    file mpls-stats;

    auto-bandwidth;

}



Miscellaneous MPLS Capabilities and Features 221

admin-groups {

    blue 4;

    red 8;

}

label-switched-path r4-r3 {

    to 10.0.3.3;

    admin-group {

        include red;

        exclude blue;

    }

    auto-bandwidth {

        minimum-bandwidth 1m;

    }

}

interface so-0/1/0.100 {

    admin-group blue;

}

interface so-0/1/1.0 {

    admin-group red;

}

interface fe-0/0/1.0;

interface fe-0/0/2.0;

interface fe-0/0/3.0;

Proper operation is confirmed after the changes are committed:

[edit]

lab@r4# run show mpls lsp ingress detail

Ingress LSP: 1 sessions

10.0.3.3

  From: 10.0.3.4, State: Up, ActiveRoute: 117276, LSPname: r4-r3

  ActivePath:  (primary)

  LoadBalance: Random

  Autobandwidth

  MinBW: 1000kbps

  AdjustTimer: 86400 secs

  Max AvgBW util: 0bps, Bandwidth Adjustment in 85290 second(s).

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary                    State: Up

    Include: red    Exclude: blue

    Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)

          10.0.2.9 S 10.0.2.2 S



222 Chapter 2 � MPLS and Traffic Engineering

    Received RRO:

          10.0.2.9 10.0.2.2

Total 1 displayed, Up 1, Down 0

The display indicates that automatic bandwidth adjustments are in effect for the r4–r3 LSP, 
and that the minimum bandwidth has been correctly set to 1Mbps. Setting the adjust-interval 
to a value lower than the 86,000-second default allows you to confirm that the minimum 
bandwidth is actually reserved (due to the low amount of traffic in the test bed, an automatic band-
width increase is unlikely to occur) without having to wait for an inordinate amount of time:

[edit protocol mpls label-switched-path r4-r3]

lab@r4# set auto-bandwidth adjust-interval 300

After 5 minutes or so, the LSP and RSVP interface status is again displayed at r4:

[edit protocols mpls]

lab@r4# run show mpls lsp ingress extensive

Ingress LSP: 1 sessions

10.0.3.3

  From: 10.0.3.4, State: Up, ActiveRoute: 0, LSPname: r4-r3

  ActivePath:  (primary)

  LoadBalance: Random

  Autobandwidth

  MinBW: 1000kbps

  AdjustTimer: 300 secs

  Max AvgBW util: 0bps, Bandwidth Adjustment in 171 second(s).

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary                    State: Up

    Bandwidth: 1000kbps

    Include: red    Exclude: blue

    Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)

          10.0.2.9 S 10.0.2.2 S

    Received RRO:

          10.0.2.9 10.0.2.2

   17 Feb 20 01:07:52  Change in active path

   16 Feb 20 01:07:52  Record Route:  10.0.2.9 10.0.2.2

   15 Feb 20 01:07:52  Up

   14 Feb 20 01:07:52  Autobw adjustment succeeded

   13 Feb 20 01:07:51  CSPF: computation result accepted

   12 Feb 20 01:02:56  Selected as active path

   11 Feb 20 01:02:56  Record Route:  10.0.2.9 10.0.2.2

   . . .

  Created: Thu Feb 20 00:36:38 2003

Total 1 displayed, Up 1, Down 0



Case Study: MPLS and Traffic Engineering 223

[edit protocols mpls]

lab@r4# run show rsvp interface

RSVP interface: 6 active

                     Active               Static      Available  Reserved  Highwater

Interface    State   resv   Subscription  BW          BW          BW       mark

fe-0/0/0.0   Up         0   100%        100Mbps     100Mbps     0bps     0bps

fe-0/0/1.0   Up         0   100%        100Mbps     100Mbps     0bps     100Mbps

fe-0/0/2.0   Up         0   100%        100Mbps     100Mbps     0bps     100Mbps

fe-0/0/3.0   Up         1   100%        100Mbps     100Mbps     0bps     0bps

so-0/1/0.100 Up         0   100%        155.52Mbps  155.52Mbps  0bps     0bps

so-0/1/1.0   Up          1   100%         155.52Mbps  154.52Mbps  1000kbps  1000kbps

The output shows that a 1Mbps reservation is in place, and that automatic bandwidth 
adjustments have succeeded. Now we can move to the chapter case study, as you have com-
pleted all requirements for this section.

Summary
JNCIE candidates are expected to configure a variety of MPLS-related features in the lab exam. 
Successful candidates will be fluent with virtually all of the LSP signaling, routing table integra-
tion, protection, and general usage options available in the JUNOS software.

This chapter provided configuration scenarios and verification techniques for LDP and 
RSVP signaled LSPs, and also demonstrated how LSP routing can be controlled with EROs and 
CSPF-based link coloring. The default rules for MPLS routing table integration was demon-
strated, and various configuration scenarios showed how this behavior can be altered through 
the use of install, TE shortcuts, and/or traffic-engineering bgp-igp.

The chapter went on to describe LSP protection options, and demonstrated the configuration 
and verification of standby paths, Fast Reroute, and link protection. The final configuration 
section provided examples of miscellaneous MPLS features, which included automatic band-
width adjustment, hiding an LSP’s topology through the use of no-decrement-ttl, and how 
to configure a router to support MPLS pings.

Case Study: MPLS and Traffic 
Engineering
This chapter case study is designed to simulate a typical JNCIE-level MPLS and traffic engi-
neering configuration scenario. In the interest of “keeping you on your toes,” you will be 
performing your MPLS and traffic engineering case study using the OSPF baseline configuration 



224 Chapter 2 � MPLS and Traffic Engineering

that was discovered and documented in the body of Chapter 1. The OSPF baseline topology is 
shown in Figure 2.7 so you can reacquaint yourself with it.

F I G U R E 2 . 7 OSPF discovery findings

Because you will now be using the OSPF baseline topology, you should load and commit the 
baseline OSPF configuration to ensure that your routers will look and behave like the examples 
shown here. Before starting the MPLS case study, you should quickly verify the correct 
operation of the baseline network’s OSPF IGP, IS-IS redistribution, and IBGP/EBGP peerings. 
Problems are not expected in the baseline network at this stage, but it never hurts to verify that 
you are, in fact, starting off with a functional network.

You will need to refer to the case study criteria listing and the case study topology, as shown 
in Figure 2.8, for the information needed to complete the MPLS/TE case study. It is expected 
that a JNCIE candidate will be able to complete this case study in approximately one hour, with 
the result being an MPLS network that exhibits no significant operational problems.

Area 1: Stub,
default route

Area 0

IS-IS Level 1
Area 0002

r2 r4

r7

r6

Data
Center

r5

r3
r1

Area 2:
NSSA, no

default route,
corrected

M5M5

M5M5

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

Loopback addresses have not been assigned to specific areas (lo0 address advertised in Router LSA in all areas).

Passive OSPF interfaces on P1 and data center segments.

No authentication or route summarization in effect; summaries (LSA type 3) allowed in all areas.

Data center router running IS-IS, Level 1. r6 and r7 compatibly configured and adjacent.

Redistribution of 192.168.0/24 through 192.168.3/24 into OSPF from IS-IS by both r6 and r7.

Adjustment to IS-IS level 1 external preference to ensure r6 and r7 always prefer IS-IS level 1 externals over
OSPF externals.

All adjacencies up and full reachability confirmed.

Sub-optimal routing detected at the data center router for some locations. This is the result of random nexthop
choice for its default route. Considered to be working as designed; no action taken.

Redistribution of OSPF default route to data center from both r6 and r7 was broken. Fixed with default-metric
command on r3, r4, and r5.

Notes:

M5M5

M5M5

OSPF
Passive

OSPF
Passive

OSPF
Passive

OSPF
Passive



Case Study: MPLS and Traffic Engineering 225

F I G U R E 2 . 8 MPLS case study topology

Da
ta

Ce
nt

er
(IS

-IS
)

AS
 6

52
22

13
0.

13
0/

16
T1

AS
 6

50
20

22
0.

22
0/

16
C2

AS
 6

50
10

20
0.

20
0/

16

C1

.2
54

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

fe
-0

/0
/1

fe
-0

/0
/0

r1 r2

Lo
op

ba
ck

s

r3

r5

fe-
0/0

/3

fe
-0

/0
/0

r1
 =

 1
0.

0.
6.

1
r2

 =
 1

0.
0.

6.
2

r3
 =

 1
0.

0.
3.

3
r4

 =
 1

0.
0.

3.
4

r5
 =

 1
0.

0.
3.

5
r6

 =
 1

0.
0.

9.
6

r7
 =

 1
0.

0.
9.

7

fe
-0

/0
/1

fe
-0

/0
/1

fe
-0

/0
/2

10.0.5/24

10.0.4.4/30

fe
-0

/0
/3

fe
-0

/0
/0

10
.0

.4
.1

2/
30

17
2.

16
.0

.1
2/

30

AS
 6

50
50

12
0.

12
0/

16
10

.0
.2

.4
/3

0

fe
-0

/0
/1

fe
-0

/3
/1

fe
-0

/0
/0

(192.168.0-3)

fe
-0

/0
/1

fe
-0

/3
/3

fe
-0

/0
/3

fe-
0/3

/2

10
.0

.2
.1

2/
30

10
.0

.2
.0

/3
0

10
.0

.8
.4

/3
0

10
.0.

8.0
/3

0

fe-
0/

1/
2

10
.0

.8
.8

/3
0

10
.0

.2
.8

/3
0

so
-0

/2
/0

so
-0/

1/1
so

-0
/1

/0

so
-0

/1
/0

at-
0/

1/
0

at-
0/

2/
1

.1
.1

4
.1

3.1
3

.1
4

.1
3

.9

.5

.6

.9

.1

.9

.1
0

10
.0.

8.1
2/3

0

fe-
0/3

/0

.1
4

.1
3.1

.2

.1
7 .1

fe
-0

/0
/3

fe
-0

/0
/2

fe-
0/0

/0
fe-

0/1
/0

fe
-0

/1
/1fe

-0
/1

/3

17
2.

16
.0

.8
/3

0

.1
.5

.1
8

.2
.1

0
.9

10
.0

.4
.8

/3
0

10
.0

.2
.1

6/
30

17
2.1

6.0
.0/

30
17

2.1
6.0

.4/
30

10
.0.

4.1
6/3

0fe-
0/0/1

fe-
0/0/2

10.0.4.0/30
fe-

0/0
/2

.2
.1

7

.1
8 fe-

0/0
/0

.5

.6
.1

0

.2
.5

r6

r4
r7

P1

.6



226 Chapter 2 � MPLS and Traffic Engineering

Sample configurations from all seven routers are provided at the end of the case study for 
comparison with your own configurations. Because multiple solutions may be possible for a 
given task, differences between the examples provided and your own configurations do not 
automatically indicate that you have made a mistake. Because you are graded on the overall 
functionality of your network, and its conformance to the specified criteria, various operational 
mode commands are included so that you can compare the behavior of your network to that of 
a known good example.

To complete this case study, your MPLS and traffic engineering configuration must meet the 
following criteria:
� Your MPLS-related configuration must be added to the OSPF baseline topology from the 

body of Chapter 1.
� Enable labeled packet support and RSVP signaling for all internal-facing transit interfaces.
� Establish an LDP session between r1 and r7 without enabling LDP on r3 and r4.
� Establish LSP r6–r1 and r7–r1. Ensure that traffic to 120.120/16 prefixes are forwarded 

over these LSPs from r6 and r7, respectively.
� Configure r3’s so-0/2/0.100 interface so that no more than 50Mbps of its bandwidth can 

be reserved by RSVP. Do not alter the default subscription percentage on this interface.
� Establish LSP r3–r7, and without using a secondary LSP, ensure that you provide protec-

tion for the entire LSP path.
� Establish LSP r4–r6 with a 2Mbps reservation. Ensure that a backup path is pre-established, 

that no transit elements are shared between the two paths, and that the LSP signals an 
SE style of reservation.

� Establish LSPs r4–r3 and r4–r3–prime. Ensure that prefixes with a length equal to or less 
than /20 are mapped to the r4–r3 LSP while all other prefixes are mapped to the r4–r3–prime 
LSP. You must not modify the policy stanza at r4 to achieve this goal.

� Configure r5 and r6 to authenticate RSVP signaling with the key jni.
� Configure r5 and r6 so that RSVP state is preserved in the event of a routing restart at r5 

or r6.
� Configure RSVP so that the loss of nine consecutive hello messages is required to declare 

neighbor loss between r5 and r6.
� Configure r5 and r6 so that they bundle RSVP Path Tear and Error messages.

You can assume that the data center router has been reconfigured to advertise the 192.168.0-
3/24 routes to both r6 and r7 using the IS-IS protocol. Please refer back to Chapter 1, or to your 
IGP discovery notes, as needed, for specifics on the OSPF and IS-IS route redistribution in the 
OSPF baseline network.

MPLS Case Study Analysis

Each configuration requirement for the case study will now be matched to one or more valid 
router configurations and, where applicable, the commands that are used to confirm whether 
your network is operating within the specified case study guidelines. We begin with these 



Case Study: MPLS and Traffic Engineering 227

criteria, as they serve to establish your baseline network and core MPLS support:
� Your MPLS-related configuration must be added to the OSPF baseline topology from the 

body of Chapter 1.
� Enable labeled packet support and RSVP signaling for all internal-facing transit interfaces.

The case study analysis begins with a quick operational sanity check of the OSPF baseline 
network:

[edit]

lab@r3# run show ospf neighbor

  Address         Interface             State      ID              Pri  Dead

10.0.2.1         at-0/1/0.0             Full      10.0.3.5         128   37

10.0.2.6         so-0/2/0.100           Full      10.0.3.4         128   37

10.0.4.14        fe-0/0/0.0             Full      10.0.6.1         128   35

10.0.4.2         fe-0/0/1.0             Full      10.0.6.2         128   31

10.0.2.13        fe-0/0/3.0             Full      10.0.9.6         128   35

[edit]

lab@r3# run show route protocol ospf | match /32

10.0.3.4/32        *[OSPF/10] 00:01:34, metric 1

10.0.3.5/32        *[OSPF/10] 00:01:34, metric 1

10.0.6.1/32        *[OSPF/10] 00:01:34, metric 1

10.0.6.2/32        *[OSPF/10] 00:01:34, metric 1

10.0.9.6/32        *[OSPF/10] 00:01:34, metric 1

10.0.9.7/32        *[OSPF/10] 00:01:29, metric 3

192.168.0.1/32     *[OSPF/150] 00:00:35, metric 10, tag 0

224.0.0.5/32       *[OSPF/10] 00:03:53, metric 1

All of r3’s OSPF adjacencies have been fully established, and it has received an OSPF route for 
the loopback address of all other routers in the test bed. This output provides a strong indication 
that the baseline network’s OSPF IGP is operational. You now verify BGP session status at r3:

[edit]

lab@r3# run show bgp summary

Groups: 4 Peers: 7 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            125872     125860          0          0          0          0

Peer           AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
                                                           Received/Damped...

172.16.0.14 65222  29139   30023    0     0   3:42:37     125857/125857/0  0/0/0

10.0.3.4    65412    454   30297    0     0   3:44:46     1/1/0            0/0/0

10.0.3.5    65412     13   21965    0     1      5:37     0/0/0            0/0/0

10.0.6.1    65412    446   84470    0     1      5:02     1/1/0            0/0/0

10.0.6.2    65412    449   30012    0     0   3:43:16     0/1/0            0/0/0

10.0.9.6    65412     10   21875    0     1      3:12     1/6/0            0/0/0

10.0.9.7    65412     11   21878    0     1      3:55     0/6/0            0/



228 Chapter 2 � MPLS and Traffic Engineering

All of r3’s IBGP and EBGP sessions are established, providing another good sign that the 
OSPF baseline network is operating normally. You next quickly confirm the presence of 
the expected IS-IS and BGP routes:

[edit]

lab@r3# run show route 120.120/16

inet.0: 125915 destinations, 125929 routes (125915 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

120.120.0.0/16     *[BGP/170] 00:06:35, MED 0, localpref 100, from 10.0.6.1

                      AS path: 65050 I

                    > to 10.0.4.14 via fe-0/0/0.0

                      to 10.0.4.2 via fe-0/0/1.0

                    [BGP/170] 03:44:49, MED 0, localpref 100, from 10.0.6.2

                      AS path: 65050 I

                    > to 10.0.4.14 via fe-0/0/0.0

                      to 10.0.4.2 via fe-0/0/1.0

[edit]

lab@r3# run show route 200.200/16

inet.0: 125915 destinations, 125929 routes (125915 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.200.0.0/16     *[BGP/170] 02:22:05, MED 0, localpref 100, from 10.0.3.4

                      AS path: 65010 I

                    > via so-0/2/0.100

                    [BGP/170] 00:03:26, MED 0, localpref 100, from 10.0.9.7

                      AS path: 65010 I

                    > to 10.0.2.13 via fe-0/0/3.0

Though not shown here for brevity reasons, you can assume that the 192.168.0/21, 
130.130/16 and 220.220/16 routes are also present on r3. The output obtained from r3 indi-
cates that the OSPF baseline network is operational, so you move on to the requirement that 
all routers in the test bed support MPLS labeled packets and RSVP signaling on their internal-
facing transit interfaces. You will need to add the mpls family to the correct logical unit of 
all internal transit interfaces, and you must list these interfaces in both the protocols mpls 
and the protocols rsvp stanzas to meet the core MPLS functionality requirement. The 
following highlights call out the changes made to r5’s configuration to provide core MPLS 
functionality:

[edit]

lab@r5# show interfaces



Case Study: MPLS and Traffic Engineering 229

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.8.6/30;

        }

        family mpls;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.8.9/30;

        }

        family mpls;

    }

}

so-0/1/0 {

    encapsulation ppp;

    unit 0 {

        family inet {

            address 10.0.2.9/30;

        }

        family mpls;

    }

}

at-0/2/1 {

    atm-options {

        vpi 0 {

            maximum-vcs 64;

        }

    }

    unit 0 {

        point-to-point;

        vci 50;

        family inet {

            address 10.0.2.1/30;

        }

        family mpls;

    }

}

fxp0 {



230 Chapter 2 � MPLS and Traffic Engineering

    unit 0 {

        family inet {

            address 10.0.1.5/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.5/32;

        }

    }

}

These highlights confirm that the mpls family is correctly configured on r5’s internal-facing 
transit interfaces.

[edit]

lab@r5# show protocols

rsvp {

    interface all;

    interface fxp0.0 {

        disable;

    }

}

mpls {

    interface all;

}

bgp {

    group int {

        type internal;

        local-address 10.0.3.5;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

}

ospf {

    area 0.0.0.0 {



Case Study: MPLS and Traffic Engineering 231

        interface at-0/2/1.0;

        interface so-0/1/0.0;

    }

    area 0.0.0.2 {

        nssa {

            default-lsa default-metric 10;

        }

        interface fe-0/0/0.0;

        interface fe-0/0/1.0;

    }

}

The highlighted portion of r5’s protocols stanza shows that the all keyword has been used 
to associate r5’s interfaces with the router’s MPLS and RSVP processes. While you could have 
listed each of r5’s internal transit interfaces explicitly, the use of interface all should not 
produce problems, especially because RSVP support has been explicitly disabled on the router’s 
fxp0 interface. Core MPLS functionality is now confirmed on r5:

[edit]

lab@r5# run show mpls interface

Interface        State       Administrative groups

fe-0/0/0.0       Up         <none>

fe-0/0/1.0       Up         <none>

so-0/1/0.0       Up         <none>

at-0/2/1.0       Up         <none>

lab@r5# run show rsvp interface

RSVP interface: 4 active

                   Active                 Static      Available  Reserved  Highwater

Interface   State resv    Subscription  BW         BW         BW       mark

fe-0/0/0.0  Up         0          100%  100Mbps    100Mbps    0bps     0bps

fe-0/0/1.0  Up         1          100%  100Mbps    100Mbps    0Mbps    0Mbps

so-0/1/0.0  Up         0          100%  155.52Mbps 155.52Mbps 0bps     0bps

at-0/2/1.0  Up         0          100%  155.52Mbps 155.52Mbps 0bps     0bps

Before proceeding to the next case study configuration requirement, be sure that you add 
similar core MPLS functionality to the remaining routers in the test bed, and make sure that all 
routers display the correct interfaces as being MPLS and RSVP enabled. For those interfaces 
that are using a non-default logical unit number, in other words, r3’s so-0/2/0.100 interface, be 
careful that you add the mpls family to the correct logical unit, and that the correct logical unit 
is in turn specified under the mpls and rsvp stanzas when the all keyword is not used.

You now address this case study requirement:
� Establish an LDP session between r1 and r7 without enabling LDP on r3 and r4.



232 Chapter 2 � MPLS and Traffic Engineering

Because LDP sessions are normally established between neighboring routers, the require-
ment that you establish an LDP session between r1 and r7, without running LDP on intervening 
routers r3 and r4, poses somewhat of a dilemma. You will need to tunnel the LDP session 
between r1 and r7 through an RSVP signaled LSP to achieve this goal. There are several ways 
that you can decide to tunnel the LDP session between r1 and r7; for example, you could run 
LDP between r1 and r2, and between r5 and r7 with LDP tunneling occurring over an RSVP 
LSP that is established between r2 and r5. In this example, you decide to run LDP only on 
r1 and r7, with the LDP tunneling occurring over a RSVP signaled LSP between the same pair 
of routers.

These highlights call out the changes made to r1’s configuration to support LDP, and RSVP-
based LDP tunneling:

[edit]

lab@r1# show protocols mpls

label-switched-path r1-r7 {

    to 10.0.9.7;

    ldp-tunneling;

    no-cspf;

}

interface all;

[edit]

lab@r1# show protocols ldp

interface lo0.0;

You must enable LDP on the router’s lo0 interface for extended neighbor discovery to 
succeed. The RSVP-based LSP definition at r1 is pretty straightforward, except for the presence 
of the ldp-tunneling keyword. This aptly named option is needed to enable LDP session 
tunneling over a given RSVP signaled LSP. CSPF has been turned off on the LSP, in part because 
it is not needed, but also due to the lack of a domain-wide TED in the current test bed. Recall 
that, unlike IS-IS, OSPF does not automatically build a TED without explicit configuration.

Keep in mind that you must establish a similar RSVP tunnel in the r7-to-r1 direction so that 
bidirectional LDP communications, as needed for successful session establishment, is possible 
between the remote LDP neighbors. Though not shown, r7’s configuration has undergone 
similar modifications.

After committing the changes, you verify that the RSVP sessions are correctly established 
between r1 and r7:

[edit]

lab@r7# run show rsvp session

Ingress RSVP: 1 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.6.1        10.0.9.7        Up     0  1 FF       -   100022 r7-r1

Total 1 displayed, Up 1, Down 0



Case Study: MPLS and Traffic Engineering 233

Egress RSVP: 1 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.7        10.0.6.1        Up     0  1 FF       3        - r1-r7

Total 1 displayed, Up 1, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Note that the display confirms the presence of bidirectional LSPs between r1 and r7. With 
the RSVP sessions established, you now confirm that LDP tunneling is operational:

[edit]

lab@r7# run show ldp neighbor

Address            Interface          Label space ID         Hold time

10.0.6.1           lo0.0              10.0.6.1:0               10

[edit]

lab@r7# run show ldp session

  Address           State        Connection     Hold time

10.0.6.1            Operational  Open             24

[edit]

lab@r7# run show ldp database

Input label database, 10.0.9.7:0--10.0.6.1:0

  Label     Prefix

      3     10.0.6.1/32

Output label database, 10.0.9.7:0--10.0.6.1:0

  Label     Prefix

      3     10.0.9.7/32

The output confirms that r1 and r7 have successfully established an extended LDP session 
through the RSVP signaled LSP. Though not shown here, you can assume that r1 produces 
similar output, which confirms that you have met the requirements of this task. Note that a 
LDP LSP is not installed in the inet.3 routing table in this case. This is because LDP traffic 
will be forwarded over the RSVP LSP that terminates on the LDP-speaking routers:

[edit]

lab@r1# run show route table inet.3

inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.9.7/32        *[RSVP/7] 00:44:39, metric 2



234 Chapter 2 � MPLS and Traffic Engineering

Given this topology, the lack of LDP entries in the inet.3 table is expected, so you move 
on to the next case study requirement:
� Establish LSP r6–r1 and r7–r1. Ensure that traffic to 120.120/16 prefixes is forwarded 

over these LSPs from r6 and r7, respectively.

The only tricky aspect of this configuration task is your need to modify the default LSP routing 
table integration behavior at r6 and r7, due to r1 and r2 not overwriting the BGP next hop 
for the routes they receive from P1. The Multi-Area OSPF topology now in effect will cause 
problems for any approach that makes use of TE shortcuts. This is because TE shortcuts are 
computed based on matching an OSPF router ID (RID) with the egress address of an LSP. 
However, the fact that OSPF router IDs are known only within a given area means that r6 
and r7 will be unable to perform this LSP-Egress-to-OSPF-RID match, therefore making TE 
shortcuts ineffective in this particular scenario.

With TE shortcuts off the table, you will have to use install to place P1’s next hop into 
the inet.3 table on both r6 and r7. The active keyword is not needed, as LSP forwarding 
is only required to the external prefixes advertised by P1. The modifications made to the 
configuration of r6 in support of this task are shown next with highlights:

[edit]

lab@r6# show protocols mpls

label-switched-path r6-r1 {

    to 10.0.6.1;

    install 10.0.5.254/32;

    no-cspf;

}

interface all;

Note the use of install, and that CSPF has been disabled due to issues with missing or 
incomplete TEDs in the current test bed. The presence of P1’s BGP next hop is confirmed in 
r6’s inet.3 routing table:

[edit]

lab@r6# run show route table inet.3

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.254/32      *[RSVP/7] 00:02:05, metric 2

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r1

10.0.6.1/32        *[RSVP/7] 00:02:05, metric 2

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r1

Traceroute testing to P1 advertised prefixes from both r6 and r7 provides the final confir-
mation for this task:

[edit]

lab@r6# run traceroute 120.120.0.1

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets



Case Study: MPLS and Traffic Engineering 235

 1  10.0.2.14 (10.0.2.14)  0.607 ms  0.486 ms  0.434 ms

     MPLS Label=100004 CoS=0 TTL=1 S=1

 2  10.0.4.14 (10.0.4.14)  0.156 ms  0.150 ms  0.133 ms

 3  120.120.0.1 (120.120.0.1)  0.242 ms  0.228 ms  0.209 ms

The presence of LSP forwarding from r6 to the 120.120/16 route, as advertised by the P1 
router, confirms that you have met the requirements for this task. Though not shown, similar 
modifications are made at r7, and the same operational behavior is confirmed.

The next case study requirement to be addressed is as follows:
� Configure r3’s so-0/2/0.100 interface so that no more than 50Mbps of its bandwidth 

can be reserved by RSVP. Do not alter the default RSVP subscription percentage on this 
interface.

This task requires the modification of the bandwidth associated with the so-0/2/0.100 
interface so that, from the perspective of RSVP, the interface is seen as having only 50Mbps of 
bandwidth available. This setting will accommodate the requirement that you not modify the 
default RSVP behavior of allowing 100 percent of an interface’s bandwidth to be reserved, 
while still meeting the restriction on limiting the interface’s aggregate subscriptions to no more 
than 50Mbps. The configuration changes needed on r3 to meet this requirement are shown next 
with highlights:

[edit]

lab@r3# show protocols rsvp

interface all;

interface fxp0.0 {

    disable;

}

interface so-0/2/0.100 {

    bandwidth 50m;

}

The correct behavior is readily confirmed:

[edit]

lab@r3# run show rsvp interface

RSVP interface: 5 active

                    Active               Static      Available   Reserved  Highwater

Interface    State resv   Subscription  BW          BW          BW        mark

fe-0/0/0.0   Up    1             100%  100Mbps     100Mbps     0bps     0bps

fe-0/0/1.0   Up    0             100%  100Mbps     100Mbps     0bps     0bps

fe-0/0/3.0   Up    0             100%  100Mbps     100Mbps     0bps     0bps

at-0/1/0.0   Up    0             100%  155.52Mbps  155.52Mbps  0bps     0bps

so-0/2/0.100 Up    0             100%  50Mbps      50Mbps      0bps     0bps

The highlighted sections of the output indicate that you have successfully limited the 
so-0/2/0.100 interface to 50Mbps of aggregate RSVP bandwidth reservations, without altering 
RSVP’s belief that 100 percent of the interface’s bandwidth can be reserved.



236 Chapter 2 � MPLS and Traffic Engineering

The next case study configuration requirement to be tackled is this:
� Establish LSP r3–r7 and, without using a secondary LSP, ensure that you provide protec-

tion for the entire LSP path.

The requirement that you protect the entire path of the primary LSP without using a second-
ary LSP indicates that you need to use Fast Reroute (or link bypass). Because you must protect 
the entire LSP path, Fast Reroute makes a lot more sense than having to configure multiple 
bypass LSPs, but either approach is viable given the current restrictions. You will need to 
configure OSPF traffic engineering support for all routers attached to Area 2 to enable the 
CSPF-based Fast Reroute detour calculations. Enabling traffic engineering on r3, r4, r5, r6, 
and r7 will result in a complete TED for Area 2, which in turn allows the use of CSPF at the 
ingress node and Fast Reroute computations at transit LSRs, as long as the LSP does not touch 
any non–Area 2 attached routers.

The changes made to r3’s configuration to support this case study task are displayed with 
highlights:

[edit protocols mpls]

lab@r3# show

label-switched-path r3-r7 {

    to 10.0.9.7;

    fast-reroute;

    primary r3-r7;

}

path r3-r7 {

    10.0.3.4 loose;

}

interface all;

The modifications to r3’s mpls stanza define the new LSP, and indicate its desire for Fast 
Reroute protection. Note that CSPF is not disabled, and that an ERO is used to force the LSP’s 
routing through r4. The use of ERO is not strictly necessary, but knowing how the path will 
be routed makes confirmation of Fast Reroute detours a bit easier.

[edit]

lab@r3# show protocols ospf

traffic-engineering;

area 0.0.0.1 {

    stub default-metric 10;

    interface fe-0/0/0.0;

    interface fe-0/0/1.0;

}

area 0.0.0.0 {

    interface so-0/2/0.100;

    interface at-0/1/0.0;

}



Case Study: MPLS and Traffic Engineering 237

area 0.0.0.2 {

    nssa {

        default-lsa default-metric 10;

    }

    interface fe-0/0/3.0;

}

The addition of the traffic-engineering keyword in r3’s OSPF instance provides support 
for Type 10 opaque LSAs, which are used by OSPF to build the TED. Although not shown, 
OSPF traffic engineering support has also been configured on r4, r5, r6, and r7. After com-
mitting the changes on all routers, you verify proper LSP establishment at r3:

[edit]

lab@r3# run show rsvp session ingress detail

Ingress RSVP: 1 sessions

10.0.9.7

  From: 10.0.3.3, LSPstate: Up, ActiveRoute: 0

  LSPname: r3-r7, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100027

  Resv style: 1 FF, Label in: -, Label out: 100027

  Time left:    -,  Since: Fri Feb 21 00:20:12 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 58426 protocol 0

  FastReroute desired

  PATH rcvfrom: localclient

  PATH sentto: 10.0.2.6 (so-0/2/0.100) 11 pkts

  RESV rcvfrom: 10.0.2.6  (so-0/2/0.100) 13 pkts

  Explct route: 10.0.2.6 10.0.2.17

  Record route: <self>  10.0.2.6  10.0.2.17

    Detour is Up

    Detour PATH sentto: 10.0.2.1 (at-0/1/0.0) 10 pkts

    Detour RESV rcvfrom: 10.0.2.1  (at-0/1/0.0) 10 pkts

    Detour Explct route: 10.0.2.1 10.0.8.10

    Detour Record route: <self>  10.0.2.1  10.0.8.10

    Detour Label out: 100050

The display confirms that the r3–r7 LSP has been successfully established, and also indicates 
that r3 has signaled a Fast Reroute detour to r5 in an effort to bypass r4 and its so-0/2/0.100 
interface. Inspection of r5’s RSVP sessions confirms the presence of two Fast Reroute detours 
that provide complete path protection (excepting ingress and egress nodes failures, of course):

[edit]

lab@r5# run show rsvp session transit detail



238 Chapter 2 � MPLS and Traffic Engineering

Transit RSVP: 1 sessions, 1 detours

10.0.9.7

  From: 10.0.3.3, LSPstate: Up, ActiveRoute: 1

  LSPname: r3-r7, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 3

  Resv style: 1 FF, Label in: 100050, Label out: 3

  Time left:  134,  Since: Thu Feb 20 17:31:38 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 58426 protocol 0

  Detour branch from 10.0.2.2, to skip 10.0.3.4, Up

    PATH rcvfrom: 10.0.2.2  (at-0/2/1.0) 13 pkts

    PATH sentto: 10.0.8.10 (fe-0/0/1.0) 13 pkts

    RESV rcvfrom: 10.0.8.10  (fe-0/0/1.0) 14 pkts

    Explct route: 10.0.8.10

    Record route: 10.0.2.2  <self>  10.0.8.10

    Label in: 100050, Label out: 3

  Detour branch from 10.0.2.10, to skip 10.0.9.7, Up

    PATH rcvfrom: 10.0.2.10  (so-0/1/0.0) 14 pkts

    PATH sentto: 10.0.8.10 (fe-0/0/1.0) 0 pkts

    RESV rcvfrom: 10.0.8.10  (fe-0/0/1.0) 0 pkts

    Explct route: 10.0.8.10

    Record route: 10.0.2.5  10.0.2.10  <self>  10.0.8.10

    Label in: 100051, Label out: 3

Total 1 displayed, Up 1, Down 0

The results just shown indicate that all requirements for this aspect of the case study have 
now been met, and this brings the following case study requirement to the top of your heap:
� Establish LSP r4–r6 with a 2Mbps reservation. Ensure that a backup path is pre-established, 

that no transit elements are shared between the two paths, and that the LSP signals an 
SE style of reservation.

To achieve this goal, you must configure a secondary LSP path that is placed in the standby 
state. Your task is made complex by the specification that your LSP must use an SE style of RSVP 
reservation. The goal of this wording is to verify that the candidate understands RSVP, and the 
correlation between an SE style reservation and use of the JUNOS software adaptive keyword.

Although CSPF will, in theory, automatically compute a divergent secondary path, the use 
of EROs is highly recommended (whether CSPF is used or not) to guarantee that you meet the 
diverse routing requirements posed. The modifications made at r4 to support the required 
behavior are shown next with highlights:

[edit protocols mpls]

lab@r4# show



Case Study: MPLS and Traffic Engineering 239

label-switched-path r4-r6 {

    to 10.0.9.6;

    bandwidth 2m;

    adaptive;

    primary r4-r6;

    secondary r4-r6-prime {

        standby;

    }

}

path r4-r6 {

    10.0.3.5 loose;

}

path r4-r6-prime {

    10.0.3.3 loose;

}

interface all;

Note that the r4–r6 LSP definition makes use of the adaptive and standby keywords, and 
that CSPF has not been disabled for either LSP path. You can use CSPF for these paths because of 
previous case study configuration steps that have resulted in a complete TED for Area 2 routers. 
After the changes are committed, the correct establishment of both the primary and standby 
LSP paths is confirmed:

[edit protocols mpls]

lab@r4# run show mpls lsp ingress detail

Ingress LSP: 1 sessions

10.0.9.6

  From: 10.0.3.4, State: Up, ActiveRoute: 1, LSPname: r4-r6

  ActivePath: r4-r6 (primary)

  LoadBalance: Random

  Encoding type: Packet, Switching type: Packet, GPID: IPv4

 *Primary   r4-r6            State: Up

    Bandwidth: 2Mbps

    Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 2)

          10.0.2.9 S 10.0.8.5 S

    Received RRO:

          10.0.2.9 10.0.8.5

  Standby   r4-r6-prime      State: Up

    Bandwidth: 2Mbps

    Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 2)

          10.0.2.5 S 10.0.2.13 S



240 Chapter 2 � MPLS and Traffic Engineering

    Received RRO:

          10.0.2.5 10.0.2.13

Total 1 displayed, Up 1, Down 0

Good, both LSP paths are established, and the highlights just shown indicate that the required 
diverse routing and bandwidth reservations have been correctly configured. To confirm the 
use of an SE style reservation, a show rsvp session command is issued at r4:

[edit protocols mpls]

lab@r4# run show rsvp session detail ingress

Ingress RSVP: 2 sessions

10.0.9.6

  From: 10.0.3.4, LSPstate: Up, ActiveRoute: 1

  LSPname: r4-r6, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100052

  Resv style: 1 SE, Label in: -, Label out: 100052

  Time left:    -,  Since: Fri Feb 21 00:40:26 2003

  Tspec: rate 2Mbps size 2Mbps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 51984 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.2.9 (so-0/1/1.0) 15 pkts

  RESV rcvfrom: 10.0.2.9  (so-0/1/1.0) 12 pkts

  Explct route: 10.0.2.9 10.0.8.5

  Record route: <self>  10.0.2.9  10.0.8.5

10.0.9.6

  From: 10.0.3.4, LSPstate: Up, ActiveRoute: 0

  LSPname: r4-r6, LSPpath: Secondary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: 100005

  Resv style: 1 SE, Label in: -, Label out: 100005

  Time left:    -,  Since: Fri Feb 21 00:40:55 2003

  Tspec: rate 2Mbps size 2Mbps peak Infbps m 20 M 1500

  Port number: sender 2 receiver 51984 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: 10.0.2.5 (so-0/1/0.100) 12 pkts

  RESV rcvfrom: 10.0.2.5  (so-0/1/0.100) 13 pkts

  Explct route: 10.0.2.5 10.0.2.13

  Record route: <self>  10.0.2.5  10.0.2.13

Total 2 displayed, Up 2, Down 0

The presence of SE style reservations provides the final confirmation that you 
have met the requirements of this case study task. Your next configuration goal 



Case Study: MPLS and Traffic Engineering 241

addresses the following requirement:
� Establish LSPs r7–r3 and r7–r3–prime. Ensure that prefixes with a length equal to or less 

than /20 are mapped to the r7–r3 LSP, with all other prefixes mapped to the r7–r3–prime 
LSP. You must not modify the policy stanza at r7 to achieve this requirement, and the 
failure of a single interface cannot disrupt LSP forwarding.

The chapter body demonstrated a solution to this type of problem that made use of route 
filters and forwarding table export policy at the LSP ingress node. The restriction on policy 
usage at r7 means that you must find another way to achieve similar results. JNCIE candidates 
should be prepared to show that they are able to “shake the JUNOS software tree” in more than 
one way when the situation calls for it. The previous approach made use of “route receiver” 
policy to effect the desired ingress LSP mapping behavior; you must achieve similar results 
through the use of “route advertiser” policy.

The most common solution to this type of problem involves the use of two distinct addresses at 
the egress node, with each LSP being defined to terminate on one or the other of these addresses. 
Normally a secondary address is assigned to the router’s lo0 interface to provide the extra 
address, while still offering resiliency to interface failures. The use of a secondary lo0 address is 
mandated in this case, by virtue of the requirement that your network must have continued LSP 
forwarding in the face of an interface failure. Note that you will have to find a way to advertise 
the secondary lo0 address, as OSPF will not do so with the current configuration at r3.

There are numerous approaches that can be taken to get the secondary lo0 address advertised 
to the routers that need it. For example, you could advertise the direct 10.0.3.33 address that 
you add to the lo0 interface through IBGP to the set of routers that must handle the routing of 
the r7–r3–prime LSP, or you could redistribute the route into OSPF. Keep in mind that OSPF 
externals are not sent into the NSSA 2 and stub Area 1, so the latter approach is problematic for 
r7; given the lack of external route advertisement for the 10.0.3.3 route in Area 2, r7’s 10.0/16 
local aggregate definition becomes a black hole for all traffic to 10.0.3.33.

Another possible solution involves listing r3’s lo0 interface under its area 0 definition, which 
results in the advertisement of both the primary and secondary lo0 addresses. The potential 
downside to this method is that r3’s lo0 addresses will now be advertised into other areas in the 
form of summary LSAs. However, the presence of summary LSA filtering at ABRs will create 
an obvious problem for any lo0-based BGP peerings sessions that will be disrupted as a result 
of this particular approach.

Be aware that a secondary lo0 address will not be advertised into the TED with 
the JUNOS software version used in this test bed. This means that you will 
have to disable CSPF for LSPs that terminate on a secondary lo0 address.

Because the current test bed does not make use of summary LSA filtering, and because listing 
r3’s lo0 interface under the OSPF stanza requires minimum effort, you opt to go with the 
“lo0 as OSPF interface” approach to make sure that r7, and any intervening routers, have a 
viable route to r3’s secondary lo0 address.

IBGP export policy will be used at the LSP egress node to selectively set the BGP next hop to 
the desired LSP egress address, based on whatever match criteria are necessary and available.



242 Chapter 2 � MPLS and Traffic Engineering

The solution demonstrated here once again makes use of route filters for the mapping policy’s 
match criteria, due to the need to map based on prefix length. You can readily modify the policy 
demonstrated here when you must map on other criteria, such as the presence of a specific 
community. Table 2.2 shows the specifics of your LSP-to-address-to-prefix length plan:

You start by adding the new LSP definitions to r7. When done, the changes are displayed 
next with highlights added:

[edit protocols mpls]

lab@r7# show

label-switched-path r7-r1 {

    to 10.0.6.1;

    ldp-tunneling;

    install 10.0.5.254/32;

    no-cspf;

}

label-switched-path r7-r3 {

    to 10.0.3.3;

}

label-switched-path r7-r3-prime {

    to 10.0.3.33;

    no-cspf;

}

interface all;

Note that CSPF has been disabled on the r7–r3–prime LSP. This is critical because r3’s 
secondary lo0 address is not present in Area 2’s TED, as shown here:

[edit protocols mpls]

lab@r7# run show ted database extensive | match 10.0.3.3

NodeID: 10.0.3.3

    To: 10.0.3.3, Local: 0.0.0.0, Remote: 0.0.0.0

[edit protocols mpls]

lab@r7# run show ted database extensive | match 10.0.3.33

[edit protocols mpls]

T A B L E 2 . 2 LSP-to-Prefix Mapping Plan

lo0 Address LSP Name Prefix to be Mapped

10.0.3.3 r7-r3 Prefixes from /0 to /20, inclusive

10.0.3.33 r7-r3-prime All other prefixes



Case Study: MPLS and Traffic Engineering 243

The lack of secondary lo0 address advertisement will condemn CSPF to failure in this case, 
which makes turning CSPF off a very, very, good idea. After assigning the secondary lo0 address 
and an appropriate IBGP export policy, you display the changes made to r3:

[edit]

lab@r3# show policy-options policy-statement lsp-map

term 1 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

        route-filter 0.0.0.0/0 upto /20;

    }

    then {

        next-hop self;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

        route-filter 0.0.0.0/0 upto /32;

    }

    then {

        next-hop 10.0.3.33;

    }

}

[edit]

lab@r3# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.3/32 {

            primary;

        }

        address 10.0.3.33/32;

    }

}

The lsp-map policy functions to set the BGP next hop based on prefix length through the use 
of route filter–based matching criteria. The accept action in the first term is critical, because 
without it, all routes will fall through to term 2 where their next hops will all be set to 10.0.3.33. 
When adding the secondary address to r3’s lo0 interface, the primary keyword is appended to 



244 Chapter 2 � MPLS and Traffic Engineering

its “real” lo0 address to ensure that other routers will not detect a change in r3’s RID due 
to the addition of the secondary address. The primary keyword is not technically required in 
this example because the lowest IP address is considered the interface’s primary address by 
default. Still, it never hurts to play it safe in a lab environment!

In this example, you apply the lsp-map policy at the BGP neighbor level, because you have 
no good reason to mess around with the other IBGP peerings:

[edit]

lab@r3# show protocols bgp group int

type internal;

local-address 10.0.3.3;

export nhs;

neighbor 10.0.6.1;

neighbor 10.0.6.2;

neighbor 10.0.3.4;

neighbor 10.0.3.5;

neighbor 10.0.9.6;

neighbor 10.0.9.7 {

    export lsp-map;

}

After committing the changes, the results are verified at r7:

[edit protocols mpls]

lab@r7# run show rsvp session ingress

Ingress RSVP: 3 sessions

To              From         State Rt   Style  Labelin   Labelout  LSPname

10.0.3.3        10.0.9.7     Up 28520   1 FF         -   100058    r7-r3

10.0.3.33       10.0.9.7     Up 97406   1 FF         -   100030    r7-r3-prime

10.0.6.1        10.0.9.7     Up     1   1 FF         -   100023    r7-r1

Total 3 displayed, Up 3, Down 0

The output confirms that both LSPs have been successfully established, and the prefix 
distribution across these LSPs provides an indication that all is working according to plan. A 
few more spot checks provide final confirmation:

[edit protocols mpls]

lab@r7# run show route receive-protocol bgp 10.0.3.3 | match /16

* 6.1.0.0/16              10.0.3.3                     100        65222 10458 
14203 3561 701 668 7170 1455 I

* 6.4.0.0/16              10.0.3.3                     100        65222 10458 
14203 3561 701 668 7170 1455 I

. . .

[edit protocols mpls]

lab@r7# run show route receive-protocol bgp 10.0.3.3 | match /24



Case Study: MPLS and Traffic Engineering 245

* 12.1.83.0/24            10.0.3.33                    100        65222 10458 
14203 3561 7911 5696 14787 I

* 12.1.96.0/24            10.0.3.33                    100        65222 10458 
14203 3561 19024 14359 23306 I

The results of your prefix length–to–LSP mapping tests confirm that all requirements for this 
configuration scenario have been met. The last case study configuration task involves RSVP 
modification between r5 and r6, according to these criteria:
� Configure r5 and r6 to authenticate RSVP signaling with the key jni.
� Configure r5 and r6 so that RSVP state is preserved in the event of a routing restart at r5 

or r6.
� Configure RSVP so that the loss of nine consecutive Hello messages is required to declare 

neighbor loss between r5 and r6.
� Configure r5 and r6 so that they bundle RSVP Path Tear and Error messages.

This configuration task is pretty straightforward. The most complex aspect is the need to 
modify the keep-multiplier, which is used to determine how many consecutive Hellos can be 
lost before a neighbor is declared down. Using the formula 2 × keep-multiplier + 1, as found in 
the related JUNOS software documentation, the default keep-multiplier of 3 will result 
in neighbor loss after seven consecutive Hello messages are lost. To meet the stipulations for this 
task, you need to set the keep-multiplier to 4 on both r5 and r6. Note that modifying the 
keep-multiplier will affect all RSVP sessions on r5 and r6. Although the wording implies 
that your concern is strictly the behavior of r5 and r6, this global modification of their RSVP 
behavior is not precluded by the case study requirements.

The requirement that r5 and r6 must bundle Path Tear and error messages is an indication 
that you must enable the JUNOS software aggregate feature between r5 and r6. Using the 
term bundle, as used in the Internet Engineering Task Force (IETF) draft on RSVP Refresh 
Reduction, instead of the JUNOS software keyword aggregate, is designed to test the candi-
date’s understanding of generic RSVP operation and their familiarity with the specifics of the 
JUNOS software.

You display the changes made at r5 to evoke the desired behavior:

[edit]

lab@r5# show routing-options

graceful-restart;

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

autonomous-system 65412;

[edit]

lab@r5# show protocols rsvp



246 Chapter 2 � MPLS and Traffic Engineering

keep-multiplier 4;

interface all;

interface fxp0.0 {

    disable;

}

interface fe-0/0/0.0 {

    authentication-key "$9$yZJeMXaJDikP"; # SECRET-DATA

    aggregate;

}

To enable RSVP graceful restart, you must configure graceful-restart under the main 
routing instance’s routing-options stanza as shown. r5’s rsvp stanza correctly shows the 
modified keep-multiplier setting, and the use of authentication on its fe-0/0/0 interface. 
The support of refresh reduction is also indicated on this interface by virtue of the aggregate 
keyword. Though not shown, similar changes are made and committed on r6.

Various show commands are now issued to confirm proper operation of your RSVP 
modifications:

lab@r5# run show rsvp neighbor detail

RSVP neighbor: 4 learned

Address: 10.0.2.2   via: at-0/2/1.0    status: Up

  Last changed time: 37:33, Idle: 0 sec, Up cnt: 1, Down cnt: 0

  Message received: 185

  Hello: sent 251, received: 251, interval: 9 sec

  Remote instance: 0x2ae31daf, Local instance: 0x194112e8

  Refresh reduction:  not operational

  Link protection:  disabled

    Bypass LSP: does not exist,  Backup routes: 0,  Backup LSPs: 0

Address: 10.0.8.5   via: fe-0/0/0.0    status: Up

  Last changed time: 12:32, Idle: 5 sec, Up cnt: 2, Down cnt: 1

  Message received: 156

  Hello: sent 213, received: 195, interval: 9 sec

  Remote instance: 0x74b389ff, Local instance: 0x2ae99f9d

  Refresh reduction:  operational

    Remote end: enabled,  Ack-extension: enabled

  Link protection:  disabled

    Bypass LSP: does not exist,  Backup routes: 0,  Backup LSPs: 0

  Restart time: 60000 msec, Recovery time: 0 msec

. . .

The highlights call out the differences in RSVP behavior between r5’s 10.0.2.2 and 10.0.8.5 
neighbors. Note that the neighbor information for r6 (10.0.8.5) indicates that both refresh 
reduction and graceful restart are in effect.



Case Study: MPLS and Traffic Engineering 247

[edit]

lab@r5# run show rsvp interface detail

RSVP interface: 4 active

fxp0.0  Index 1, State Dis/Up

  NoAuthentication, NoAggregate, NoReliable, NoLinkProtection

  HelloInterval 9(second)

  Address 10.0.1.5

  . . .

fe-0/0/0.0  Index 5, State Ena/Up

  Authentication, Aggregate, NoReliable, NoLinkProtection

  HelloInterval 9(second)

  Address 10.0.8.6

  ActiveResv 1, PreemptionCnt 0, Update threshold 10%

  Subscription 100%, StaticBW 100Mbps, AvailableBW 100Mbps

                          Total                          Last 5   seconds

  PacketType    Sent             Received             Sent          Received

  Path            94                   10                0                 0

  PathErr          2                    0                0                 0

. . .

The RSVP interface–related output highlights that RSVP authentication (and aggregation) 
are in effect on r5’s fe-0/0/0 interface. These results confirm that you have met the requirements 
for modifying the RSVP behavior between r5 and r6 and in so doing you have completed 
all aspects of the MPLS and traffic engineering case study!

MPLS and Traffic Engineering Case Study Configurations

All changes made to the OSPF baseline network topology, as needed to complete the MPLS and 
traffic engineering case study, are listed below in Listings 2.1 to 2.7 for all routers in the test 
bed with highlights added.

Listing 2.1: MPLS Case Study Changes for r1

[edit]

lab@r1# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.5.1/24;

        }

        family mpls;

    }



248 Chapter 2 � MPLS and Traffic Engineering

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.14/30;

        }

        family mpls;

    }

}

fe-0/0/2 {

    unit 0 {

        family inet {

            address 10.0.4.5/30;

        }

        family mpls;

    }

}

fe-0/0/3 {

    unit 0 {

        family inet {

            address 10.0.4.18/30;

        }

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.1/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.6.1/32;

        }

    }

}

[edit]

lab@r1# show protocols



Case Study: MPLS and Traffic Engineering 249

rsvp {

    interface all;

    interface fep0.0 {

        disable;

    }

}

mpls {

    label-switched-path r1-r7 {

        to 10.0.9.7;

        ldp-tunneling;

        no-cspf;

    }

    interface all;

}

bgp {

    group int {

        type internal;

        local-address 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

    group p1 {

        type external;

        export ebgp-out;

        neighbor 10.0.5.254 {

            peer-as 65050;

        }

    }

}

ospf {

    area 0.0.0.1 {

        stub;

        interface fe-0/0/0.0 {

            passive;

        }

        interface fe-0/0/1.0;

        interface fe-0/0/2.0;



250 Chapter 2 � MPLS and Traffic Engineering

        interface fe-0/0/3.0;

    }

}

ldp {

    interface lo0.0;

}

Listing 2.2: MPLS Case Study Changes for r2

[edit]

lab@r2# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.5.2/24;

        }

        family mpls;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.10/30;

        }

        family mpls;

    }

}

fe-0/0/2 {

    speed 100m;

    unit 0 {

        family inet {

            address 10.0.4.2/30;

        }

        family mpls;

    }

}

fe-0/0/3 {

    unit 0 {

        family inet {

            address 10.0.4.6/30;

        }

        family mpls;

    }



Case Study: MPLS and Traffic Engineering 251

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.2/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.6.2/32;

        }

    }

}

[edit]

lab@r2# show protocols

rsvp {

    interface all;

    interface fxp0.0 {

        disable;

    }

}

mpls {

    interface all;

}

bgp {

    group int {

        type internal;

        local-address 10.0.6.2;

        neighbor 10.0.6.1;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

    group p1 {

        type external;

        export ebgp-out;



252 Chapter 2 � MPLS and Traffic Engineering

        neighbor 10.0.5.254 {

            peer-as 65050;

        }

    }

}

ospf {

    area 0.0.0.1 {

        stub;

        interface fe-0/0/0.0 {

            passive;

        }

        interface fe-0/0/1.0;

        interface fe-0/0/2.0;

        interface fe-0/0/3.0;

    }

}

Listing 2.3: MPLS Case Study Changes for r3

[edit]

lab@r3# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.4.13/30;

        }

        family mpls;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.1/30;

        }

        family mpls;

    }

}

fe-0/0/2 {

    unit 0 {

        family inet {

            address 172.16.0.13/30;

        }



Case Study: MPLS and Traffic Engineering 253

    }

}

fe-0/0/3 {

    unit 0 {

        family inet {

            address 10.0.2.14/30;

        }

        family mpls;

    }

}

at-0/1/0 {

    atm-options {

        vpi 0 {

            maximum-vcs 64;

        }

    }

    unit 0 {

        point-to-point;

        vci 50;

        family inet {

            address 10.0.2.2/30;

        }

        family mpls;

    }

}

so-0/2/0 {

    dce;

    encapsulation frame-relay;

    unit 100 {

        dlci 100;

        family inet {

            address 10.0.2.5/30;

        }

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.3/24;

        }



254 Chapter 2 � MPLS and Traffic Engineering

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.3/32 {

                primary;

            }

            address 10.0.3.33/32;

        }

    }

}

[edit]

lab@r3# show protocols

rsvp {

    interface all;

    interface fxp0.0 {

        disable;

    }

    interface so-0/2/0.100 {

        bandwidth 50m;

    }

}

mpls {

    label-switched-path r3-r7 {

        to 10.0.9.7;

        fast-reroute;

        primary r3-r7;

    }

    path r3-r7 {

        10.0.3.4 loose;

    }

    interface all;

}

bgp {

    advertise-inactive;

    group int {

        type internal;

        local-address 10.0.3.3;



Case Study: MPLS and Traffic Engineering 255

        export nhs;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7 {

            export lsp-map;

        }

    }

    group ext {

        import ebgp-in;

        export ebgp-out;

        neighbor 172.16.0.14 {

            peer-as 65222;

        }

    }

}

ospf {

    traffic-engineering;

    area 0.0.0.1 {

        stub default-metric 10;

        interface fe-0/0/0.0;

        interface fe-0/0/1.0;

    }

    area 0.0.0.0 {

        interface so-0/2/0.100;

        interface at-0/1/0.0;

        interface lo0.0;

    }

    area 0.0.0.2 {

        nssa {

            default-lsa default-metric 10;

        }

        interface fe-0/0/3.0;

    }

}

[edit]

lab@r3# show policy-options

policy-statement nhs {



256 Chapter 2 � MPLS and Traffic Engineering

    term 1 {

        from {

            protocol bgp;

            neighbor 172.16.0.14;

        }

        then {

            next-hop self;

        }

    }

}

policy-statement ebgp-out {

    term 1 {

        from {

            protocol aggregate;

            route-filter 10.0.0.0/16 exact;

        }

        then accept;

    }

}

policy-statement ebgp-in {

    term 1 {

        from {

            protocol bgp;

            neighbor 172.16.0.14;

        }

        then {

            community add transit;

        }

    }

}

policy-statement lsp-map {

    term 1 {

        from {

            protocol bgp;

            neighbor 172.16.0.14;

            route-filter 0.0.0.0/0 upto /20;

        }

        then {

            next-hop self;

            accept;



Case Study: MPLS and Traffic Engineering 257

        }

    }

    term 2 {

        from {

            protocol bgp;

            neighbor 172.16.0.14;

            route-filter 0.0.0.0/0 upto /32;

        }

        then {

            next-hop 10.0.3.33;

        }

    }

}

community transit members 65412:420;

Listing 2.4: MPLS Case Study Changes for r4

[edit]

lab@r4# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 172.16.0.5/30;

        }

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.9/30;

        }

        family mpls;

    }

}

fe-0/0/2 {

    unit 0 {

        family inet {

            address 10.0.4.17/30;

        }

        family mpls;

    }

}



258 Chapter 2 � MPLS and Traffic Engineering

fe-0/0/3 {

    unit 0 {

        family inet {

            address 10.0.2.18/30;

        }

        family mpls;

    }

}

so-0/1/0 {

    encapsulation frame-relay;

    unit 100 {

        dlci 100;

        family inet {

            address 10.0.2.6/30;

        }

        family mpls;

    }

}

so-0/1/1 {

    encapsulation ppp;

    unit 0 {

        family inet {

            address 10.0.2.10/30;

        }

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.4/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.4/32;

        }

    }

}



Case Study: MPLS and Traffic Engineering 259

[edit]

lab@r4# show protocols

rsvp {

    interface all;

    interface fxp0.0 {

        disable;

    }

}

mpls {

    label-switched-path r4-r6 {

        to 10.0.9.6;

        bandwidth 2m;

        adaptive;

        primary r4-r6;

        secondary r4-r6-prime {

            standby;

        }

    }

    path r4-r6 {

        10.0.3.5 loose;

    }

    path r4-r6-prime {

        10.0.3.3 loose;

    }

    interface all;

}

bgp {

    advertise-inactive;

    group int {

        type internal;

        local-address 10.0.3.4;

        export nhs;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

    group c1 {

        type external;



260 Chapter 2 � MPLS and Traffic Engineering

        export ebgp-out;

        neighbor 172.16.0.6 {

            peer-as 65010;

        }

    }

}

ospf {

    traffic-engineering;

    area 0.0.0.1 {

        stub default-metric 10;

        interface fe-0/0/1.0;

        interface fe-0/0/2.0;

    }

    area 0.0.0.0 {

        interface so-0/1/0.100;

        interface so-0/1/1.0;

    }

    area 0.0.0.2 {

        nssa {

            default-lsa default-metric 10;

        }

        interface fe-0/0/3.0;

    }

}

Listing 2.5: MPLS Case Study Changes for r5

[edit]

lab@r5# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.8.6/30;

        }

        family mpls;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.8.9/30;

        }

        family mpls;

    }



Case Study: MPLS and Traffic Engineering 261

}

so-0/1/0 {

    encapsulation ppp;

    unit 0 {

        family inet {

            address 10.0.2.9/30;

        }

        family mpls;

    }

}

at-0/2/1 {

    atm-options {

        vpi 0 {

            maximum-vcs 64;

        }

    }

    unit 0 {

        point-to-point;

        vci 50;

        family inet {

            address 10.0.2.1/30;

        }

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.5/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.5/32;

        }

    }

}

[edit]

lab@r5# show protocols



262 Chapter 2 � MPLS and Traffic Engineering

rsvp {

    keep-multiplier 4;

    interface all;

    interface fxp0.0 {

        disable;

    }

    interface fe-0/0/0.0 {

        authentication-key "$9$yZJeMXaJDikP"; # SECRET-DATA

        aggregate;

    }

}

mpls {

    interface all;

}

bgp {

    group int {

        type internal;

        local-address 10.0.3.5;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

}

ospf {

    traffic-engineering;

    area 0.0.0.0 {

        interface at-0/2/1.0;

        interface so-0/1/0.0;

    }

    area 0.0.0.2 {

        nssa {

            default-lsa default-metric 10;

        }

        interface fe-0/0/0.0;

        interface fe-0/0/1.0;

    }

}

[edit]

lab@r5# show routing-options



Case Study: MPLS and Traffic Engineering 263

graceful-restart;

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

autonomous-system 65412;

Listing 2.6: MPLS Case Study Changes for r6

[edit]

lab@r6# show interfaces

fe-0/1/0 {

    unit 0 {

        family inet {

            address 10.0.8.5/30;

        }

        family mpls;

    }

}

fe-0/1/1 {

    unit 0 {

        family inet {

            address 10.0.2.13/30;

        }

        family mpls;

    }

}

fe-0/1/2 {

    unit 0 {

        family inet {

            address 10.0.8.2/30;

        }

        family iso;

    }

}

fe-0/1/3 {

    unit 0 {

        family inet {

            address 172.16.0.9/30;

        }

    }

}



264 Chapter 2 � MPLS and Traffic Engineering

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.6/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.9.6/32;

        }

        family iso {

            address 49.0002.6666.6666.6666.00;

        }

    }

}

[edit]

lab@r6# show protocols

rsvp {

    keep-multiplier 4;

    interface all;

    interface fxp0.0 {

        disable;

    }

    interface fe-0/1/0.0 {

        authentication-key "$9$dHw2a5T369p"; # SECRET-DATA

        aggregate;

    }

}

mpls {

    label-switched-path r6-r1 {

        to 10.0.6.1;

        install 10.0.5.254/32;

        no-cspf;

    }

    interface all;

}

bgp {

    group int {

        type internal;



Case Study: MPLS and Traffic Engineering 265

        local-address 10.0.9.6;

        export ibgp;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.7;

    }

    group c2 {

        type external;

        export ebgp-out;

        neighbor 172.16.0.10 {

            peer-as 65020;

        }

    }

}

isis {

    export ospf-isis;

    level 2 disable;

    level 1 external-preference 149;

    interface fe-0/1/2.0;

    interface lo0.0;

}

ospf {

    traffic-engineering;

    export isis-ospf;

    area 0.0.0.2 {

        nssa;

        interface fe-0/1/0.0;

        interface fe-0/1/2.0 {

            passive;

        }

        interface fe-0/1/1.0;

    }

}

[edit]

lab@r6# show routing-options

graceful-restart;

static {

    route 10.0.200.0/24 {



266 Chapter 2 � MPLS and Traffic Engineering

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

Listing 2.7: MPLS Case Study Changes for r7

[edit]

lab@r7# show interfaces

fe-0/3/0 {

    unit 0 {

        family inet {

            address 10.0.8.14/30;

        }

        family iso;

    }

}

fe-0/3/1 {

    unit 0 {

        family inet {

            address 10.0.8.10/30;

        }

        family mpls;

    }

}

fe-0/3/2 {

    unit 0 {

        family inet {

            address 172.16.0.1/30;

        }

    }

}

fe-0/3/3 {

    unit 0 {

        family inet {

            address 10.0.2.17/30;

        }

        family mpls;

    }

}



Case Study: MPLS and Traffic Engineering 267

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.7/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.9.7/32;

        }

        family iso {

            address 49.0002.7777.7777.7777.00;

        }

    }

}

[edit]

lab@r7# show protocols

rsvp {

    interface all;

    interface fxp0.0 {

        disable;

    }

}

mpls {

    label-switched-path r7-r1 {

        to 10.0.6.1;

        ldp-tunneling;

        install 10.0.5.254/32;

        no-cspf;

    }

    label-switched-path r7-r3 {

        to 10.0.3.3;

    }

    label-switched-path r7-r3-prime {

        to 10.0.3.33;

        no-cspf;

    }

    interface all;

}



268 Chapter 2 � MPLS and Traffic Engineering

bgp {

    group int {

        type internal;

        local-address 10.0.9.7;

        export nhs;

        neighbor 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3;

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

    }

    group c1 {

        type external;

        export ebgp-out;

        neighbor 172.16.0.2 {

            peer-as 65010;

        }

    }

}

isis {

    export ospf-isis;

    level 2 disable;

    level 1 external-preference 149;

    interface fe-0/3/0.0;

    interface lo0.0;

}

ospf {

    traffic-engineering;

    export isis-ospf;

    area 0.0.0.2 {

        nssa;

        interface fe-0/3/1.0;

        interface fe-0/3/0.0 {

            passive;

        }

        interface fe-0/3/3.0;

    }

}

ldp {

    interface lo0.0;

}



Spot the Issues: Review Questions 269

Spot the Issues: Review Questions
1. You are having problems establishing the r1–r6 LSP in the IS-IS topology shown earlier in 

Figure 2.1. Can you spot the problem in r1’s configuration?

[edit protocols mpls]

lab@r1# show label-switched-path r1-r6

to 10.0.9.6;

bandwidth 1m;

priority 4 4;

primary r1-r6;

[edit protocols mpls]

lab@r1# show path r1-r6

10.0.3.4 loose;

2. Is any special configuration required to support MPLS pings?

3. You notice that r5 and r7 do not display each other as RSVP neighbors. Based on the show RSVP 
session command’s output, does this indicate a problem?

[edit]

lab@r7# run show rsvp neighbor

RSVP neighbor: 0 learned

[edit]

lab@r7# run show rsvp session

Ingress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Egress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0



270 Chapter 2 � MPLS and Traffic Engineering

4. Your goal is to establish a primary and secondary LSP path that will not have their bandwidth 
reservations double-counted. Will this configuration meet your needs?

[edit protocols mpls]

lab@r4# show label-switched-path r4-r6

to 10.0.9.6;

bandwidth 2m;

primary r4-r6 {

    adaptive;

}

secondary r4-r6-prime {

    standby;

}

[edit protocols mpls]

lab@r4# show path r4-r6

10.0.3.5 loose;

[edit protocols mpls]

lab@r4# show path r4-r6-prime

10.0.3.3 loose;

5. Is the use of TE shortcuts possible between r1 and r5 in the topology shown earlier in Figure 2.6?

6. Can you spot the problem with this configuration snippet taken from r3, based on the topology 
shown earlier in Figure 2.7?

lab@r3# show

label-switched-path no-good {

    to 10.0.9.7;

    no-cspf;

    primary no-good;

}

path no-good {

    10.0.3.5;

    10.0.8.10;

}

interface all;



Spot the Issues: Review Questions 271

7. Will the configuration shown here support authentication between r5 and r7 in the topology 
shown earlier in Figure 2.2?

[edit protocols ldp]

lab@r5# show

traffic-statistics {

    file ldp-stats;

    interval 90;

}

keepalive-interval 5;

interface fe-0/0/0.0;

interface fe-0/0/1.0;

session 10.0.8.10 {

    authentication-key "$9$0RnI1EydVYgoG"; # SECRET-DATA

}

[edit protocols ldp]

lab@r7# show

traffic-statistics {

    file ldp-stats;

    interval 90;

}

keepalive-interval 5;

interface fe-0/3/2.0;

interface fe-0/3/3.0;

session 10.0.8.9 {



272 Chapter 2 � MPLS and Traffic Engineering

Spot the Issues: Answers to Review 
Questions
1. The r1–r6 LSP cannot be established because CSPF has not been turned off, and the Multi-Level 

IS-IS topology has resulted in r1’s TED not containing the information it needs to locate a route 
to r6. You need to disable CSPF by adding the no-cspf keyword to the LSP’s definition to allow 
IGP-based routing for the RSVP session (according to the ERO restrictions, of course). 

2. Yes. You must ensure that the egress node has a 127.0.0.1 address assigned to its loopback interface, 
because this is the target address of an MPLS ping and you cannot override the default choice 
of destination address. 

3. Not necessarily. Unlike link state routing protocols, RSVP does not perform automatic neighbor 
discovery. Because RSVP Hellos are unicast, a neighbor can only be discovered, and then main-
tained, after an RSVP signaling exchange has occurred. The lack of RSVP sessions on r7 
indicates that no RSVP LSPs have been signaled, so the lack of neighbor display may well indi-
cate normal operation in the absence of RSVP signaling between r5 and r7. 

4. No. The problem in this case is that the adaptive keyword has been specified for the primary 
LSP path, but not for the secondary. This will result in a SE style reservation for the primary LSP 
path and a FF style reservation for the secondary. To correct the problem, you must add the 
adaptive keyword at the label-switched-path path-name hierarchy, as shown here: 

[edit]

lab@r4# show protocols mpls label-switched-path r4-r6

to 10.0.9.6;

bandwidth 2m;

adaptive;

primary r4-r6;

secondary r4-r6-prime {

    standby;

Note that adding the adaptive keyword under both the primary and secondary portions of the 
LSP, as shown next, will not work in accordance with your goals: 

[edit protocols mpls]

lab@r4# show label-switched-path r4-r6

to 10.0.9.6;

bandwidth 2m;

primary r4-r6 {

    adaptive;

}

secondary r4-r6-prime {

    adaptive;

    standby;

}



Spot the Issues: Answers to Review Questions 273

The results of this configuration will be two independent SE style sessions that will have their 
bandwidth requests summed on shared links because the primary and secondary sessions will 
have unique session IDs. 

5. No. When computing TE shortcuts, the ingress node attempts to match the LSP’s egress address 
to an OSPF RID, with the result being the installation of prefixes that are reachable through that 
RID into the inet.3 routing table. Because the OSPF RID is contained in router LSAs, and 
router LSAs are not flooded across area boundaries, r1 and r5 will not be able to locate each 
other’s OSPF RID in the link state databases, and therefore no shortcuts will be installed. 

6. The problem lies in the no-good path definition, in that r5’s loopback address has been specified 
without the loose argument. The default behavior results in such an ERO being considered a strict 
hop, and this means that r3 cannot honor the first ERO, as shown in the following output:

lab@r3# run show rsvp session detail

Ingress RSVP: 1 sessions

10.0.9.7

  From: 10.0.3.3, LSPstate: Dn, ActiveRoute: 0

  LSPname: no-good, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: -, Recovery label sent: -

  Resv style: 0 -, Label in: -, Label out: -

  Time left:    -,  Since: Fri Feb 21 21:55:58 2003

  Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500

  Port number: sender 1 receiver 12029 protocol 0

  PATH rcvfrom: localclient

  PATH sentto: [bad strict route]

  Record route: <self>  ...incomplete

Total 1 displayed, Up 0, Down 1

7. No. Although the LDP session will be established, authentication will not be in effect. This is 
because LDP sessions are established between loopback addresses by default. The omission 
of the transport-address interface statement results in an LDP session between the lo0 
addresses of r5 and r7, and this session does not match the session that has been configured 
to use authentication. Another solution is to redefine the session parameters to use lo0 addresses, 
assuming that this is permitted by your scenario. 





 

Chapter

 

3

 

Firewall Filter and 
Traffic Sampling

 

JNCIE LAB SKILLS COVERED IN THIS 
CHAPTER:

�

 

Firewall filters

�

 

RE protection
�

 

Transit filtering
�

 

Policing

�

 

Filter-based forwarding

�

 

Traffic sampling

�

 

Cflowd export
�

 

Port mirroring



 

This chapter exposes the reader to a variety of JNCIE-level firewall 
filtering and traffic sampling configuration scenarios. It is assumed 
that the reader already has a working knowledge of TCP/IP 

protocol exchanges, port usage, and general firewall concepts to the extent covered in the 

 

JNCIS Study Guide

 

 (Sybex, 2003).
Juniper Networks routing platforms equipped with an Internet Process II ASIC (IP II) are 

capable of performing a variety of packet filtering, traffic sampling, and accounting functions. 
These capabilities can be used to secure the local routing engine (RE) and attached devices, and 
to perform statistical analysis of traffic patterns through a service provider’s network. Analyzing 
traffic patterns can assist in capacity planning and in the detection and tracking of Distributed 
Denial of Service (DDoS) attacks. Use the 

 

show

 

 

 

chassis

 

 

 

hardware

 

 command to determine if your 
router is IP II equipped, as shown next:

 

lab@router> 

 

show chassis hardware

 

Hardware inventory:

Item             Version  Part number  Serial number     Description

Chassis                                20207             M20

Backplane        REV 07   710-001517   AB5912

Power Supply B   Rev 02   740-001465   000255            AC

Display          REV 04   710-001519   AD1899

Routing Engine 0                       9e00000749ab1601  RE-2.0

SSB slot 0       REV 01   710-001951   AP8612            Internet Processor II

SSB slot 1       N/A      N/A          N/A               backup

FPC 0            REV 01   710-001292   AC7598

  PIC 0          REV 04   750-002992   HD7819            4x F/E, 100 BASE-TX

  PIC 2          REV 03   750-000612   AD1438            2x OC-3 ATM, MM

FPC 2            REV 01   710-001292   AD4111

  PIC 0          REV 03   750-000611   AC1506            4x OC-3 SONET, MM

  PIC 2          REV 08   750-001072   AB2552            1x G/E, 1000 BASE-SX

 

Note that as of this writing, Juniper Networks routing platforms do not provide stateful 
packet inspection or Network Address/Port Address Translation (NAT/PAT) services. However, 
the hardware-based implementation of firewall filtering in M-series and T-series routing 
platforms means that service providers can deploy the functionality described in this chapter 
with little chance of impacting the operation of a production network. This chapter demonstrates 
firewall filtering, policing, and sampling options that are supported in the 5.6 release of JUNOS 
software. As this chapter progresses, the reader will be exposed to a variety of operational mode 



 

Firewall Filters

 

277

 

commands and techniques that will prove useful when you must verify or troubleshoot the 
operation of JUNOS software firewall filters.

Readers that are familiar with JUNOS software routing policy will immediately find comfort 
in the syntax used for firewall filters. A key difference between routing policies and firewall 
filters lies in the fact that only one filter can be applied to a particular logical interface, in a 
particular direction, at any given time. When this behavior is contrasted to routing policy appli-
cation, which permits the chaining of multiple policies, one can readily see why multiterm filters 
are the norm.

The chapter’s case study is designed to closely approximate a typical JNCIE firewall and traffic 
analysis configuration scenario. The results of key operational mode commands are provided in 
the case study analysis section so you can compare the behavior of your network to a known 
good example. Example router configurations that meet all case study requirements are provided 
at the end of the case study for comparison with your own configurations.

The examples demonstrated in the chapter body are based on the MPLS topology left in place 
at the end of the Chapter 2 case study. If you are unsure as to the state of your test bed, you 
should take a few moments to load up and confirm the OSPF-based, MPLS chapter case study 
configuration before proceeding. Figure 3.1 depicts your test bed at the end of the Chapter 2 
MPLS case study.

 

Firewall Filters

 

The basic function of a JUNOS software firewall filter is to enhance security by filtering packets 
matching one or more operator-specified criteria. A JUNOS software firewall requires two distinct 
configuration steps: namely, the definition of the firewall filter itself followed by the application 
of the firewall to one or more router interfaces. Note that a given firewall filter can be applied to 
one or more interfaces, and that a particular filter can be applied as an 

 

input

 

 filter, 

 

output

 

 filter, or 
both simultaneously. Input filters take action on packets being received on the given interface, 
while output filters act on packets that are transmitted out a given interface.

Generally speaking, you apply a firewall filter for one of three main reasons: to protect the 
local router itself, to protect another device that is either directly or indirectly attached to the local 
router, or to perform multi-field classifications for purposes of specialized packets handling, in 
other words, Class of Service (CoS) or Filter-Based Forwarding (FBF). In the former case, you 
should apply your firewall filter to the router’s lo0 interface, because this ensures that only 
packets being sent to, or from, the RE (depending on the direction in which the filter is applied) 
are subjected to the firewall rules. A lo0 firewall filter does not impact transit traffic directly, but 
such a filter might impact transit traffic indirectly. For example, failing to accommodate your 
IGP in a firewall filter’s rules might result in lost adjacencies and missing routes, which in turn 
can affect the local router’s ability to forward transit traffic. Note that a copy of a lo0 firewall 
filter is maintained in the PFE where it will act on traffic before it traverses the internal fxp1 link 
to reach the RE.

Finally, firewall filters are often used to classify and mark packets for QoS-related functions. 
The use of firewall filters for CoS applications is detailed in Chapter 6.



 

278

 

Chapter 3 �

 

Firewall Filter and Traffic Sampling

 

F I G U R E 3 . 1

 

MPLS case study topology

Da
ta

Ce
nt

er
(IS

-IS
)

AS
 6

52
22

13
0.

13
0/

16
T1

AS
 6

50
20

22
0.

22
0/

16
C2

AS
 6

50
10

20
0.

20
0/

16

C1

.2
54

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

fe
-0

/0
/1

fe
-0

/0
/0

r1 r2

Lo
op

ba
ck

s

r3

r5

fe-
0/0

/3

fe
-0

/0
/0

r1
 =

 1
0.

0.
6.

1
r2

 =
 1

0.
0.

6.
2

r3
 =

 1
0.

0.
3.

3
r4

 =
 1

0.
0.

3.
4

r5
 =

 1
0.

0.
3.

5
r6

 =
 1

0.
0.

9.
6

r7
 =

 1
0.

0.
9.

7

fe
-0

/0
/1

fe
-0

/0
/1

fe
-0

/0
/2

10.0.5/24

10.0.4.4/30

fe
-0

/0
/3

fe
-0

/0
/0

10
.0

.4
.1

2/
30

17
2.

16
.0

.1
2/

30

AS
 6

50
50

12
0.

12
0/

16
10

.0
.2

.4
/3

0

fe
-0

/0
/1

fe
-0

/3
/1

fe
-0

/0
/0

(192.168.0-3)

fe
-0

/0
/1

fe
-0

/3
/3

fe
-0

/0
/3

fe-
0/3

/2

10
.0

.2
.1

2/
30

10
.0

.2
.0

/3
0

10
.0

.8
.4

/3
0

10
.0.

8.0
/3

0

fe-
0/

1/
2

10
.0

.8
.8

/3
0

10
.0

.2
.8

/3
0

so
-0

/2
/0

so
-0/

1/1
so

-0
/1

/0

so
-0

/1
/0

at-
0/

1/
0

at-
0/

2/
1

.1
.1

4
.1

3.1
3

.1
4

.1
3

.9

.5

.6

.9

.1

.9

.1
0

10
.0.

8.1
2/3

0

fe-
0/3

/0

.1
4

.1
3.1

.2

.1
7 .1

fe
-0

/0
/3

fe
-0

/0
/2

fe-
0/0

/0
fe-

0/1
/0

fe
-0

/1
/1fe

-0
/1

/3

17
2.

16
.0

.8
/3

0

.1
.5

.1
8

.2
.1

0
.9

10
.0

.4
.8

/3
0

10
.0

.2
.1

6/
30

17
2.1

6.0
.0/

30
17

2.1
6.0

.4/
30

10
.0.

4.1
6/3

0fe-
0/0/1

fe-
0/0/2

10.0.4.0/30

fe-
0/0

/2
.2

.1
7

.1
8 fe-

0/0
/0

.5

.6
.1

0

.2
.5

r6

r4
r7

P1

.6



 

Firewall Filters

 

279

 

JUNOS software firewall filters are based on a “prudent” security philosophy, in 
that they operate on a “deny all that is not explicitly allowed“ model. Put another 
way, once a filter is applied to an interface, all traffic not explicitly accepted by 
that filter is silently discarded by default. You can alter the default behavior
by including an 

 

accept

 

 

 

all

 

 term at the end of your filter. In this case, the previous 
filter terms will normally be written to reject traffic that is known to be bad. 
Please note that the resulting “permissive” filter represents significant security 
concerns in that unanticipated traffic, such as the latest Internet worm, will be 
allowed by the 

 

accept

 

 

 

all

 

 term in your filter. Note that failing to consider the 
default 

 

deny

 

 

 

all

 

 action of a filter can have significant ramifications on the oper-
ation of your network. For example, consider the case of a 

 

lo0

 

 filter that fails to 
adequately accommodate your IGP and BGP protocols; the application of such a 
filter will have catastrophic effects on your network due to the loss of the router’s 
IGP adjacencies and its BGP sessions. It is always a good idea to make use of the 

 

confirmed

 

 option when committing firewall-related changes, and to include 
some type of logging action for traffic that is rejected or denied by the filter.
The logging information allows a rapid determination of whether valid traffic is 
being rejected by the new filter, and with this knowledge you can quickly make 

 

the necessary adjustments to the firewall filter before the phone starts ringing.

 

RE Protection

 

You begin your firewall filter scenario by modifying 

 

r3

 

’s configuration to meet the following 
requirements:
�

 

Your filter can not affect transit traffic or the overall packet routing behavior of your network.
�

 

Ensure that 

 

r3

 

 accepts 

 

only

 

 the following traffic:
�

 

ICMP echo–related exchanges.
�

 

Incoming telnet sessions only from nodes within your AS. Outgoing telnet sessions to all 
peers (internal and external).

�

 

SSH sessions that are initiated by 

 

r3

 

.
�

 

FTP sessions that are initiated by 

 

r3

 

.

 

Confirming Initial Operation

 

Before changing anything, you decide to issue some key commands at 

 

r3

 

 to ascertain the overall 
status of 

 

r3

 

’s OSPF, BGP, and MPLS-related protocols:

 

[edit]

lab@r3# 

 

run show ospf neighbor

 

  Address         Interface             State     ID               Pri   Dead

10.0.2.1         at-0/1/0.0             Full      10.0.3.5         128   39

10.0.2.6         so-0/2/0.100           Full      10.0.3.4         128   39

10.0.4.14        fe-0/0/0.0             Full      10.0.6.1         128   38

10.0.4.2         fe-0/0/1.0             Full      10.0.6.2         128   33

10.0.2.13        fe-0/0/3.0             Full      10.0.9.6         128   38



 

280

 

Chapter 3 �

 

Firewall Filter and Traffic Sampling

 

All of the expected OSPF adjacencies are established at 

 

r3

 

, so you move on to verify its BGP 
session status:

 

[edit]

lab@r3# 

 

run show bgp summary

 

Groups: 3 Peers: 7 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            126658     126646          0          0          0          0

Peer           AS InPkt OutPkt    OutQ  Flaps  Last Up/Dwn State|#Active/
                                                             Received/Damped...

172.16.0.14  65222 27215   27272     0      0     2:17:55 126643/126643/0  0/0/0

10.0.3.4     65412   289   27432     0      0     2:23:57 1/1/0            0/0/0

10.0.3.5     65412   283   27427     0      0     2:21:14 0/0/0            0/0/0

10.0.6.1     65412   289   27434     0      0     2:24:05 1/1/0            0/0/0

10.0.6.2     65412   277   27421     0      0     2:17:42 0/1/0            0/0/0

10.0.9.6     65412   291   27433     0      0     2:23:52 1/6/0            0/0/0

10.0.9.7     65412   290   31468     0      0     2:23:45 0/6/0            0/0/0

 

Good, all of 

 

r3

 

’s IBGP and EBGP sessions are established. The next command confirms the 
state of 

 

r3

 

’s RSVP signaled LSPs:

 

[edit]

lab@r3# 

 

run show rsvp session

 

Ingress RSVP: 1 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.7        10.0.3.3        Up     0  1 FF       -   100007 r3-r7

Total 1 displayed, Up 1, Down 0

Egress RSVP: 2 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.3.3        10.0.9.7        Up     0  1 FF       3        - r7-r3

10.0.3.33       10.0.9.7        Up     0  1 FF       3        - r7-r3-prime

Total 2 displayed, Up 2, Down 0

Transit RSVP: 2 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.6.1        10.0.9.6        Up     0  1 FF  100003        3 r6-r1

10.0.9.6        10.0.3.4        Up     0  1 SE  100004        3 r4

 

The display confirms that 

 

r3

 

’s ingress, egress, and transit RSVP sessions have been successfully 
established. The operational displays indicate that 

 

r3

 

 and the OSPF-based MPLS case study 
topology from Chapter 2, are largely operational. With the knowledge that your test bed is 
operational, you begin your first firewall filter configuration task.



 

Firewall Filters

 

281

 

Creating a Firewall Filter

 

You begin your configuration by defining the 

 

r3–lo0

 

 filter at 

 

r3

 

. This filter will be applied as 
an input filter to 

 

r3

 

’s lo0 interface to meet the requirement that your filter not affect transit traffic. 
Note that without an output filter on its lo0 interface, 

 

r3

 

 will be able to send any and all 
traffic that it desires. Writing the input filter to deny response traffic that is not associated with 
authorized applications ensures that you can meet all requirements posed for this configuration 
example with a unidirectional 

 

lo0

 

 filter at 

 

r3

 

. Also note that you need to deploy a prudent fire-
wall filter to meet the requirements that your filter accept 

 

only

 

 the applications and services 
listed.

The following commands create the new filter on 

 

r3

 

 and define the first filter term, which is 
designed to accommodate ICMP ping (Echo)–related traffic in this example:

 

[edit]

lab@r3# 

 

edit firewall filter 

 

r3-lo0

 

[edit firewall filter r3-lo0]

lab@r3# 

 

set

 

 

 

term 

 

icmp from protocol icmp

[edit firewall filter r3-lo0]

lab@r3# set term icmp from icmp-type echo-reply

[edit firewall filter r3-lo0]

lab@r3# set term icmp from icmp-type echo-request

[edit firewall filter r3-lo0]

lab@r3# set term icmp then accept

The resulting configuration is displayed:

[edit firewall filter r3-lo0]

lab@r3# show

term icmp {

    from {

        protocol icmp;

        icmp-type [ echo-reply echo-request ];

    }

    then accept;

}

Note that the ICMP protocol is specified along with an icmp-type match criterion. This is 
significant because JUNOS software firewall filters do not automatically perform a test for the 
protocol associated with a given service or application. Failing to correctly test for the ICMP pro-
tocol can result in non-ICMP traffic being accepted by the filter’s icmp term. Also worth pointing 
out here is the logical OR formed by the specification of both echo-reply (ICMP type 0) and 
echo-request (ICMP type 8) message types. This specification allows the use of a single term for 



282 Chapter 3 � Firewall Filter and Traffic Sampling

the purpose of accepting echo traffic that is initiated by the local router (incoming ICMP echo 
replies) or ICMP echo traffic that is initiated by a remote router (incoming ICMP echo request).

With ICMP traffic accommodated, you move on to the requirement that your RE filter limit 
incoming telnet sessions to nodes within your AS, while allowing r3 to initiate telnet sessions 
to both external and internal peers:

[edit firewall filter r3-lo0]

lab@r3# set term telnet-in from protocol tcp

[edit firewall filter r3-lo0]

lab@r3# set term telnet-in from destination-port 23

[edit firewall filter r3-lo0]

lab@r3# set term telnet-in from address 10.0/16

[edit firewall filter r3-lo0]

lab@r3# set term telnet-in then accept

With incoming telnet sessions correctly restricted to source addresses in the 10.0/16 net 
block, you now define a term that permits outgoing telnet sessions to all nodes:

[edit firewall filter r3-lo0]

lab@r3# set term telnet-out from protocol tcp

[edit firewall filter r3-lo0]

lab@r3# set term telnet-out from source-port 23

[edit firewall filter r3-lo0]

lab@r3# set term telnet-out then accept

The telnet-related terms are now displayed:

[edit firewall filter r3-lo0]

lab@r3# show term telnet-in

from {

    address {

        10.0.0.0/16;

    }

    protocol tcp;

    destination-port 23;

}

then accept;

[edit firewall filter r3-lo0]

lab@r3# show term telnet-out



Firewall Filters 283

from {

    protocol tcp;

    source-port 23;

}

then accept;

Note once again that the TCP protocol has been specified along with the telnet port to ensure 
that non-TCP based traffic is not inadvertently accepted by the filter’s telnet-related terms. In 
this case, the telnet-related terms make use of the destination-port and source-port key-
words to restrict incoming sessions (destination port equals 23) while allowing r3 to initiate 
sessions to all hosts (source port will equal 23 in the returning traffic—remember, with an input 
filter you are filtering only return traffic). The inclusion of an address-based match condition 
in the telnet-in term is required to meet the condition that incoming telnet sessions are 
restricted to those nodes that are within your AS.

With telnet support in place, you next define a term that enforces r3’s ability to initiate, but 
not accept, SSH connections:

[edit firewall filter r3-lo0]

lab@r3# set term ssh from protocol tcp

lab@r3# set term ssh from source-ports?

Possible completions:

  <range>              Range of values

  smtp                 SMTP

  snmp                 SNMP

  snmptrap             SNMP traps

  snpp                 Simple paging protocol

  socks                Socks

  ssh                  Secure shell (ssh)

  sunrpc               SUN RPC

  syslog               System log (syslog)

[edit firewall filter r3-lo0]

lab@r3# set term ssh from source-port ssh

[edit firewall filter r3-lo0]

lab@r3# set term ssh then accept

In this example, the operator has chosen to use a symbolic keyword to identify the port 
associated with the SSH service (SSH uses port 22). The CLI’s Help function is also used to 
display a list of symbolically named ports, which in this case begin with the letter s. The new 
firewall term is displayed:

[edit firewall filter r3-lo0]

lab@r3# show term ssh



284 Chapter 3 � Firewall Filter and Traffic Sampling

from {

    protocol tcp;

    source-port ssh;

  }

  then accept;

The use of a source-port based match criteria in this example correctly prevents SSH sessions 
that are initiated by remote routers, because remotely initiated SSH sessions will have a destination 
port of 22 and a source port that is in the range of 1024–65,536 inclusive. The next filtering task 
is to permit outgoing FTP sessions while blocking incoming FTP sessions. In this example, you 
decide to modify the ssh term to make it pull double duty by supporting both the SSH and FTP 
services. You begin by renaming the term to reflect the new SSH and FTP support role:

[edit firewall filter r3-lo0]

lab@r3# rename term ssh to term ssh-ftp

[edit firewall filter r3-lo0]

lab@r3# set term ssh-ftp from source-port 20-21

The renamed term is displayed with the FTP-related modifications highlighted:

[edit firewall filter r3-lo0]

lab@r3# show term 3

from {

    protocol tcp;

    source-port [ ssh 20-21 ];

}

then accept;

By adding the FTP data and control ports (20 and 21, respectively) to the ssh-ftp term, you 
have created a single term that functions to accept SSH and FTP traffic for those SSH and FTP 
sessions that are initiated by r3 only. Of course, the use of an FTP-specific term is also possible in 
this case.

Although not required by the specifics of this configuration scenario, an explicit deny-all-else 
term that logs and counts rejected traffic is not precluded by your rules of engagement either. 
This author believes that adding such a term is a good idea, because it helps to reinforce the fact 
that, by default, all traffic not explicitly accepted by your filter will be implicitly denied, and 
because the logging of rejected traffic can make firewall filter troubleshooting significantly 
easier. Once a firewall filter is known to operate properly, you can opt to delete (or deactivate) 
the deny-all-else term to reduce clutter and minimize processing burden. The next set of 
commands creates an explicit deny-all-else term in your r3-lo0 filter:

[edit firewall filter r3-lo0]

lab@r3# set term deny-all-else then log

[edit firewall filter r3-lo0]

lab@r3# set term deny-all-else then count r3-lo0-rejection



Firewall Filters 285

[edit firewall filter r3-lo0]

lab@r3# set term deny-all-else then discard

The final term is displayed:

lab@r3# show term deny-all-else

then {

    count r3-lo0-rejection;

    log;

    discard;

}

The presence of the log and count action modifiers in the deny-all-else term makes the 
confirmation and troubleshooting of firewall filter issues far simpler. The log action modifier 
results in entries being written to a temporary kernel cache for traffic that is discarded by the 
final term. The cache holds about 400 entries before it wraps around to begin overwriting older 
entries. The count action modifier causes the named counter to increment for each packet (and 
byte) that is rejected by the term.

Note that an explicit discard action has also been configured. The specification of a discard 
action is needed in this case because the use of an action modifier, such as count and log, results 
in an implicit accept action for any traffic that matches that term. Because the deny-all-else 
term has no from condition specified, all traffic that has not already been accepted by the 
previous terms in the r3-lo0 firewall filter will match the term. This behavior results in r3 
accepting all traffic that it is given! Because such indiscriminate behavior at r3 falls outside of 
the configuration example’s criteria, the presence of the explicit discard action is a very good 
thing in this case.

Note that the use of reject is also possible in this scenario; generally speaking, sending back 
an indication that packets are being filtered, in the form of ICMP administratively prohibited 
messages, is considered to be bad security form. The use of the discard action, on the other 
hand, results in silent packet discard. The completed r3-lo0 filter is now displayed:

[edit firewall filter r3-lo0]

lab@r3# show

term icmp {

    from {

        protocol icmp;

        icmp-type [ echo-reply echo-request ];

    }

    then accept;

}

term telnet-in {

    from {

        address {

            10.0.0.0/16;

        }

        protocol tcp;



286 Chapter 3 � Firewall Filter and Traffic Sampling

        destination-port 23;

    }

    then accept;

}

term telnet-out {

    from {

        protocol tcp;

        source-port 23;

    }

    then accept;

}

term ssh-ftp {

    from {

        protocol tcp;

        source-port [ ssh 20-21 ];

    }

    then accept;

}

term deny-all-else {

    then {

         count r3-lo0-rejection;

         log;

         discard;

}

Applying and Verifying a RE Firewall Filter

With the firewall filter’s definition complete, you now apply the r3-lo0 filter to r3’s lo0 
interface in the input direction:

[edit interfaces]

lab@r3# set lo0 unit 0 family inet filter input r3-lo0

The modified lo0 configuration is displayed:

[edit interfaces]

lab@r3# show lo0

unit 0 {

    family inet {

        filter {

            input r3-lo0;

        }

        address 10.0.3.3/32 {

            primary;

        }



Firewall Filters 287

        address 10.0.3.33/32;

    }

}

The highlighted portion of the output calls out the application of the r3-lo0 filter as an input 
filter. This is a significant point, because true RE protection can only be provided by input filtering. 
Being aware that packet filtering mistakes can leave you locked out of your router, at least for 
all access methods except direct console access, you wisely decide to use the confirmed argument 
when you commit your changes to r3. You must now issue another commit within 5 minutes, 
or r3 will roll back and automatically commit the last configuration that was successfully 
committed.

[edit]

lab@r3# commit confirmed 5

commit confirmed will be automatically rolled back in 5 minutes unless confirmed

commit complete

[edit]

lab@r3#

With the RE protection firewall changes committed, at least for the next 5 minutes, you quickly 
confirm that telnet access is working at r3. Note that receiving the commit complete message 
shown earlier already indicates that the lo0 filter has not affected telnet over the OoB network.

[edit]

lab@r3# run telnet 10.0.3.3

Trying 10.0.3.3...

Connected to 10.0.3.3.

Escape character is '^]'.

r3 (ttyp1)

login: lab

Password:

Last login: Tue Mar  4 16:15:25 from 10.0.1.100

--- JUNOS 5.6R1.3 built 2003-01-02 20:38:33 UTC

lab@r3>

The telnet connection from r3 back to itself succeeds, which shows that r3 can both initiate 
and accept telnet sessions. Further, your existing telnet session is unaffected by the application 
of the r3-lo0 firewall filter, which causes you to decide that it is safe to officially commit the 
r3’s firewall configuration:

lab@r3> exit

Connection closed by foreign host.



288 Chapter 3 � Firewall Filter and Traffic Sampling

[edit]

lab@r3# commit

commit complete

[edit]

lab@r3#

Before validating the services that are listed as explicitly supported by r3, you decide to 
view the firewall log to see if any unexpected traffic is being caught (discarded) by the firewall 
filter:

[edit]

lab@r3# run show firewall log

Log :

Time      Filter    Action   Interface Protocol       Src Addr       Dest Addr

21:00:53  pfe       D           fe-0/0/0.0 RSVP      10.0.4.14       10.0.4.13

21:00:52  pfe       D          so-0/2/0.100RSVP       10.0.2.6        10.0.2.5

21:00:52  pfe       D           fe-0/0/0.0 OSPF      10.0.4.14       224.0.0.5

. . .

21:00:36  pfe       D            fe-0/0/2.0 TCP    172.16.0.14     172.16.0.13

. . .

The truncated contents of the firewall cache bring the words “uh oh” near the top of the 
list of expletives that are likely to be uttered at a time like this. The highlights call out that 
OSPF, RSVP, and BGP-related traffic is being discarded (D) by a copy of the r3-lo0 filter that 
is maintained in the router’s packet forwarding engine (pfe). The rejection of BGP traffic is 
indicated by the entry indicating TCP and the 172.16.0.14 address, which is associated with 
the T1 router.

Note that any traffic originated by r3’s RE will display the actual firewall filter name in 
the Filter column because, unlike the PFE, the RE can store the filter’s name. Based on the 
log entries, it is readily apparent that the r3-lo0 filter fails to accommodate the various rout-
ing and signaling protocols in use at r3! The presence of broken OSPF adjacencies, active BGP 
sessions, and failed RSVP signaled LSPs indicates that the current filter does not meet the 
stipulation that your firewall not affect the overall packet forwarding behavior of your 
network. A few commands quickly display the extent of the network disruption caused by 
your new firewall filter:

[edit]

lab@r3# run show ospf neighbor

[edit]

lab@r3# run show bgp summary

Groups: 3 Peers: 7 Down peers: 7

Table          Tot Paths  Act Paths Suppressed   History  Damp State    Pending

inet.0                 0          0          0         0           0          0



Firewall Filters 289

Peer            AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
                                                              Received/Damped...

172.16.0.14  65222  30317   30379     0      1       14:11 Connect

10.0.3.4     65412    587   30631     0      1       14:23 Active

10.0.3.5     65412    581   30652     0      1       14:10 Active

10.0.6.1     65412    587   30633     0      1       14:18 Active

10.0.6.2     65412    575   30645     0      1       14:10 Active

10.0.9.6     65412    589   30632     0      1       14:21 Active

10.0.9.7     65412    588   34751     0      1       14:11 Active

[edit]

lab@r3# run show rsvp session

Ingress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Egress RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

The various outputs confirm that r3 has no IGP adjacencies, no established BGP sessions, and 
no RSVP signaled LSPs. It bears stressing that with the results-based grading approach currently 
used in the JNCIE examination, a single mistake such as the one shown here could easily spell the 
difference between a fancy certificate and a long trip home with your tail firmly tucked.

Always be on guard for the inadvertent disruption of valid services when you are 
deploying a prudent firewall filter. Candidates often miss the fact that some pre-
viously confirmed service or application has been broken by the application of a 
poorly crafted firewall filter. These candidates are often surprised to see points 
taken off later in the exam for services that they “know were working.” The key 
term here is the word were, and the fact that JNCIE examinations are graded 
on the overall operation of your network. A few mistakes made with a firewall filter 
can spell doom for your final JNCIE grade! Because it is easy to overlook existing 
services or applications, it is suggested that you add some type of logging action 
to all new filters, because examination of the resulting log file will assist you in 
determining if your filter is taking unanticipated actions. For example, the r3-lo0 
filter shown in this section fails to accommodate the RADIUS protocol and locally 
initiated traceroute testing. These omissions do not result in “point loss” in this 
example, because the specifics of the RE filtering task stipulated only that your 
filter can not affect packet forwarding behavior. Because the router’s configura-
tion allows authentication against the local password database when RADIUS is 
unreachable, you can still log in to r3 (albeit, with a bit of delay), and packet 
forwarding is unaffected by the inability to use RADIUS or to initiate traceroute 
testing from r3. Note that traceroutes through r3 still function because expired 
TTL handling and ICMP error generation occur in the PFE, not the RE.



290 Chapter 3 � Firewall Filter and Traffic Sampling

In a production network, you would be well advised to first deactivate the filter’s application 
to return the network to normal operation as you make changes to the r3-lo0 filter. In the case 
of a lab exam, extra steps designed to minimize operational impact are generally not necessary. 
You therefore move straight to the modification of the r3-lo0 filter, starting with the addition 
of a term designed to accept BGP sessions regardless of which router initiates the communications:

[edit firewall filter r3-lo0]

lab@r3# set term bgp from protocol tcp

[edit firewall filter r3-lo0]

lab@r3# set term bgp from port bgp

[edit firewall filter r3-lo0]

lab@r3# set term bgp then accept

The next set of commands creates a single term that accepts either OSPF or RSVP. Note that 
the key to this approach lies in the knowledge of which applications use ports (BGP) and which 
applications ride directly within IP (OSPF and RSVP):

[edit firewall filter r3-lo0]

lab@r3# set term ospf-rsvp from protocol ospf

[edit firewall filter r3-lo0]

lab@r3# set term ospf-rsvp from protocol rsvp

[edit firewall filter r3-lo0]

lab@r3# set term ospf-rsvp then accept

Before committing the modifications, you once again display the complete r3-lo0 filter:

[edit firewall filter r3-lo0]

lab@r3# show

term icmp {

    from {

        protocol icmp;

        icmp-type [ echo-reply echo-request ];

    }

    then accept;

}

term telnet-in {

    from {

        address {

            10.0.0.0/16;

        }

        protocol tcp;

        destination-port 23;



Firewall Filters 291

    }

    then accept;

}

term telnet-out {

    from {

        protocol tcp;

        source-port 23;

    }

    then accept;

}

term ssh-ftp {

    from {

        protocol tcp;

        source-port [ ssh 20-21 ];

    }

    then accept;

}

term deny-all-else {

    then {

        count r3-lo0-rejection;

        log;

        discard;

    }

}

term bgp {

    from {

        protocol tcp;

        port bgp;

    }

    then accept;

}

term ospf-rsvp {

    from {

        protocol [ ospf rsvp ];

    }

    then accept;

}

Hmm, something does not seem right; can you spot the problem now? Give yourself a pat on 
the back if you correctly identified that the last two terms, which are designed to allow BGP, 
RSVP, and OSPF traffic, are currently having no effect on the filter’s operation! This is because 
the current sequencing of the terms has all traffic that is not accepted by the first four terms 
being summarily discarded when it matches the deny-all-else term.



292 Chapter 3 � Firewall Filter and Traffic Sampling

As with routing policy, the ordering of firewall terms often has a significant 
impact on the overall operation of your firewall configuration. Use the insert 
command to rearrange terms when sequencing problems are suspected.

To rectify the situation, you could delete the problem terms and rewrite them in the desired 
sequence, or you can make use of the JUNOS software CLI’s insert function to save some 
valuable time as shown here:

[edit firewall filter r3-lo0]

lab@r3# insert term bgp before term deny-all-else

[edit firewall filter r3-lo0]

lab@r3# insert term ospf-rsvp before term deny-all-else

The modified term sequencing is now displayed and the changes are committed:

[edit firewall filter r3-lo0]

lab@r3# show

term icmp {

    from {

        protocol icmp;

        icmp-type [ echo-reply echo-request ];

    }

    then accept;

}

term telnet-in {

    from {

        address {

            10.0.0.0/16;

        }

        protocol tcp;

        destination-port 23;

    }

    then accept;

}

term telnet-out {

    from {

        protocol tcp;

        source-port 23;

    }

    then accept;

}

term ssh-ftp {

    from {



Firewall Filters 293

        protocol tcp;

        source-port [ ssh 20-21 ];

    }

    then accept;

}

term bgp {

    from {

        protocol tcp;

        port bgp;

    }

    then accept;

}

term ospf-rsvp {

    from {

        protocol [ ospf rsvp ];

    }

    then accept;

}

term deny-all-else {

    then {

        count r3-lo0-rejection;

        log;

        discard;

    }

}

[edit firewall filter r3-lo0]

lab@r3# commit

commit complete

After a few minutes, r3’s OSPF, BGP, and RSVP protocols are once again functional:

[edit]

lab@r3# run show ospf neighbor

  Address         Interface             State      ID              Pri  Dead

10.0.2.1         at-0/1/0.0             Full      10.0.3.5         128   33

10.0.2.6         so-0/2/0.100           Full      10.0.3.4         128   34

10.0.4.14        fe-0/0/0.0             Full      10.0.6.1         128   35

10.0.4.2         fe-0/0/1.0             Full      10.0.6.2         128   32

10.0.2.13        fe-0/0/3.0             Full      10.0.9.6         128   37

OSPF adjacencies have reformed at r3, making loopback-based IBGP peering once again 
possible:

[edit]

lab@r3# run show bgp summary



294 Chapter 3 � Firewall Filter and Traffic Sampling

Groups: 3 Peers: 7 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History  Damp State   Pending

inet.0            126842     126830          0          0           0         0

Peer            AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
                                                              Received/Damped...

172.16.0.14  65222 25859   25869     0      1        5:29 126827/126827/0  0/0/0

10.0.3.4     65412   596   54168     0      1        4:21 1/1/0            0/0/0

10.0.3.5     65412   589   52695     0      1        3:55 0/0/0            0/0/0

10.0.6.1     65412   596   52682     0      1        4:13 1/1/0            0/0/0

10.0.6.2     65412   584   52690     0      1        4:01 0/1/0            0/0/0

10.0.9.6     65412   600   52847     0      1        4:16 1/6/0            0/0/0

10.0.9.7     65412    14   28561     0      1        5:18 0/6/0            0/0/0

All BGP sessions have been correctly reestablished at r3. The next command confirms that 
r3’s ingress, egress, and transit LSPs have been re-established:

[edit]

lab@r3# run show rsvp session

Ingress RSVP: 1 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.7        10.0.3.3        Up     0  1 FF       -   100007 r3-r7

Total 1 displayed, Up 1, Down 0

Egress RSVP: 2 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.3.3        10.0.9.7        Up     0  1 FF       3        - r7-r3

10.0.3.33       10.0.9.7        Up     0  1 FF       3        - r7-r3-prime

Total 2 displayed, Up 2, Down 0

Transit RSVP: 2 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.6.1        10.0.9.6        Up     0  1 FF  100003        3 r6-r1

10.0.9.6        10.0.3.4        Up     0  1 SE  100004        3 r4-r6

Total 2 displayed, Up 2, Down 0

With existing services confirmed, you move on to the verification of the services and behavior 
explicitly stipulated by the RE protection configuration example. You start by verifying that r3 
can establish outgoing FTP sessions to the RADIUS/FTP server while not accepting incoming 
FTP sessions. Note that the FTP service is not enabled on r3 at this time, but this omission does 
not affect your ability to test the firewall’s treatment of incoming FTP connections:

[edit]

lab@r3# run ftp 10.0.200.2

Connected to 10.0.200.2.

220 T1-P1 FTP server (Version 6.00LS) ready.



Firewall Filters 295

Name (10.0.200.2:lab): lab

331 Password required for lab.

Password:

230 User lab logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for '/bin/ls'.

total 180998

drwxr-xr-x  2 lab  staff       512 Aug 13  1998 .ssh

-rw-r--r--  1 lab  staff  24001906 Oct 24  1998 jbundle-5.2B3.1-domestic.tgz

-rw-r--r--  1 lab  staff  24217723 Jan 18  1999 jbundle-5.2R2.3-domestic-
   signed.tgz

-rw-r--r--  1 lab  staff  19685721 Nov 30 13:32 jinstall-4.4R1.5-domestic.tgz

-rw-r--r--  1 lab  staff  24614636 Aug 13  1998 jinstall-

. . .

226 Transfer complete.

ftp> exit

221 Goodbye.

The display confirms that r3 can successfully initiate FTP connections. You now verify that 
incoming FTP connections are blocked by the r3-lo0 filter in accordance with the example’s 
restrictions:

[edit]

lab@r3# run ftp 10.0.3.3

^C

The FTP session is aborted by the operator because it does not complete normally. The 
firewall cache is now examined for evidence of firewall filter activity:

[edit]

lab@r3# run show firewall log detail

Time of Log: 2003-03-04 22:12:26 UTC, Filter: r3-lo0, Filter action: discard,

   Name of interface: fxp0.0

Name of protocol: UDP, Packet Length: 78, Source address: 10.0.1.100:137,

   Destination address: 10.0.1.255:137

Time of Log: 2003-03-04 22:12:11 UTC, Filter: r3-lo0, Filter action: discard,

   Name of interface: local

Name of protocol: TCP, Packet Length: 60, Source address: 10.0.3.3:2741,

   Destination address: 10.0.3.3:21

Time of Log: 2003-03-04 22:12:10 UTC, Filter: r3-lo0, Filter action: discard,

   Name of interface: fxp0.0



296 Chapter 3 � Firewall Filter and Traffic Sampling

Name of protocol: UDP, Packet Length: 229, Source address: 10.0.1.235:138,

   Destination address: 10.0.1.255:138

. . .

The highlighted portion of the firewall log confirms that TCP packets destined to port 21, the 
FTP control port, are being correctly discarded. A similar approach is now used to confirm 
proper SSH functionality. You begin by verifying r3’s ability to initiate SSH connections to 
another router:

[edit]

lab@r3# run ssh 10.0.3.5

The authenticity of host '10.0.3.5 (10.0.3.5)' can't be established.

RSA key fingerprint is 5e:52:6d:e2:83:4f:15:1c:f1:a6:ff:81:f5:df:f7:db.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.0.3.5' (RSA) to the list of known hosts.

lab@10.0.3.5's password:

Last login: Tue Mar  4 09:28:46 2003 from 10.0.1.100

--- JUNOS 5.6R1.3 built 2003-01-02 20:38:33 UTC

lab@r5> quit

Connection to 10.0.3.5 closed.

You now verify that incoming SSH sessions are correctly blocked by the r3-lo0 firewall 
filter by attempting a “loopback”connection from r3 to itself, because this validates its ability 
to both generate and receive SSH connections in one fell swoop:

[edit]

lab@r3# run ssh 10.0.3.3

^C

The SSH session has to be aborted, which is a good indication that the filter is performing 
as designed. You quickly inspect the log to look for evidence of firewall activity:

[edit]

lab@r3# run show firewall log detail

Time of Log: 2003-03-04 22:18:10 UTC, Filter: r3-lo0, Filter action: discard,

   Name of interface: local

Name of protocol: TCP, Packet Length: 60, Source address: 10.0.3.3:3402,

   Destination address: 10.0.3.3:22

. . .

As was the case with FTP, the results confirm that your SSH filtering is in full compliance 
with the configuration example’s stipulations. Bidirectional telnet support was confirmed 
previously when r3 was shown to be able to open a telnet session to itself. You therefore 
complete your verification steps by confirming that sources outside of your AS’s net block can 
ping r3, while also verifying that telnet attempts from the same external sources are blocked by 
the r3-lo0 filter.



Firewall Filters 297

The use of the source argument is critical in the following commands, which in this case 
are issued at the data center router. The source switch, along with the 192.168.1.1 argu-
ment, ensures that the traffic from the DC router is sourced from its 192.168.0.1 external 
address:

lab@dc> ping 10.0.3.3 source 192.168.1.1 count 2

PING 10.0.3.3 (10.0.3.3): 56 data bytes

64 bytes from 10.0.3.3: icmp_seq=0 ttl=254 time=0.736 ms

64 bytes from 10.0.3.3: icmp_seq=1 ttl=254 time=0.637 ms

--- 10.0.3.3 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.637/0.686/0.736/0.049 ms

The output confirms that external sources can ping r3. Your next command tests whether 
telnet sessions initiated from source addresses outside of the 10.0/16 net block are correctly 
blocked:

lab@dc> telnet 10.0.3.3 source 192.168.1.1

Trying 10.0.3.3...

Connected to 10.0.3.3.

Escape character is '^]'.

r3 (ttyp1)

login:

telnet> quit

Connection closed.

Darn, the telnet session sourced from 192.168.1.1 succeeds, which indicates there is a 
problem in your firewall filter. Can you spot the problem in term 2 of the r3-lo0 filter?

[edit]

lab@r3# show firewall filter r3-lo0 term 2

from {

    address {

        10.0.0.0/16;

    }

    protocol tcp;

    port 23;

}

then accept;

The highlights call attention to the problem area. In this case, the term neglects to identify 
that the source address of telnet request packets must fall within the 10.0/16 net block. As writ-
ten, the presence of any 10.0/16 address in the IP packet, whether used as a destination or a 
source address, will satisfy the term’s addressing-related match criteria. Because telnet sessions 



298 Chapter 3 � Firewall Filter and Traffic Sampling

to r3 will always have a destination address stemming from the 10.0/16 address block, the current 
filter syntax fails to correctly meet the configuration example’s telnet restrictions. To correct the 
problem, you modify the telnet-in term in the r3-lo0 filter, as shown next:

[edit firewall filter r3-lo0 term 2]

lab@r3# show

from {

    source-address {

        10.0.0.0/16;

    }

    protocol tcp;

    port 23;

}

then accept;

After the changes are committed, you retest telnet connectivity from the DC router:

lab@dc> telnet 10.0.3.3 source 192.168.1.1

Trying 10.0.3.3...

^C

The telnet connection from an external source now fails in accordance with the proscribed 
behavior. A quick examination of the firewall log on r3 confirms that telnet connections from 
a 192.168.1.1 address are now denied:

[edit firewall filter r3-lo0 term 2]

lab@r3# run show firewall log detail

Time of Log: 2003-03-04 23:01:35 UTC, Filter: pfe, Filter action: discard, Name
   of interface: fe-0/0/3.0

Name of protocol: TCP, Packet Length: 60, Source address: 192.168.1.1:1539,

   Destination address: 10.0.3.3:23

. . .

The final telnet verification step confirms that r3 can initiate telnet sessions to external peers, 
which in this case takes the form of the DC router:

[edit]

lab@r3# run telnet 192.168.1.1

Trying 192.168.1.1...

Connected to 192.168.1.1.

Escape character is '^]'.

dc (ttyp0)

login: lab

Password:

Last login: Sun Mar 16 01:15:50 on ttyd0



Firewall Filters 299

--- JUNOS 5.6R1.3 built 2003-01-02 20:38:33 UTC

lab@dc>

Excellent! The telnet session to a destination address outside of the 10.0/16 range is successful, 
which means that all criteria for the RE-based firewall filtering configuration scenario have 
been confirmed operational. With the r3-lo0 firewall filter’s behavior verified, you might want 
to remove the explicit deny-all-else term from the r3-lo0 firewall filter. In this example, the 
term is left in place because its presence does not violate any configuration criteria, and because 
its continued existence will cause no operational impact.

Transit Filtering

This configuration example is designed to simulate a typical transit interface firewall filtering 
configuration task. To complete this example, you must modify r4’s configuration to support 
the following criteria:
� Count all TCP connections initiated by C1, as seen on r4’s fe-0/0/0 interface.
� Ensure that r4 never forwards packets received from C1 with spoofed source addresses.
� Ensure that C1 never receives the following traffic from r4:

� ICMP echo request packets with a total length of 1000 bytes (inclusive of Layer 3 headers).
� Any traffic that claims to be sourced from C1’s 200.200/16 net block.
� Filter UDP and TCP traffic with destination ports in the range of 6000–6010 inclusive. 

Configure the router to send ICMP port unreachable error messages when filtering these 
packets.

Creating Firewall Filters

These criteria require that you create, and apply, two independent firewall filters. The first filter, 
which is called c1-in, functions to count all initial TCP SYN segments received on r4’s fe-0/0/0 
interface while also preventing source address spoofing. The second filter, called c1-out, will 
be applied in the direction of r4 to C1 to meet the remaining requirements of the transit filtering 
configuration example.

One of the more challenging aspects of this task relates to the candidate’s ability to translate 
“TCP connections initiated by C1” into the use of a tcp-initial based match condition (or 
a “(syn & !ack)” match criterion if you prefer not to use the keyword designed to spare you this 
type of syntax). TCP segments with this specific flag pattern identify the initial segment used in 
the three-way handshake that establishes a TCP connection. By counting the initial TCP SYN 
segments sent from C1, you are in effect counting the number of TCP sessions that site C1 is 
attempting to establish through the r4 peering point. You must use care to ensure that no traffic 
is actually blocked as a result of the c1-in filter’s application.

The following commands are entered on r4 to create the first term in the c1-in firewall filter:

[edit firewall c1-in]

lab@r4# set term 1 from tcp-initial



300 Chapter 3 � Firewall Filter and Traffic Sampling

[edit firewall c1-in]

lab@r4# set term 1 from protocol tcp

[edit firewall filter c1-in]

lab@r4# set term 1 then count c1-syns

[edit firewall filter c1-in]

lab@r4# set term 1 then next term

With SYN segment counting addressed by the first term, you next configure a term that 
enforces source address validity on packets received from C1:

[edit firewall filter c1-in]

lab@r4# set term 2 from source-address 200.200/16

[edit firewall filter c1-in]

lab@r4# set term 2 from source-address 172.16.0.6

[edit firewall filter c1-in]

lab@r4# set term 2 then accept

The completed c1-in filter is now displayed:

[edit firewall filter c1-in]

lab@r4# show

term 1 {

    from {

        protocol tcp;

        tcp-initial;

    }

    then {

        count c1-syns;

        next term;

    }

}

term 2 {

    from {

        source-address {

            200.200.0.0/16;

            172.16.0.6/32;

        }

    }

    then accept;

}



Firewall Filters 301

Note that the first term of the c1-in filter correctly specifies a TCP protocol–based match 
condition to guard against inadvertent packet matches (and erroneous counting in this 
example). Many candidates incorrectly assume that a keyword such as tcp-initial has an 
embedded TCP protocol test and therefore often fail to include the necessary protocol match 
criterion required to guarantee accurate packet matching. Recall that the tcp-initial 
keyword is a synonym for any TCP segment with a reset ACK flag and a set SYN flag, and 
as noted previously, you can use an alternative, TCP flag–based match condition, if you are 
so inclined.

In this example, a counter named c1-syns is defined to tally the number of TCP connection 
requests received from C1. Term 1 makes use of a next-term action modifier to ensure that all 
TCP SYN segments are counted by term 1, without actually being accepted, because term 2 is 
used to validate the source address of all traffic received. The need to count TCP SYN segments, 
whether they have valid source addresses or not, is indicated by the instruction that you must 
count all connection requests received from C1.

The final term in the firewall filter defines an accept action for all traffic received from C1 
with source addresses in the 200.200/16 space, and for those packets that are initiated by 
C1 itself. Note that these packets normally carry a source address of 172.16.0.6. Term 2 
provides a critical function, because it negates the default deny-all action of a JUNOS software 
firewall filter for all traffic received from C1 with valid source addressing. Packets with bogus 
source addresses will not match term 2, which means they will still fall victim to silent discard 
at the hands of the implicit deny-all action at the end of the firewall processing chain. Including 
C1’s interface address ensures that the application of the c1-in filter will not cause any 
problems with C1’s BGP session to r4. Candidates often neglect to include the access link’s 
address when implementing a source address verification firewall filter, which can create problems 
for routing protocols as well as diagnostic tools such as ping and traceroute.

With the c1-in filter complete, you begin configuration of the c1-out filter. Your first goal 
is to restrict ICMP packets of a particular length from being sent to C1. The following commands 
correctly set the filter to match on a packet length of 1000 bytes. Note that in JUNOS software, 
link-level overhead is not counted in the context of a firewall filter.

[edit firewall filter c1-out]

lab@r4# set term 1k-icmp from protocol icmp

[edit firewall filter c1-out]

lab@r4# set term 1k-icmp from packet-length 1000

[edit firewall filter c1-out]

lab@r4# set term 1k-icmp then discard

The next term prevents packets with spoofed source addresses from entering C1’s network:

lab@r4# set term no-spoof from source-address 200.200/16

[edit firewall filter c1-out]

lab@r4# set term no-spoof then discard



302 Chapter 3 � Firewall Filter and Traffic Sampling

The final term uses a port range match criteria to block packets with destination ports in the 
range of 6000 through 6010 inclusive, while sending back ICMP port unreachable error 
messages when matching packets are filtered:

lab@r4# show term ports

from {

    destination-port 6000-6010;

}

then {

    reject port-unreachable;

}

Note that a protocol match condition is not specified in the ports term. In this case, not 
specifying the TCP and UDP protocols yields the same result as if you had taken the time to add 
a protocol [ tcp udp ] match condition to the term. A final accept-all term is now added, 
which is in keeping with the filter’s intended use on a transit interface:

[edit firewall filter c1-out]

lab@r4# set term accept-all then accept

You display the completed c1-out firewall filter before proceeding to the section on filter 
application and verification:

[edit firewall filter c1-out]

lab@r4# show

term 1k-icmp {

    from {

        packet-length 1000;

        protocol icmp;

    }

    then discard;

}

term no-spoof {

    from {

        source-address {

            200.200.0.0/16;

        }

    }

    then discard;

}

term ports {

    from {

        destination-port 6000-6010;

    }

    then {

        reject port-unreachable;

    }



Firewall Filters 303

}

term accept-all {

    then accept;

}

Applying and Verifying Transit Firewall Filters

You now apply the transit firewall filters designed for site C1, being careful that you apply them 
in the appropriate direction, as demonstrated in the following commands:

[edit interfaces fe-0/0/0]

lab@r4# set unit 0 family inet filter input c1-in

[edit interfaces fe-0/0/0]

lab@r4# set unit 0 family inet filter output c1-out

After displaying the modified configuration for r4’s fe-0/0/0 interface, the changes are committed:

[edit interfaces fe-0/0/0]

lab@r4# show

unit 0 {

    family inet {

        filter {

            input c1-in;

            output c1-out;

        }

        address 172.16.0.5/30;

    }

}

[edit interfaces fe-0/0/0]

lab@r4# commit

commit complete

Transit filtering verification begins with the determination that initial TCP segments are 
being counted. You start by examining the current counter value for the c1-syns counter:

lab@r4# run show firewall

Filter: c1-out

Filter: c1-in

Counters:

Name                                                Bytes              Packets

c1-syns                                                 0                    0

The c1-syns counter shows that no initial TCP segments have been received on r4’s fe-0/0/0 
interface. You now establish a telnet session to C1 for reasons of initial TCP segment generation:

lab@r4# run telnet 200.200.0.1

Trying 200.200.0.1...



304 Chapter 3 � Firewall Filter and Traffic Sampling

Connected to 200.200.0.1.

Escape character is '^]'.

c1 (ttyp0)

login: lab

Password:

Last login: Wed Feb 12 13:29:31 from 172.16.0.5

--- JUNOS 5.6R1.3 built 2002-03-23 02:44:36 UTC

lab@c1>

Once logged into C1, a telnet session is attempted to r3:

lab@c1> telnet 10.0.3.3

Trying 10.0.3.3...

^C

lab@c1> quit

Connection closed by foreign host.

Note that the failure of the telnet session is expected, considering that r3 has a filter blocking 
telnet requests for any packet with a source addresses not contained within the 10.0/16 aggre-
gate, not to mention that r3 has no route back to the 172.16.0.6 address that C1 used to source 
its telnet request by default. Regardless of the telnet session’s success or failure, some TCP initial 
SYN segments should have been generated by C1, and this knowledge allows you to confirm 
the proper operation of the c1-syns counter as defined in the c1-in firewall filter:

[edit interfaces fe-0/0/0]

lab@r4# run show firewall

Filter: c1-out

Filter: c1-in

Counters:

Name                                                Bytes              Packets

c1-syns                                               120                    2

The count value has incremented by two, providing a strong indication that you have met the 
requirements for TCP connection request counting. Verifying that spoofed packets sent from 
C1 are correctly filtered is difficult because you can not generate packets from C1 that do not 
use a source address from either the 200.200/16 or 172.16.0.4/30 address ranges. For now, you 
can assume that the anti-spoofing aspects of the c1-in filter are functional. You now confirm 
operation of the c1-out filter, starting with the requirement that 1000-byte ICMP packets must 
be filtered:

[edit firewall]

lab@r4# run ping 200.200.0.1 size 1100 count 2



Firewall Filters 305

PING 200.200.0.1 (200.200.0.1): 1100 data bytes

1108 bytes from 200.200.0.1: icmp_seq=0 ttl=255 time=1.248 ms

1108 bytes from 200.200.0.1: icmp_seq=1 ttl=255 time=1.125 ms

--- 200.200.0.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 1.125/1.187/1.248/0.061 ms

The display confirms that packets over 1000 bytes can be sent. In this case, the IP and ICMP 
headers (28 bytes) yield a total packet size of 1128 bytes.

[edit firewall]

lab@r4# run ping 200.200.0.1 size 900 count 2

PING 200.200.0.1 (200.200.0.1): 900 data bytes

908 bytes from 200.200.0.1: icmp_seq=0 ttl=255 time=1.179 ms

908 bytes from 200.200.0.1: icmp_seq=1 ttl=255 time=1.002 ms

--- 200.200.0.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 1.002/1.091/1.179/0.089 ms

Good, ICMP packets smaller than 1000 bytes (928 bytes with Layer 3 encapsulation 
overhead) can also be sent.

[edit firewall]

lab@r4# run ping 200.200.0.1 size 972 count 2

PING 200.200.0.1 (200.200.0.1): 972 data bytes

ping: sendto: Operation not permitted

ping: sendto: Operation not permitted

^C

--- 200.200.0.1 ping statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

With the payload set to 972 bytes, the additional 28 bytes of IP and ICMP overhead yield a 
total packet size of 1000 bytes. The output confirms that these packets are being correctly fil-
tered in accordance with the scenario’s requirements. As was the case with the c1-in filter, it 
will be difficult to verify the operation of the no-spoof term in the c1-out firewall filter. This 
is because you will not be able to generate a packet with a source address from the 200.200/16 
address space at r4 unless you temporarily assign a 200.200/16 address to one of its interfaces. 
Note that the source switch will not create packets with the specified address unless one of the 
router’s interfaces actually owns that address. With these difficulties in mind, you decide to 
forgo verification of the no-spoof term, which brings you to the c1-out filter’s ports term. 
You test this term with the following command, which generates a TCP packet at r5 with the 
destination port set to 6005:

[edit]

lab@r5# run telnet 200.200.0.1 port 6005



306 Chapter 3 � Firewall Filter and Traffic Sampling

Trying 200.200.0.1...

^C

[edit]

lab@r5#

The output indicates that the telnet session failed, but it is not clear whether this failure is the 
result of the c1-out firewall filter on r4, or whether the failure relates to the fact that C1 does 
not offer a telnet service on port 6005. To verify that ICMP port unreachable messages are being 
generated by r4, you open a second telnet session to r5 to facilitate traffic monitoring on its 
so-0/1/0.0 interface while the telnet connection to port 6005 is retried:

[edit]

lab@r5# run monitor traffic interface so-0/1/0

verbose output suppressed, use <detail> or <extensive> for full protocol decode

Listening on so-0/1/0, capture size 96 bytes

12:59:40.625384  In IP 10.0.2.10 > 224.0.0.5:  OSPFv2-hello 48:

   rtrid 10.0.3.4 backbone

12:59:40.845517 Out IP 10.0.2.9 > 10.0.2.10: RSVP Resv Message, length: 128

12:59:41.675217 Out LCP echo request           (type 0x09  id 0x64  len 0x0008)

12:59:41.675787  In LCP echo reply             (type 0x0a  id 0x64  len 0x0008)

12:59:42.911833 Out IP 10.0.3.5.4585 > 200.200.0.1.6005: S 3327432533:

   3327432533(0) win 16384 <mss 4430,nop,wscale 0,nop,nop,timestamp 1114703 0>

   (DF)

12:59:42.912340  In IP 10.0.2.10 > 10.0.3.5: icmp: 200.200.0.1 tcp port 6005

   unreachable

12:59:43.275359 Out IP 10.0.3.5.audio-activmail > 10.0.3.4.bgp: P 128034447:

   128034466(19) ack 2801823782 win 16384 <nop,nop,timestamp 1114740 1446518>:

   BGP, length: 19

12:59:43.375349  In IP 10.0.3.4.bgp > 10.0.3.5.audio-activmail: . ack 19

   win 16384 <nop,nop,timestamp 1449049 1114740>

12:59:43.655368 Out IP 10.0.2.9 > 10.0.2.10: RSVP Hello Message, length: 32

12:59:43.675361  In IP 10.0.2.10 > 10.0.2.9: RSVP Hello Message, length: 32

12:59:44.055338 Out IP 10.0.2.9 > 224.0.0.5:  OSPFv2-hello 48: rtrid 10.0.3.5

   backbone

^C

13 packets received by filter

0 packets dropped by kernel

The highlights in the monitor traffic command’s output confirm that a TCP segment was 
sent to destination port 6005, and that the required ICMP port unreachable message was returned 
by r4. With the confirmation of the ports term, your transit firewall filter verification steps are 
complete.



Firewall Filters 307

Note that the r3-lo0 firewall filter currently in place at r3 prevents the detection 
of ICMP destination unreachable messages because the filter permits only 
ICMP echo–related messages. In this example, choosing to test the ports term 
in the c1-out filter with a telnet session initiated from r3 would have been very 
tricky, because the r3-lo0 filter discards ICMP error messages before they can 
be displayed with the monitor traffic command. This situation could easily 
send a candidate on a wild goose chase based on the misguided belief that r4 
is not generating the appropriate ICMP error message, when in fact it is!

Policing

This section demonstrates a variety of policer applications and the techniques used to verify the 
proper operation of a policer. Policing is used in JUNOS software to rate limit interfaces or 
protocol flows at either Layer 3 or Layer 4. Although policers are often called from within a 
firewall filter, a policer can act as a stand-alone entity, such as in the case of an interface policing 
application where a firewall filter is not used.

To complete this section, you must alter your configurations to meet these criteria:
� Limit the amount of ICMP echo traffic received by r3’s RE to 1Mbps with a 10,000-byte 

burst size.
� Rate limit all traffic using the primary r4–r6 LSP to 500Kbps with a 10,000-byte burst size.
� Assume that there are 254 hosts on the 192.168.1/24 data center subnet. Modify the 

configuration of r3 in accordance with these requirements:
� Limit TCP flows to 1Mbps/50Kbps for all DC hosts.
� Count TCP packets sent to each host.
� Ensure that you count and police only the traffic that is received from the T1 peer.

Configuring ICMP Policing

Your first configuration objective requires that you police the ICMP echo traffic received by 
r3’s RE. In this case, you decide to modify the existing r3-lo0 filter to add the required policing 
functionality. You begin by defining a policer named icmp, taking care that the specified band-
width and burst size parameters are in accordance with the provided stipulations:

[edit firewall]

lab@r3# set policer icmp if-exceeding bandwidth-limit 1M

[edit firewall]

lab@r3# set policer icmp if-exceeding burst-size-limit 10k

[edit firewall]

lab@r3# set policer icmp then discard



308 Chapter 3 � Firewall Filter and Traffic Sampling

The completed policer definition is now displayed:

[edit firewall]

lab@r3# show policer icmp

if-exceeding {

    bandwidth-limit 1m;

    burst-size-limit 10k;

}

then discard;

The next command modified the existing r3-lo0 filter to make use of the newly defined 
policer:

[edit firewall filter r3-lo0 term icmp]

lab@r3# set then policer icmp

[edit firewall filter r3-lo0 term icmp]

lab@r3# delete then accept

The modified icmp term is now displayed:

[edit firewall filter r3-lo0 term icmp]

lab@r3# show

from {

    protocol icmp;

    icmp-type [ echo-reply echo-request ];

}

then {

    policer icmp;

}

Note that removal of the accept action from the icmp term was not strictly necessary. The 
use of a policer is considered an action modifier, and as such, the default action for traffic 
matching the term will become accept unless explicitly negated with a reject or discard 
action. In this case, traffic that exceeds the icmp policer’s limits will be discarded, while traffic 
within the policing profile is handed back to the icmp term, where it is accepted by the implicit 
accept action.

Verifying ICMP Policing

Before committing the changes on r3, you decide to conduct some flood ping testing between 
r5 and r3 so that you can better judge the effects of the ICMP policing configuration that is 
soon to be in place at r3:

[edit firewall]

lab@r5# run ping rapid count 500 size 1200 10.0.3.3

PING 10.0.3.3 (10.0.3.3): 1200 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



Firewall Filters 309

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

--- 10.0.3.3 ping statistics ---

500 packets transmitted, 500 packets received, 0% packet loss

round-trip min/avg/max/stddev = 1.927/2.297/10.233/0.659 ms

The display indicates that none of the 500 pings are lost between r5 and r3 in the absence 
of ICMP policing. You now commit the policer configuration at r3, and repeat the ping test 
from r5 to confirm the effects of ICMP echo policing:

[edit firewall]

lab@r5# run ping rapid count 500 size 1200 10.0.3.3

PING 10.0.3.3 (10.0.3.3): 1200 data bytes

!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!
!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!
!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!!.!!!!!!!!!!.
!!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!
.!!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!
!.!!!!!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!
!!!!!.!!!!!!!!!!.!!!!!!!!!!.!!!!!!!

--- 10.0.3.3 ping statistics ---

500 packets transmitted, 455 packets received, 9% packet loss

round-trip min/avg/max/stddev = 2.065/2.450/9.813/0.942 ms

The output confirms that ICMP echo traffic is now being lost between r5 and r3, which 
provides a good indication that your ICMP policer is working. The final check involves analysis 
of the icmp policer discard count back at r3:

[edit]

lab@r3# run show firewall filter r3-lo0

Filter: r3-lo0

Counters:

Name                                                Bytes              Packets

r3-lo0-rejection                                     8009                  141

Policers:

Name                                              Packets

icmp-icmp                                              45

The highlighted entries confirm that 45 packets have been discarded by the icmp policer, 
which is called by a term that also happens to be named icmp in this example. These results 
conclude the verification steps for the ICMP policing component of this configuration scenario.

Rate Limiting an LSP

The next configuration goal requires that you police the traffic using the primary r4-r6 LSP. 
To achieve this requirement, you can deploy an interface policer for the mpls family to the cor-
rect interface on a transit LSR, which many candidates find to be somewhat tricky. You can not 



310 Chapter 3 � Firewall Filter and Traffic Sampling

police the mpls family at the LSP’s ingress node, because the packets are considered family ip 
until they are actually placed into an LSP, which occurs after any interface policing that may be 
in effect. Note that use of an ip family interface policer at r4 violates the provided criteria, 
because such a configuration would also rate limit traffic that is not actually forwarded through 
the primary r4–r6 LSP.

Note that it is also possible to achieve the specified rate limiting behavior by using a firewall 
filter in conjunction with a policer to rate limit the traffic that is mapped to the r4-r6 LSP at 
r4. In this case, the only route that currently maps to the r4-r6 LSP is the 220.220/16 route 
stemming from C2. Therefore your firewall filter would have to match on destination addresses 
belonging to the 220.220/16 block for subjection to your policer. This example demonstrates 
the interface-based policing approach for the mpls family, because it is the most expedient solution.

You begin by defining the policer at r5, which in this case has been named limit-mpls. You 
have decided to police the LSP at r5 because in this example it is the first transit LSR for the 
primary r4-r6 LSP:

[edit firewall]

lab@r5# set policer limit-mpls if-exceeding bandwidth-limit 500k

[edit firewall]

lab@r5# set policer limit-mpls if-exceeding burst-size-limit 10k

[edit firewall]

lab@r5# set policer limit-mpls then discard

The policer definition is displayed:

[edit firewall]

lab@r5# show policer limit-mpls

if-exceeding {

    bandwidth-limit 500k;

    burst-size-limit 10k;

}

then discard;

The output confirms that the limit-mpls policer is defined in accordance with the provided 
criteria. You need to apply the limit-mpls policer to an appropriate interface on r5 to place 
the policer into service. Use caution to ensure that the policer is applied to an interface at r5 that 
actually handles the r4-r6 LSP, and that the filter is applied in the correct direction, which is 
based on the choice of LSP ingress vs. LSP egress interface at r5. Note that directionality is crit-
ical when dealing with MPLS because LSPs are always unidirectional. In this example, you 
decide to apply the limit-mpls policer to r5’s so-0/1/0.0 interface, which is an ingress interface 
for the LSP. The choice of an LSP ingress interface in turn requires that you apply the policer 
in the input direction for things to work properly. Note that there is no requirement for 
limiting traffic traveling over the r4-r6-prime secondary LSP.

Before applying the mpls family interface policer to r5, the routing of the r4-r6 LSP is verified:

[edit interfaces so-0/1/0]

lab@r5# run show rsvp session detail transit name r4-r6



Firewall Filters 311

Transit RSVP: 5 sessions, 1 detours

10.0.9.6

  From: 10.0.3.4, LSPstate: Up, ActiveRoute: 1

  LSPname: r4-r6, LSPpath: Secondary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: 100005, Recovery label sent: 100005

  Resv style: 1 SE, Label in: 100005, Label out: 100005

  Time left:  193,  Since: Wed Mar  5 15:19:43 2003

  Tspec: rate 2Mbps size 2Mbps peak Infbps m 20 M 1500

  Port number: sender 4 receiver 39454 protocol 0

  PATH rcvfrom: 10.0.2.10  (so-0/1/0.0) 149 pkts

  PATH sentto: 10.0.2.2 (at-0/2/1.0) 316 pkts

  RESV rcvfrom: 10.0.2.2  (at-0/2/1.0) 149 pkts

  Explct route: 10.0.2.2 10.0.2.13

  Record route: 10.0.2.10  <self>  10.0.2.2  10.0.2.13

10.0.9.6

  From: 10.0.3.4, LSPstate: Up, ActiveRoute: 1

  LSPname: r4-r6, LSPpath: Primary

  Suggested label received: -, Suggested label sent: -

  Recovery label received: 100006, Recovery label sent: 3

  Resv style: 1 SE, Label in: 100006, Label out: 3

  Time left:  193,  Since: Wed Mar  5 15:19:43 2003

  Tspec: rate 2Mbps size 2Mbps peak Infbps m 20 M 1500

  Port number: sender 5 receiver 39454 protocol 0

  PATH rcvfrom: 10.0.2.10  (so-0/1/0.0) 149 pkts

  PATH sentto: 10.0.8.5 (fe-0/0/0.0) 2 pkts

  RESV rcvfrom: 10.0.8.5  (fe-0/0/0.0) 4 pkts

  Explct route: 10.0.8.5

  Record route: 10.0.2.10  <self>  10.0.8.5

Total 2 displayed, Up 2, Down 0

The highlights in the display indicate that both the primary and secondary versions of the 
r4-r6 LSP ingress at r5 via its so-0/1/0.0 interface (address 10.0.2.9). Armed with this knowl-
edge, you apply the limit-mpls policer to r5’s so-0/1/0.0 interface in the input direction. Note 
that the choice of a LSP egress interface at r5 would require an output specification for the 
same policer:

[edit interfaces so-0/1/0]

lab@r5# set unit 0 family mpls policer input limit-mpls

The policer’s application is now confirmed:

[edit interfaces so-0/1/0]

lab@r5# show



312 Chapter 3 � Firewall Filter and Traffic Sampling

encapsulation ppp;

unit 0 {

    family inet {

        address 10.0.2.9/30;

    }

    family mpls {

        policer {

            input limit-mpls;

        }

    }

}

Verifying LSP Policing

Before committing the LSP policing changes on r5, you decide to first test the native forwarding 
performance of the r4-r6 LSP so you can better judge the effectiveness of your limit-mpls policer:

[edit]

lab@r4# run traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.2.9 (10.0.2.9)  4.394 ms  0.914 ms  0.806 ms

     MPLS Label=100006 CoS=0 TTL=1 S=1

 2  10.0.8.5 (10.0.8.5)  0.523 ms  0.537 ms  0.495 ms

 3  220.220.0.1 (220.220.0.1)  0.605 ms  0.606 ms  0.590 ms

The traceroute display confirms that packets to 220.220.0.1 are being forwarded through 
the r4-r6 LSP. Flood pings are now generated using the rapid switch:

[edit]

lab@r4# run ping rapid count 500 size 1400 220.220.0.1

PING 220.220.0.1 (220.220.0.1): 1400 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

--- 220.220.0.1 ping statistics ---

500 packets transmitted, 500 packets received, 0% packet loss

round-trip min/avg/max/stddev = 1.628/1.681/9.728/0.525 ms

The output indicates that none of the 500 pings were lost as they transited the r4-r6 LSP on 
their way to C2. The test is repeated after committing the policer configuration at r5:

[edit interfaces so-0/1/0]

lab@r5# commit

commit complete



Firewall Filters 313

[edit interfaces so-0/1/0]

[edit]

lab@r4# run ping rapid count 500 size 1400 220.220.0.1

PING 220.220.0.1 (220.220.0.1): 1400 data bytes

!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!
.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!
!!!!.!!!!!!!!.!!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!
.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!
!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.
!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!!
!!!.!!!!!!!!.!!!!!!!!.!!!!!!!!.!!!!

--- 220.220.0.1 ping statistics ---

500 packets transmitted, 445 packets received, 11% packet loss

round-trip min/avg/max/stddev = 1.629/1.688/9.718/0.418 ms

The results confirm that packets are now being lost within the LSP, and this provides some 
indication that the limit-mpls policer is taking effect. As a final confirmation, you display 
some additional policer-related information at r5:

[edit interfaces so-0/1/0]

lab@r5# run show interfaces policers so-0/1/0

Interface       Admin Link Proto Input Policer         Output Policer

so-0/1/0        up    up

so-0/1/0.0      up    up   inet

                           mpls  so-0/1/0.0-in-policer

Adding the policers switch to a show interfaces command is useful when you want to 
quickly confirm which interfaces have policers applied, and in which directions(s). The next 
command provides statistics for interface-level policers, which prove invaluable when the goal 
is to confirm policer operation:

[edit interfaces so-0/1/0]

lab@r5# run show policer

Policers:

Name                                              Packets

__default_arp_policer__                                 0

so-0/1/0.0-in-policer                                  55

The output confirms that the interface policer has made 55 packet discards. This confirms 
that you have met the specified requirements for LSP policing.

Configuring Prefix-Specific Counting and Policing

The last configuration requirement in this section poses some interesting challenges. To meet the 
stated requirements, you must configure r3 to police and count the TCP flows associated with 
each of the 254 hosts present on the 192.168.1/24 subnet. One possible solution to this dilemma 
involves the creation of a single firewall filter with some 255 terms (254 terms to match on each 



314 Chapter 3 � Firewall Filter and Traffic Sampling

data center host address, and a final term that accepts all other traffic). Note that because in this 
example all hosts are to be policed using the same parameters, all of the terms in such a gargantuan 
firewall filter could point to a common policer definition. However, with time pressures being 
a critical aspect of any lab-based examination, spending the day on a single firewall filter is 
almost certainly a less-than-ideal use of one’s time in the certification lab. The most direct way 
to tackle this problem is to deploy Prefix Specific Counters and Policers (PSCP). PSCP is a 
JUNOS software release 5.6 feature designed to greatly simplify the creation of prefix-specific 
counters and policers, and this is just what this scenario calls for!

You begin your PSCP configuration at r3 with the definition of a policer called dc:

[edit firewall]

lab@r3# set policer dc if-exceeding bandwidth-limit 1M

[edit firewall]

lab@r3# set policer dc if-exceeding burst-size-limit 50K

[edit firewall]

lab@r3# set policer dc then discard

The completed policer is displayed for confirmation:

[edit firewall]

lab@r3# show policer dc

if-exceeding {

    bandwidth-limit 1m;

    burst-size-limit 50k;

}

then discard;

You now define the desired PSCP behavior by creating a prefix-action stanza that evokes 
both policing and counting functionality. Note that this prefix-action set is flagged as being 
filter-specific in this case; this means that the prefix-action set can be evoked only once 
by a given firewall filter, regardless of how many terms in the filter may call the prefix-action 
set. This setting is chosen here because it makes operational analysis simpler. The default term 
specific behavior of a prefix-action set requires the specification of the calling filter’s term 
name when displaying the count and policer values. The following commands define a prefix-
action set called data-center:

[edit firewall]

lab@r3# edit family inet prefix-action data-center

[edit firewall family inet prefix-action data-center]

lab@r3# set count

[edit firewall family inet prefix-action data-center]

lab@r3# set policer dc



Firewall Filters 315

[edit firewall family inet prefix-action data-center]

lab@r3# set destination-prefix-length 32

[edit firewall family inet prefix-action data-center]

lab@r3# set subnet-prefix-length 24

The completed prefix-action set is displayed:

[edit firewall]

lab@r3# show family inet

prefix-action data-center {

    policer dc;

    count;

    filter-specific;

    subnet-prefix-length 24;

    destination-prefix-length 32;

}

The data-center set is configured to count and to police traffic flows, based on the definition 
of the policer called dc. The setting of the subnet-prefix-length to 24 tells the router that 
it should create as many as 256 counters and dc policer instances. Equally important is the 
setting of the destination-prefix-length value of 32, because this setting indicates that a 
policer/counter set should be allocated to each 32-bit destination host address; this setting is 
necessary to achieve the per-host counting and policing behavior required in this scenario. By 
way of comparison, setting the destination-prefix-length to a value of 30 results in the 
sharing of a policer/counter set by every 4 consecutive destination host addresses, and the need 
to create only 64 policer/counter instances.

With the prefix-action set and the dc policer defined, you next create a firewall filter that 
uses destination address and TCP protocol–based match conditions to evoke the data-center 
prefix-action set:

[edit firewall filter dc-pscp]

lab@r3# set term 1 from protocol tcp

[edit firewall filter dc-pscp]

lab@r3# set term 1 from destination-address 192.168.1/24

[edit firewall filter dc-pscp]

lab@r3# set term 1 from source-address 10.0/16 except

[edit firewall filter dc-pscp]

lab@r3# set term 1 from source-address 0/0

[edit firewall filter dc-pscp]

lab@r3# set term 1 then prefix-action data-center



316 Chapter 3 � Firewall Filter and Traffic Sampling

[edit firewall filter dc-pscp]

lab@r3# set term 2 then accept

The completed firewall filter is displayed:

[edit firewall filter dc-pscp]

lab@r3# show

term 1 {

    from {

        source-address {

            10.0.0.0/16 except;

            0.0.0.0/0;

        }

        destination-address {

            192.168.1.0/24;

        }

        protocol tcp;

    }

    then prefix-action data-center;

}

term 2 {

    then accept;

}

In this example, you are only to police and count packets sent to 192.168.1/24 destinations 
when these packets are received from the T1 peer. Note that the example filter is written 
to match on the TCP protocol and destination addresses associated with the 192.168.1/24 
data center subnet. The inclusion of the source-address match condition may or may 
not be necessary, depending on whether the dc-pscp filter is applied as an input filter in 
r3’s fe-0/0/2 interface, versus an output application on its fe-0/0/3 or so-0/2.0.100 interfaces. 
Including the except argument for the 10.0/16 source-address match condition results 
in the declaration of a nonmatch in term 1 for any packet carrying a 10.0/16 source address. 
Note that all other source addresses are considered to match the 0/0 source-address 
declaration. Using except to force a mismatch for selected traffic is a very useful firewall 
filter construct, as demonstrated in this example. Including the source address match criteria 
in the term that calls the data-center prefix action set serves to guarantee that you will 
not inadvertently evoke PSCP functionality for traffic originating within your own AS. The 
added safety net makes the inclusion of the source address match criteria highly recommended 
in this case.

You complete your PSCP configuration by applying the dc-pscp firewall filter in the input 
direction on r3’s fe-0/0/2 interface. Note that you could also apply the filter as an output to r3’s 
fe-0/0/3 and so-0/2/0.100 interfaces with the same results:

[edit interfaces fe-0/0/2]

lab@r3# set unit 0 family inet filter input dc-pscp

Be sure to commit your PSCP changes before proceeding to the confirmation section.



Firewall Filters 317

Verifying Prefix-Specific Counting and Policing

You begin the verification of your PSCP configuration by confirming the presence of 256 unique 
counters and policers on r3:

[edit]

lab@r3# run show firewall prefix-action-stats filter dc-pscp prefix-action
   data-center

Filter: dc-pscp

Counters:

Name                                                Bytes              Packets

data-center-0                                           0                    0

data-center-1                                           0                    0

. . .

data-center-253                                         0                    0

data-center-254                                         0                    0

data-center-255                                         0                    0

     h

Name                                              Packets

data-center-0                                           0

data-center-1                                           0

. . .

data-center-254                                         0

    h

The truncated display confirms that the required number of policers and counters (254) are 
present. In this configuration, two counters and policers will never be used; this is because they 
index the unassigned all 0s or all 1s host IDs on the 192.168.1/24 subnet. You now verify 
policing and counting functionality by generating TCP traffic from the T1 router. Note that 
traffic generated locally at r3 will not be counted or policed, even if the dc-pscp filter is applied 
as an output filter to its fe-0/0/3 or so-0/2/0.100 interfaces:

lab@T1-P1> telnet 192.168.1.1 source 130.130.0.1

Trying 192.168.1.1...

Connected to 192.168.1.1.

Escape character is '^]'.

dc (ttyp0)

login: lab

Password:

Last login: Mon Mar 17 02:31:14 from 10.0.2.14

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@dc> quit



318 Chapter 3 � Firewall Filter and Traffic Sampling

Connection closed by foreign host.

lab@T1-P1> telnet 192.168.1.10 source 130.130.0.1

Trying 192.168.1.10...

^C

lab@T1-P1>

The routers in the test bed are now running the 5.6R2.4 version of JUNOS 
software, which became available while this section was being written.

In this example, it is critical that you source the telnet connection from the T1 router’s 
loopback address. This is necessary because the 172.16.0.12/30 subnet is not being advertised 
within your AS, which leaves r3 as the only router capable of routing to this prefix. Note that 
a connection attempt is made to two different host IDs on the 192.168.1/24 subnet. Because 
host ID 192.168.1.10 does not actually exist in the current test bed, the connection attempt fails 
and is aborted by the operator. The rationale for making two telnet attempts is to verify that 
each host address on the 192.168.1/24 subnet is being tracked by a unique set of counters. You 
confirm the correct counting behavior at r3 with the following command:

[edit]

lab@r3# run show firewall prefix-action-stats filter dc-pscp prefix-action
   data-center

Filter: dc-pscp

Counters:

Name                                                Bytes              Packets

data-center-0                                           0                    0

data-center-1                                        2410                   43

data-center-2                                           0                    0

data-center-3                                           0                    0

data-center-4                                           0                    0

data-center-5                                           0                    0

data-center-6                                           0                    0

data-center-7                                           0                    0

data-center-8                                           0                    0

data-center-9                                           0                    0

data-center-10                                        120                    2

data-center-11                                          0                    0

data-center-12                                          0                    0

. . .

The edited display uses added highlights to call out the correct operation of per-prefix counters. 
Though not shown, all policer discard counters are still at 0 because the telnet application did 



Firewall Filters 319

not generate enough traffic to instigate policer discards. To test policing, an FTP session is 
initiated; note that the interface switch is used to source the FTP session from T1’s loopback 
address:

lab@T1-P1> ftp interface lo0 192.168.1.1

Connected to 192.168.1.1.

220 dc FTP server (Version 6.00LS) ready.

Name (192.168.1.1:lab):

331 Password required for lab.

Password:

230 User lab logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> mput jbun*

mput jbundle-5.2B3.1-domestic.tgz? y

200 PORT command successful.

150 Opening BINARY mode data connection for 'jbundle-5.2B3.1-domestic.tgz'.

  0% |                                                                               
  |   166 KB    06:59 ETA 

^C

send aborted

waiting for remote to finish abort.

226 Transfer complete.

219136 bytes sent in 4.30 seconds (49.79 KB/s)

Continue with mput? n

ftp> quit

221 Goodbye.

This example made use of an FTP put operation because a get function will not generate 
enough data to evoke policing in the T1 to the data center router direction. The presence of 
policer drops is verified at r3:

[edit]

lab@r3# ...on-stats filter dc-pscp prefix-action data-center | find policer

Policers:

Name                                              Packets

data-center-0                                           0

data-center-1                                          29

data-center-2                                           0

data-center-3                                           0

data-center-4                                           0

. . .

As expected, policer-induced drops are now evident at r3. A careful candidate will take some 
time to confirm the accuracy of their firewall filter’s classification behavior by confirming that 



320 Chapter 3 � Firewall Filter and Traffic Sampling

non-TCP traffic is neither counted nor policed:

lab@r3> clear firewall all

lab@r3>

After clearing all firewall counters on r3, some traceroutes and pings are performed at the 
T1 router:

lab@T1-P1> traceroute 192.168.1.1 source 130.130.0.1

traceroute to 192.168.1.1 (192.168.1.1) from 130.130.0.1, 30 hops max,
   40 byte packets

 1  172.16.0.13 (172.16.0.13)  0.533 ms  0.293 ms  0.276 ms

 2  10.0.2.13 (10.0.2.13)  0.236 ms  0.191 ms  0.190 ms

 3  192.168.1.1 (192.168.1.1)  0.402 ms  0.328 ms  0.324 ms

lab@T1-P1> traceroute 192.168.1.1 source 130.130.0.1

traceroute to 192.168.1.1 (192.168.1.1) from 130.130.0.1, 30 hops max,
   40 byte packets

 1  172.16.0.13 (172.16.0.13)  0.418 ms  0.289 ms  0.276 ms

 2  10.0.2.13 (10.0.2.13)  0.222 ms  0.193 ms  0.189 ms

 3  192.168.1.1 (192.168.1.1)  0.396 ms  0.329 ms  0.326 ms

lab@T1-P1> ping count 3 source 130.130.0.1 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seq=0 ttl=251 time=0.510 ms

64 bytes from 192.168.1.1: icmp_seq=1 ttl=251 time=0.375 ms

64 bytes from 192.168.1.1: icmp_seq=2 ttl=251 time=0.412 ms

--- 192.168.1.1 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.375/0.432/0.510/0.057 ms

After the generation of ICMP and UDP-based traffic streams, you display the PSCP counters at r3:

[edit]

lab@r3# run show firewall prefix-action-stats filter dc-pscp prefix-action
   data-center

Filter: dc-pscp

Counters:

Name                                                Bytes              Packets

data-center-0                                           0                    0

data-center-1                                           0                    0

data-center-2                                           0                    0

. . .

As expected, the PSCP have not incremented, proving that the dc-pscp filter is selectively acting 
on the TCP protocol only. These results conclude the verification of PSCP functionality at r3.



Filter Based Forwarding 321

Firewall Filter Summary

JUNOS software firewall filters offer a rich set of Layer 3 and Layer 4 packet-matching criteria 
that can be used to match on specific traffic for the purposes of counting, policing, multi-field 
classification, or plain old packet filtering. Because you can apply only one firewall filter per 
direction on a given logical unit, firewall filters require the use of terms, unlike routing policies, 
which can be applied in a daisy-chain fashion.

JUNOS software firewall filters end with an implicit deny-all term. Failing to take this final 
term into account can spell disaster, especially when the intent is to write a permissive style of 
filter. You can override this default action with an explicit accept-all term as needed. It is a 
good idea to add logging functionality to new filters so that you can readily determine if the 
filter is taking unexpected actions on your traffic. Making use of the commit confirmed switch 
when committing firewall-related changes is always a good idea, because mistakes might otherwise 
leave you locked out of the router!

Note that using an action modifier, such as count, changes the corresponding term’s action 
from implicit discard to implicit accept. If this behavior is not desired, you can add an explicit 
reject or discard action to the term, or you can use the next-term option to either filter the 
traffic or cause continued firewall filter evaluation.

You must apply a firewall filter to one or more router interfaces before the filter can take 
effect. For protection of the local RE, you should apply the filter to the router’s lo0 interface. 
Make sure that you accommodate routing, signaling, and remote access protocols when writing 
a firewall filter that is intended to protect the router’s RE, or be prepared to suffer the conse-
quences! The direction in which the filter is applied can have a significant impact on the overall 
results, so make sure that you understand any directional constructs in the filter before you 
decide to apply a filter as input, output, or both.

M-series and T-series platforms support leaky bucket–based policing through the power 
of the IP II processor. Policing is used to rate limit an interface or particular protocol flows. 
A policer can be called from within a firewall filter, or the policer can be applied directly 
to an interface; the former approach is normally used when the goal is to police a particular 
Layer 3 or Layer 4 flow. Starting with JUNOS software release 5.6, you can make use of 
prefix-specific counters and policers (PSCPs) to simplify the act of gathering usage statistics, 
and enforcing bandwidth restrictions, on a large number of individual prefixes. Using 
PSCP is far simpler than trying to configure hundreds, if not thousands, of terms in a firewall 
filter.

Filter Based Forwarding
This section demonstrates how a JUNOS software firewall filter can be used to facilitate 
policy-based routing. Policy-based routing refers to the ability to route packets based on factors 
other than longest match lookups against the destination address. By way of example, consider 
a policy that requires all traffic using TCP port 80 (HTTP) to be sent over one set of links while 
packets not using port 80 are routed over a different set of links, even though both sets of packets 
might carry the same destination address.



322 Chapter 3 � Firewall Filter and Traffic Sampling

JUNOS software refers to policy-based routing as Filter Based Forwarding (FBF). FBF is so 
named because it makes use of firewall filter–based packet classification to index matching traffic 
against a particular routing instance. Once matched to a particular routing instance, a conven-
tional longest-match lookup is performed against the packet’s destination address and matched 
to any routes that are present in that particular instance’s routing table. In most cases, a FBF 
routing instance will be populated with one or more static routes that are designed to direct the 
packet out an egress interface that differs from that which would have been selected by the router’s 
main routing instance.

To complete this configuration task, you must modify the configuration at r4 to meet these 
criteria:
� Ensure that r4 forwards all HTTP traffic received from C1 over the 10.0.2.4/30 subnet to r3.
� Ensure that r4 forwards all UDP traffic received from C1 over the 10.0.2.8/30 subnet to r5.
� Do not alter forwarding behavior for any other traffic.

Configuring FBF

A functional FBF configuration requires the configuration of routing instances, RIB groups for 
interface route resolution, and a firewall filter to classify and direct traffic to the desired routing 
instance.

Configuring Routing Instances and RIB Groups

You begin your FBF configuration task by creating the two routing instances required by the 
need for specialized treatment of HTTP versus UDP traffic. The first set of commands creates 
a routing instance called http, and defines a static default route identifying r3’s 10.0.2.5 address 
as the next hop:

[edit]

lab@r4# edit routing-instances http

[edit routing-instances http]

lab@r4# set instance-type forwarding

[edit routing-instances http]

lab@r4# set routing-options static route 0/0 next-hop 10.0.2.5

The completed forwarding instance is now displayed:

[edit routing-instances http]

lab@r4# show

instance-type forwarding;

routing-options {

    static {

        route 0.0.0.0/0 next-hop 10.0.2.5;

    }

}



Filter Based Forwarding 323

Similar commands are now entered to define a routing instance called udp. Note that the 
next hop used for the udp instance’s default route directs packets over the 10.0.2.8/30 subnet 
to r5. The completed udp routing instance is now shown:

lab@r4# show

instance-type forwarding;

routing-options {

    static {

        route 0.0.0.0/0 next-hop 10.0.2.9;

    }

Your next configuration step involves the use of rib-groups to install interface routes into 
each forwarding instance. The presence of interface routes is required in each routing instance to 
accommodate next hop resolution for the static default route. The following commands create 
an interface RIB group for the inet family called interfaces, and then link the interfaces 
RIB group with the main routing instance and both of the new forwarding instances on r4:

[edit routing-options]

lab@r4# set interface-routes rib-group inet interfaces

[edit routing-options]

lab@r4# set rib-groups interfaces import-rib [inet.0 http.inet.0 udp.inet.0]

In this example, the use of [] characters allowed the specification of all RIBs that should 
receive the interface routes using a single command line. You could have also entered each 
import-rib value separately if desired. Note that you should always list the main routing 
instance as the first import RIB, as shown in these examples. The modified routing-options 
stanza is displayed next with highlights added to call out new additions:

[edit routing-options]

lab@r4# show

interface-routes {

    rib-group inet interfaces;

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

rib-groups {

    interfaces {

        import-rib [ inet.0 http.inet.0 udp.inet.0 ];

    }



324 Chapter 3 � Firewall Filter and Traffic Sampling

}

autonomous-system 65412;

You decide to commit the changes made thus far to confirm that interface routes have been 
correctly installed into each routing instance:

[edit routing-options]

lab@r4# run show route table http

http.inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[Static/5] 00:00:05

                    > to 10.0.2.5 via so-0/1/0.100

10.0.1.0/24        *[Direct/0] 00:00:05

                    > via fxp0.0

10.0.1.4/32        *[Local/0] 00:00:05

                      Local via fxp0.0

10.0.2.4/30        *[Direct/0] 00:00:05

                    > via so-0/1/0.100

10.0.2.6/32        *[Local/0] 00:00:05

                      Local via so-0/1/0.100

10.0.2.8/30        *[Direct/0] 00:00:05

                    > via so-0/1/1.0

10.0.2.10/32       *[Local/0] 00:00:05

                      Local via so-0/1/1.0

10.0.2.16/30       *[Direct/0] 00:00:05

                    > via fe-0/0/3.0

10.0.2.18/32       *[Local/0] 00:00:05

                      Local via fe-0/0/3.0

10.0.3.4/32        *[Direct/0] 00:00:05

                    > via lo0.0

10.0.4.8/30        *[Direct/0] 00:00:05

                    > via fe-0/0/1.0

10.0.4.9/32        *[Local/0] 00:00:05

                      Local via fe-0/0/1.0

10.0.4.16/30       *[Direct/0] 00:00:05

                    > via fe-0/0/2.0

10.0.4.17/32       *[Local/0] 00:00:05

                      Local via fe-0/0/2.0

172.16.0.4/30      *[Direct/0] 00:00:05

                    > via fe-0/0/0.0

172.16.0.5/32      *[Local/0] 00:00:05



Filter Based Forwarding 325

The output relating to the http instance confirms the presence of interface routes, and also 
shows that the static default route is marked as an active route. Note that the so-0/1/0.100 
interface must be present in the http instance before the static default route can be considered 
usable. The presence of the so-0/1/0.100 interface is highlighted in the capture. Although it is not 
shown, you may assume that the display associated with the udp instance is similar to that shown 
for the http instance, and that the udp instance’s static default route is also active.

Modifying Firewall Filter for FBF

With the forwarding instances on r4 ready to go, you now modify the c1-in firewall filter to 
direct HTTP and UDP traffic to the corresponding forwarding instance. The modified c1-in 
firewall filter is displayed with the changes highlighted:

[edit]

lab@r4# show firewall filter c1-in

term 1 {

    from {

        protocol tcp;

        tcp-initial;

    }

    then {

        count c1-syns;

        next term;

    }

}

term 2 {

    from {

        source-address {

            0.0.0.0/0;

            200.200.0.0/16 except;

            172.16.0.6/32 except;

        }

    }

    then discard;

}

term 3 {

    from {

        protocol tcp;

        port 80;

    }

    then routing-instance http;

}



326 Chapter 3 � Firewall Filter and Traffic Sampling

term 4 {

    from {

        protocol udp;

    }

    then routing-instance udp;

}

term 5 {

    then accept;

}

Besides the obvious changes reflected in terms 3 through 5, note that the source address 
verification term has been modified to deny all source addresses, except those associated with 
site C1. The change in term 2 necessitates the addition of an accept-all term at the end of the 
c1-in filter to ensure that transit traffic is not erroneously filtered. Note that terms 3 and 4 are 
used to direct matching traffic to a particular forwarding instance. The use of port http, as 
opposed to destination-port or source-port, is intentional because your requirements 
state that all HTTP traffic received from C1 should be forwarded to r3. The use of the port key-
word ensures that HTTP request and response traffic, as associated with clients and servers, will 
be forwarded to r3 as required.

Verifying FBF

Once the changes are committed at r4, you can verify that FBF is working by comparing the 
forwarding path taken by traffic that is associated with the main, http, or udp routing instances. 
Traceroute testing makes verification of the UDP aspects of your FBF scenario easy; this is 
because JUNOS software uses a UDP-based version of the traceroute utility, and because trace-
route exists for the purpose of identifying the forwarding path taken by a packet. You begin FBF 
verification by determining how r4 normally routes packets that are addressed to T1:

[edit]

lab@r4# run show route 130.130.0.1

inet.0: 126882 destinations, 126897 routes (126882 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

130.130.0.0/16     *[BGP/170] 01:52:10, MED 0, localpref 100, from 10.0.3.3

                      AS path: 65222 I

                    > via so-0/1/0.100

http.inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[Static/5] 00:27:26

                    > to 10.0.2.5 via so-0/1/0.100



Filter Based Forwarding 327

udp.inet.0: 16 destinations, 16 routes (16 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[Static/5] 00:11:04

                    > to 10.0.2.9 via so-0/1/1.0

The output is quite telling. From the display, you can see that when the main routing instance 
is used, packets addressed to 130.130.0.1 will be sent to r3 over the so-0/1/0.100 interface. The 
highlights also show that, should the udp routing instance be consulted, the same packet will
be sent to r5 using the so-0/1/1.0 interface. Assuming for the moment that the c1-in fire-
wall filter is written to correctly match on and direct traffic to the correct routing instance, then 
all should be well for your FBF configuration. A quick traceroute from C1 confirms that you 
have met the UDP-related requirements for this scenario:

lab@c1> traceroute 130.130.0.1 source 200.200.0.1

traceroute to 130.130.0.1 (130.130.0.1) from 200.200.0.1, 30 hops max,
   40 byte packets

 1  172.16.0.5 (172.16.0.5)  0.417 ms  0.293 ms  0.279 ms

 2  10.0.2.9 (10.0.2.9)  0.351 ms  0.300 ms  0.296 ms

 3  10.0.2.2 (10.0.2.2)  0.491 ms  0.648 ms  0.709 ms

 4  130.130.0.1 (130.130.0.1)  0.581 ms  0.689 ms  0.705 ms

The traceroute display clearly shows that r5 is in the forwarding path for the traceroute 
between C1 and T1, despite the main instance on r4 showing that such a packet would normally 
be sent directly to r3. Verifying that HTTP traffic is being correctly shunted to r3 is possible, 
assuming you can generate HTTP traffic from C1. In this case, confirmation is provided by 
monitoring traffic on r5’s at-0/2/1 interface while you attempt to load a (nonexistent) config-
uration file from r5 using a URL that identifies HTTP as the transport protocol. The key point 
here is that r4 normally forwards to r5’s lo0 address using its so-0/1/1.0 interface. Therefore, 
the presence of HTTP traffic, as generated by C1, on r5’s at-0/2/1 interface provides a strong 
indication that your HTTP-related FBF configuration is working within the provided guidelines. 
The following captures show the HTTP load request at C1, along with the traffic monitoring 
output seen at r5 when the command is issued at C1:

[edit]

lab@c1# load merge http://10.0.3.5/test

fetch: /var/home/lab/...transferring.file.........JBCVZ2/test: Operation timed out

error: file-fetch failed

load complete (1 errors)

The error in the file load is to be expected, considering that r5 does not provide HTTP 
services, and even if it did, the test file does not exist. Regardless of the completion status, the 
command should have generated HTTP traffic from C1 to 10.0.3.5, which is good enough for 
the verification of your FBF setup. The next capture shows the traffic monitoring output obtained 
at r5’s at-0/2/0 interface:

[edit]

lab@r5# run monitor traffic interface at-0/2/1 matching tcp



328 Chapter 3 � Firewall Filter and Traffic Sampling

verbose output suppressed, use <detail> or <extensive> for full protocol decode

Listening on at-0/2/1, capture size 96 bytes

13:57:27.239982  In IP 10.0.2.2 > 10.0.2.1: RSVP Hello Message, length: 32

                         0200 0000 45c0 0034 48d8 0000 012e 5802

                         0a00 0202 0a00 0201 1014 dee8 0100 0020

                         000c 1601 f1fa 4d19 5089 e72a 000c 8301

                         0000 0000 0000 0000

13:57:27.259454 Out IP 10.0.2.1 > 10.0.2.2: RSVP Hello Message, length: 32

. . .

13:57:30.068307  In IP 172.16.0.6.3538 > 10.0.3.5.http: S 1013026747:

   1013026747(0) win 16384 <mss 1460,nop,wscale 0,nop,nop,timestamp 10353920 0>

   (DF)

                         0200 0000 4500 003c 98f8 4000 3e06 eaa8

                         ac10 0006 0a00 0305 0dd2 0050 3c61 8fbb

                         0000 0000 a002 4000 7a10 0000 0204 05b4

                         0103 0300 0101 080a 009d fd00 0000 0000

13:57:31.570227  In IP 10.0.3.3 > 10.0.9.7: RSVP Path Message, length: 228

                         0200 0000 46c0 00fc 48f5 0000 ff2e bc10

                         0a00 0303 0a00 0907 9404 0000 1001 . . .

^C

16 packets received by filter

0 packets dropped by kernel

The highlighted entry confirms that the HTTP request that was generated by C1 was routed 
through r3, by virtue of its arrival at r5’s at-0/2/1 interface. This result, combined with the 
UDP-related verification steps, confirms that you have met all stipulations for the FBF configu-
ration example.

Note that at the time of this writing, the ability to filter output from the monitor 
traffic command with the matching switch was not working. This is a known 
issue, and a problem report (pr 13559) is already on file. This issue is caused by 
the fact that Layer 2 headers are striped from the frames as they arrive at the 
I/O manager ASIC in the FPC. You can work around this issue by escaping to a 
shell and running tcpdump with the -w switch, which causes the traffic to be 
written to the filename specified. During this process, pseudo Layer 2 headers 
are added to the frames to permit decode and analysis with external protocol 
analysis equipment. Once written to a file, tcpdump can also be used to analyze 
with functional protocol filtering. You must be root to run tcpdump from the 
shell. The lack of a functional filter mechanism accounts for the presence of 
RSVP traffic (IP-based) alongside the HTTP (TCP)-based traffic, despite inclusion 
of the matching tcp argument.



Traffic Sampling 329

Filter Based Forwarding Summary

Filter Based Forwarding accommodates policy-defined routing through the creation of specific 
forwarding instances that direct packets over paths that differ from the forwarding decision of 
the main instance. You should consider using FBF whenever you are required to route packets 
using criteria other than their destination address.

For proper operation, you must configure a forwarding instance under routing-instances, 
and populate this instance with one or more static routes that direct traffic to the desired next 
hop. You need to use RIB groups to install interface routes into each forwarding instance for 
next hop resolution purposes. Traffic is then directed to a particular forwarding instance 
through the use of firewall filter–based classification.

Note that only input firewall filters can be used for FBF; this is because the forwarding decision 
for a given packet is already been made by the time it encounters any output filters that may exist.

Traffic Sampling
Firewall filters are also used to identify traffic as a candidate for sampling. Sampling allows for the 
statistical analysis of the type and quantity of packets that are flowing across a given point in a service 
provider’s network. Service providers can use the information gleaned from statistical analysis to 
derive traffic benchmarks that are later used to provide early detection of aberrant traffic patterns, 
which may signal a DDoS attack. Statistical analysis of traffic patterns is also used for the purposes 
of capacity planning and BGP peering negotiations. Sampled traffic can be stored locally on the 
router, or can be exported to a remote machine running Cisco’s NetFlow or CAIDA’s (Cooperative 
Association for Internet Data Analysis) cflowd and/or cfdcollect applications. For more information 
on the CAIDA tools, visit their website at www.caida.org/tools/measurement/cflowd/.

Note that conventional traffic sampling does not store the entire packet. Instead, the goal of 
sampling is to store enough information from the packet headers to allow the characterization 
of a given flow. A flow is identified by parameters including source and destination addresses, 
transport protocol, and application ports. A related JUNOS software feature called port-
mirroring allows complete copies of sampled packets to be sent out a mirroring interface, 
where the mirrored traffic can be stored (and analyzed) using off-the-shelf protocol analysis 
equipment. Port mirroring is normally used for law enforcement wiretap applications where the 
entire contents of the packet must be stored for subsequent analysis.

This section provides typical JNCIE-level traffic sampling and port mirroring configuration 
scenarios.

Traffic Sampling

You begin this configuration scenario by modifying r5’s configuration in accordance with these 
requirements:
� Sample 1 percent of the ICMP traffic arriving at r5’s transit interfaces.
� Store the samples locally in a file called icmp-sample.
� Configure the sampling file to be 15MB, and allow seven archived copies.



330 Chapter 3 � Firewall Filter and Traffic Sampling

Configuring Sampling

You begin the sampling configuration by defining a sampling stanza on r5 in accordance with 
the requirements posed in this example:

[edit forwarding-options]

lab@r5# set sampling input family inet rate 100

[edit forwarding-options]

lab@r5# set sampling output file filename icmp-sample

[edit forwarding-options]

lab@r5# set sampling output file files 8

[edit forwarding-options]

lab@r5# set sampling output file size 15M

The resulting sampling stanza is now displayed:

[edit forwarding-options]

lab@r5# show

sampling {

    input {

        family inet {

            rate 100;

        }

    }

    output {

        file filename icmp-sample files 8 size 15m;

    }

}

In this example, the sampling rate has been set to 1 sample for every 100 candidates, which 
equates to the specified 1% sampling rate. The default run-length parameter of 0 is in effect, 
which indicates that no additional packets are sampled after a given trigger event. Overriding 
the default by setting the run-length parameter to a non-zero value results in the sampling 
of the specified number of consecutive packets after each sampling event is triggered. The output 
portion of the sampling stanza has been configured to write to a file called icmp-sample, 
which is allowed to be up to 15MB in length. In keeping with the provided criteria, a total of 
8 files will be maintained: the 7 archived copies and the active sampling file.

Your next command set defines a firewall filter that evokes a sampling action modifier for 
ICMP traffic:

[edit]

lab@r5# edit firewall filter sample-icmp



 

Traffic Sampling

 

331

 

[edit firewall filter sample-icmp]

lab@r5# 

 

set term 

 

1

 

 from protocol icmp

 

[edit firewall filter sample-icmp]

lab@r5# 

 

set term 

 

1

 

 then sample

 

[edit firewall filter sample-icmp]

lab@r5# 

 

set term 

 

2

 

 then accept

 

The resulting 

 

sample-icmp

 

 filter is displayed:

 

[edit firewall filter sample-icmp]

lab@r5# 

 

show

 

term 1 {

    from {

        protocol icmp;

    }

    then sample;

}

term 2 {

    then accept;

}

 

The 

 

sample-icmp

 

 firewall filter is rather basic. The key difference between this filter and 
others that have been demonstrated previously in this chapter is the use of the 

 

sample

 

 action 
modifier. Note that term 2 provides an 

 

accept-all

 

 action that is required to ensure that 
network disruption will not result from the application of the filter.

Your next command applies the 

 

sample-icmp

 

 filter to 

 

all

 

 of 

 

r5

 

’s interfaces, both transit and 
OoB. Failing to apply the sampling filter to the router’s fxp0 interface might result in exam 
point loss, as the instructions state that you must sample all of the traffic arriving at 

 

r5

 

. Also 
note that the filter is applied as an input in accordance with the goal of sampling traffic that 

 

arrives

 

 at 

 

r5

 

. Using the filter as an output results in sampling of the ICMP traffic that 

 

egresses

 

 

 

r5

 

 and this is not the goal of this configuration exercise.
You begin by quickly confirming that no other input firewall filters exist at 

 

r5

 

, because you 
can apply only one filter per direction per logical interface. Note that sampling does not function 
for traffic flowing on the router’s fxp0 OoB management port. The presence of existing input 
filters would require modifying the existing filter to include the sampling functionality that is 
now required:

 

[edit]

lab@r5# 

 

show interfaces | match filter

 

[edit]

lab@r5#



332 Chapter 3 � Firewall Filter and Traffic Sampling

The lack of output indicates that you are free to apply the sample-icmp filter to any of r5’s 
interfaces without concern that you might overwrite an existing filter application. Armed with 
this knowledge, you apply the sample-icmp filter to all interfaces in use at r5:

[edit interfaces]

lab@r5# set at-0/2/1 unit 0 family inet filter input sample-icmp

[edit interfaces]

lab@r5# set so-0/1/0 unit 0 family inet filter input sample-icmp

[edit interfaces]

lab@r5# set fe-0/0/0 unit 0 family inet filter input sample-icmp

[edit interfaces]

lab@r5# set fe-0/0/1 unit 0 family inet filter input sample-icmp

To save space, the filter’s application is confirmed only on the router’s fe-0/0/0 interface:

[edit interfaces]

lab@r5# show fe-0/0/0

unit 0 {

    family inet {

        filter {

            input sample-icmp;

        }

        address 10.0.8.6/30;

    }

    family mpls;

}

You should commit your changes when you are satisfied that the filter has been correctly 
applied to all of r5’s transit and OoB interfaces.

Verifying Sampling

The verification of sampling begins with confirmation of a local log file named icmp-sample:

lab@r5> show log /var/tmp/icmp-sample

# Mar  7 15:31:18

#          Dest             Src  Dest   Src Proto  TOS   Pkt  Intf    IP   TCP

#          addr            addr  port  port              len   num  frag flags

Note that the sampling log is located at /var/tmp, as opposed to /var/log, where most 
other log files are stored. The location of the sampling file can not be changed, which means you 
have to specify the full path when viewing its contents. At this time, the sampling file is empty. 
This could indicate that something is broken, or it might simply mean that no ICMP traffic is 
arriving at R5 to be sampled. To confirm, you generate a known number of pings that are 



Traffic Sampling 333

known to either transit or terminate at r5. You start with a traceroute that confirms r5 is in the 
forwarding path for the destination address chosen:

[edit]

lab@r4# run traceroute 10.0.9.6

traceroute to 10.0.9.6 (10.0.9.6), 30 hops max, 40 byte packets

 1  10.0.2.17 (10.0.2.17)  0.582 ms  0.457 ms  0.401 ms

 2  10.0.8.9 (10.0.8.9)  0.649 ms  0.626 ms  0.591 ms

 3  10.0.9.6 (10.0.9.6)  0.551 ms  0.528 ms  0.507 ms

The highlighted entry confirms r5’s presence in the forwarding path between r4 and r6. 
Your next command generates 1000 rapid pings to r6:

[edit]

lab@r4# run ping rapid count 1000 10.0.9.6

PING 10.0.9.6 (10.0.9.6): 56 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!. . .

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!

--- 10.0.9.6 ping statistics ---

1000 packets transmitted, 1000 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.512/0.607/9.831/0.880 ms

With a known quantity of ICMP traffic hitting r5, you expect to see approximately 10 samples 
(1% of 1000) in the icmp-sample log file:

lab@r5> show log /var/tmp/icmp-sample

# Mar  7 15:31:18

#          Dest             Src  Dest   Src Proto  TOS   Pkt  Intf    IP   TCP

#          addr            addr  port  port              len   num  frag flags

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0



334 Chapter 3 � Firewall Filter and Traffic Sampling

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

      10.0.2.18        10.0.9.6     0     0     1  0x0    84     5   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

       10.0.9.6       10.0.2.18     0     0     1  0x0    84     6   0x0   0x0

The entries confirm that the sampling daemon is writing to the file, but there appears to 
be a fair bit more than the 10 samples expected. Closer analysis of the entries confirm why 
there are many more samples than initially anticipated; the ICMP echo reply traffic from r6 
back to r4 is also hitting r5, which brings the total count of ICMP packets arriving at r5 
to 2000. The astute reader will note that there are in fact 25 samples, which is still slightly 
higher than the theoretical 20 samples that should have occurred with the configured 1% 
sampling rate:

lab@r5> show log /var/tmp/icmp-sample | match 10 | count

Count: 25 lines

The disparity in the sample count results from the fact that JUNOS software intentionally 
dithers the sampling trigger to ensure greater statistical accuracy. Put another way, the sampling 
rate that is configured represents the nominal sampling rate over a large number of sampling 
events; in other words, it is an average sampling rate. As with any form of statistics, the outcome 
becomes increasingly accurate as the sample population is increased. By way of example, after 
another 1000 pings are sent from r4 to r6, the sampling count is now spot-on for a 1% sampling 
of 4000 packets:

lab@r5> show log /var/tmp/icmp-sample | match 10 | count

Count: 40 lines

The only real way to verify the archive settings for your sampling file is to fill up the logs so 
that you can actually confirm the size of each file along with the total file count. In this case, the 
log file–related portion of the configuration is pretty straightforward, so the assumption is made 
that you have correctly configured the sampling file size and archive count in accordance with 
the restrictions posed. You would need to generate a lot of ICMP traffic to fill even one sampling 
log file with a size of 15MB, at least with the current 1% sampling rate!

Cflowd Export

Sampled traffic can be exported to a remote host running cflowd in the form of flow records. 
This capability functions in a manner similar to NetFlow, as supported on Cisco routing 
platforms. A cflowd collector can be used to accumulate flow records from multiple cflowd 
collection points, with the resulting data files subjected to analysis by a variety of shareware and 
commercial tools.



Traffic Sampling 335

While the installation and configuration of cflowd applications on a UNIX machine is beyond 
the scope of this book, a JNCIE candidate should be prepared to configure flow record export 
to a host that is preconfigured to support the cflowd application.

Configuring Cflowd Export

To complete this section, you must modify the configuration at r5 to meet these requirements:
� Export cflowd version 8 flow records, aggregated by protocol and port.
� Send the records to 10.0.1.201 using port 5000.

You begin by deleting the existing output portion of the sampling stanza on r5:

[edit forwarding-options sampling]

lab@r5# delete output

You now issue the commands needed to define cflowd export according to the parameters 
provided:

[edit forwarding-options sampling]

lab@r5# set output cflowd 10.0.1.201 port 5000

[edit forwarding-options sampling]

lab@r5# set output cflowd 10.0.1.201 version 8

[edit forwarding-options sampling]

lab@r5# set output cflowd 10.0.1.201 aggregation protocol-port

The modified output stanza is viewed:

lab@r5# show output

cflowd 10.0.1.201 {

    port 5000;

    version 8;

    aggregation {

        protocol-port;

    }

}

The output stanza on r5 correctly identifies the cflowd host, UDP port number, and the 
support of version 8 flow records with aggregation based on protocol and port. Satisfied with 
your work thus far, you commit the changes and proceed to the verification section.

Verifying Cflowd Export

Verifying cflowd export can be tricky when you do not have access to the cflowd host or an 
external protocol analyzer. The fact that flow records are sent about every 3 minutes also 
complicates your verification task. Based on the address of the cflowd host, the records should 
be sent out r5’s fxp0 interface. You could monitor the traffic on this interface looking for a 



336 Chapter 3 � Firewall Filter and Traffic Sampling

message that is sent about every 60 seconds to host 10.0.1.201 using port 5000 to confirm that 
flow records are being sent. A far more effective validation technique involves the tracing of flow 
record export, which is configured with the following commands:

[edit forwarding-options sampling]

lab@r5# set traceoptions file test-cflowd

[edit forwarding-options sampling]

lab@r5# set output cflowd 10.0.1.201 local-dump

These commands specify the tracefile name, and indicate that cflowd records should be dumped 
to the tracefile configured. If a tracefile is not specified, cflowd flow records are dumped to
/var/log/sampled by default. The modified sampling stanza is displayed next:

[edit forwarding-options sampling]

lab@r5# show

traceoptions {

    file test-cflowd;

}

input {

    family inet {

        rate 100;

    }

}

output {

    cflowd 10.0.1.201 {

        port 5000;

        version 8;

        local-dump;

        aggregation {

            protocol-port;

        }

    }

}

After the tracing changes are committed, you begin monitoring the test-cflowd log file. 
Note that the tracefile is stored in /var/log, which is the default location for log files, making 
the specification of the path unnecessary.

[edit forwarding-options sampling]

lab@r5# run monitor start test-cflowd

Note that ICMP traffic is known to be flowing through r5 at this time due to rapid pings 
being generated at r4. After a few minutes, the following output is observed:

Mar  7 17:01:59 Read 6496198 bytes; total 6496198 

Mar  7 17:02:03 send_cflowd: v8(PROTO_PORT_AGGREGATION) aggr and export tree empty



Traffic Sampling 337

Mar  7 17:02:03 send_cflowd: v8: Skipping export

Mar  7 17:03:03 send_cflowd: v8 switching to tree 1 for export

Mar  7 17:03:03 Send 1 pkts every 5 secs for PROTO_PORT_AGGREGATION

Mar  7 17:03:03 v8(PROTO_PORT_AGGREGATION): starting export...

Mar  7 17:03:03 v8 flow entry

Mar  7 17:03:03    Num of flows: 2

Mar  7 17:03:03    Pkts in flow: 219

Mar  7 17:03:03    Bytes in flow: 18396

Mar  7 17:03:03    Start time of flow: 20646808

Mar  7 17:03:03    End time of flow: 20680815

Mar  7 17:03:03 Proto-port aggregation

Mar  7 17:03:03    Protocol 1

Mar  7 17:03:03    Src port 0; Dst port 0

Mar  7 17:03:03 cflowd header:

Mar  7 17:03:03   Num-records: 1

Mar  7 17:03:03   Version: 8

Mar  7 17:03:03   Flow seq num: 0

Mar  7 17:03:03   Sys Uptime: 20694314 (msecs)

Mar  7 17:03:03   Time-since-epoch: 1047056583 (secs)

Mar  7 17:03:03   Aggr version: 0

Mar  7 17:03:03   Aggr method: 2

Mar  7 17:03:03   Engine id: 0

Mar  7 17:03:03   Engine type: 0

Mar  7 17:03:03   Sample interval: 100

Mar  7 17:03:03 Sent v8(PROTO_PORT_AGGREGATION) flows (0 entries left in tree)

Mar  7 17:03:03 v8(PROTO_PORT_AGGREGATION): exporting done

Mar  7 17:03:03 v8(PROTO_PORT_AGGREGATION): export tree pruned

The highlights confirm that version 8 records are being sent, that protocol-port aggregation 
is in effect, and that two flows for protocol type 1 (ICMP) were detected and reported in this 
interval. This display, combined with the knowledge that you have specified the correct host 
address and UDP port, confirms the proper export of cflowd records. Before proceeding to the 
next section, it is suggested that you remove the cflowd tracing configuration because it is no 
longer needed. Leaving the tracing configuration is place does not violate any restrictions, and 
should cause no harm, however.

When sampling and export problems are suspected in spite of what appears to 
be a valid configuration, you might try bouncing the sampling daemon with a 
restart sampling command before resorting to a reboot.



338 Chapter 3 � Firewall Filter and Traffic Sampling

Port Mirroring

Port mirroring allows for the transmission of a complete copy of sampled IPv4 packets out an 
interface of your choosing. Normally a data collection device is attached to this interface to provide 
packet storage and analysis functionality. When using an Ethernet interface for mirroring, you 
might need to add a static ARP entry for the IP address of the data collection device, depending on 
whether it can answer ARP requests. You also need to specify the data collection device’s IP address 
under the port-mirror configuration stanza when using a multipoint interface for mirroring. 
When mirroring to a point-to-point interface that uses /32 addressing, be sure that you specify the 
destination address, using the destination keyword, when configuring the mirroring interface.

Port mirroring only works for traffic that transits the router’s PFE. As a result, you can not 
use the monitor traffic command to verify port mirroring output. Also note that the mirror-
ing interface can not have any firewall filters applied, and that mirroring currently works only 
for IPv4 traffic.

Configuring Port Mirroring

To complete this section, you must configure r5 to meet the requirement listed. Figure 3.2 
contains additional information that is needed to complete this assignment:
� Send sampled packets out the so-0/1/1 interface, ensuring that the data collection device 

receives entire packets.

F I G U R E 3 . 2 Port mirroring topology

Although the wording of the requirement does not say “port mirroring,” the need to send 
sampled packets, in their entirety, out a specific interface is a sure clue that you need to configure 
port mirroring. Figure 3.2 indicates that you need to configure r5’s so-0/1/1 interface to support 

M5M5

M5M5

M5M5

r5
fe-0/0/1

fe-0/3/1
fe-0/3/3fe-0/0/3

10.0.2.13/32

172.16.30.30

10.0.8.8/3010.0.2.8/30

so
-0/

1/1

so-0/1/0

so-0/1/1

.9 .9

.10

.1710.0.2.16/30.18

.10

Data Collection
Device
(HDLC)

r4 r7



Traffic Sampling 339

attachment to the data collection device. You also need to correctly configure the router’s port-
mirroring stanza to get this task behind you.

It is assumed that you will use the existing sampling configuration as a starting point for your 
port mirroring configuration, although a completely new sampling configuration is not pre-
cluded. In this case, you take the path of least typing by adding port mirroring functionality to 
the existing sampling stanza. You begin by deleting the current output configuration so the 
soon-to-be-added port mirroring configuration will commit; note that you can not commit a 
configuration containing both cflowd and port-mirroring:

[edit forwarding-options sampling]

lab@r5# delete output

The next command creates the port-mirroring stanza, and enables port mirroring to the 
so-0/1/1 interface:

[edit forwarding-options sampling]

lab@r5# set output port-mirroring interface so-0/1/1

Because the SONET interface is shown as running a point-to-point protocol in this example 
(HDLC), there is no need to specify a next-hop address under the mirroring interface’s 
definition. A next-hop declaration is needed if the mirroring interface is multipoint, which 
would also be the case when using an Ethernet interface. The modified sampling stanza is 
displayed next:

[edit forwarding-options sampling]

lab@r5# show

traceoptions {

    file test-cflowd;

}

input {

    family inet {

        rate 100;

    }

}

output {

    port-mirroring {

        interface so-0/1/1.0;

    }

}

The next step is to configure the mirroring interface in accordance with the addressing and 
encapsulation information shown earlier in Figure 3.2:

[edit interfaces so-0/1/1]

lab@r5# set encapsulation cisco-hdlc

[edit interfaces so-0/1/1]

lab@r5# set unit 0 family inet address 10.0.2.13/32



340 Chapter 3 � Firewall Filter and Traffic Sampling

The resulting configuration is displayed for confirmation:

[edit interfaces so-0/1/1]

lab@r5# show

encapsulation cisco-hdlc;

unit 0 {

    family inet {

        address 10.0.2.13/32;

    }

}

With port-mirroring configured under the sampling stanza, and the mirroring interface 
configured according to the provided diagram, you decide to commit the changes and proceed 
to the section on verification.

Verifying Port Mirroring

Because you can not use the monitor traffic command for transit traffic, and because port 
mirroring works only for transit traffic, you need to find another way to validate that sampled 
packets are being correctly sent to the data collection device. Although you could use various 
counters to try to confirm packet output on the so-0/1/1 interface, most operators prefer the 
real-time feedback of the monitor interface command. In this example, you once again gen-
erate rapid pings from r4 to r6, noting that this ICMP traffic will transit r5 via its fe-0/0/1 and 
fe-0/0/0 interfaces, while simultaneously monitoring r5’s so-0/1/1 interface. Figure 3.3 shows 
the resulting display.

F I G U R E 3 . 3 Initial port mirroring results

The output from the monitor interface so-0/1/1 command indicates a relative dearth of 
output traffic. Considering the 1% sampling rate at r5, the use of rapid pings, and the fact that 



Traffic Sampling 341

the ICMP traffic is being sampled in both directions, there should be more traffic coming out 
of r5’s so-0/1/1 interface if the port mirroring configuration is working. Looking back at 
Figure 3.3, you happen to note that the interface is reported as being down at the link layer. 
Perhaps this has something to do with the reason samples are not transmitted out the mirroring 
interface....

Troubleshooting an Interface Problem

It is always a good idea to start an interface troubleshooting task with the determination of the 
lowest layer that is demonstrating symptoms of problems. In this case, it has to be either Layer 1 
or Layer 2, and signs are that the interface’s physical layer is up because there are no alarm indi-
cations shown in the output of the monitor interface command, as depicted earlier in Figure 3.3. 
One of the most telling symptoms in Figure 3.3 is the indication that several keepalive packets 
have been generated by r5, but no keepalives have been received. Noting this, you monitor 
traffic for a brief time and receive the output shown next:

[edit interfaces so-0/1/1]
lab@r5# run monitor traffic interface so-0/1/1
verbose output suppressed, use <detail> or <extensive> for full protocol decode
Listening on so-0/1/1, capture size 96 bytes

21:11:41.793973 Out SLARP (length: 18), keepalive: mineseen=0x00000109 yourseen=
   0x00000000 reliability=0xffff t1=543.25952
21:11:53.194099 Out SLARP (length: 18), keepalive: mineseen=0x0000010a yourseen=
   0x00000000 reliability=0xffff t1=543.36952
21:12:04.494220 Out SLARP (length: 18), keepalive: mineseen=0x0000010b yourseen=
   0x00000000 reliability=0xffff t1=543.48952
21:12:13.294316 Out SLARP (length: 18), keepalive: mineseen=0x0000010c yourseen=
   0x00000000 reliability=0xffff t1=543.56952
21:12:21.994409 Out SLARP (length: 18), keepalive: mineseen=0x0000010d yourseen=
   0x00000000 reliability=0xffff t1=544.416

Definitely a one-way situation with regard to the Cisco’s Serial Line Address Resolution 
Protocol (SLARP) protocol traffic; there is no indication of incoming keepalive traffic at all. 
Considering that the keepalive specifics were not specified in the configuration details, the 
so-0/1/1 interface it attached to some type of test equipment, and there are no obvious signs 
of physical layer impairments, it makes sense to turn off keepalives to see if the problems 
clear.

[edit interfaces so-0/1/1]
lab@r5# set no-keepalives

[edit interfaces so-0/1/1]
lab@r5# show
no-keepalives;
encapsulation cisco-hdlc;



342 Chapter 3 � Firewall Filter and Traffic Sampling

With the so-0/1/1 interface now up at the link level, you repeat the rapid pings at r4, while 
once again monitoring the mirroring interface at r5. The results are shown in Figure 3.4.

F I G U R E 3 . 4 Port mirroring results—second pass

Unfortunately, Figure 3.4 shows that there is still no significant output activity on the port 
mirroring interface, despite it now being declared Up at the link level. A quick ping test to the 
data collection device’s IP address sheds some light on the remaining issue:

[edit interfaces so-0/1/1]

lab@r5# run ping 172.16.30.30

PING 172.16.30.30 (172.16.30.30): 56 data bytes

ping: sendto: No route to host

ping: sendto: No route to host

^C

The error message causes you to think back on the assignment of a /32 host address on the 
router’s so-0/1/1 interface. The use of a /32 host address requires that you use the destination 
keyword to explicitly state the IP address of the neighbor at the remote end of the link before 

unit 0 {
    family inet {
        address 10.0.2.13/32;
    }
}

In this case, adding no-keepalives causes the interface’s Link layer status to display Up. However, 
without the ability to detect problems via keepalive exchanges, the link layer’s Up indication 
means very little. You are still in the thick of it until you can verify that packets are being 
mirrored correctly.



Traffic Sampling 343

routing can occur over the interface. Lacking any better ideas, you decide to add the destination 
address to r5’s so-0/1/1 interface to test your hypothesis:

[edit interfaces so-0/1/1 unit 0 family inet]

lab@r5# set address 10.0.2.13/32 destination 172.16.30.30

The modification is displayed with added highlights:

[edit interfaces so-0/1/1 unit 0 family inet]

lab@r5# show

address 10.0.2.13/32 {

    destination 172.16.30.30;

}

After a commit, you once again generate rapid pings and monitor the so-0/1/1 interface at r5. 
The results of this run are shown in Figure 3.5.

F I G U R E 3 . 5 Port mirroring confirmed

The results are much better now! Figure 3.5 shows that on average nine packets per second 
are now being sent out the mirroring interface. While you have no way to prove that the data 
collection device is actually accepting them, the fact that traffic counters return to zero when the 
pings are stopped at r4 provides a very good indication that port mirroring is now operational.

Traffic Sampling Summary

This section provided several configuration scenarios that demonstrated M-series and T-series 
traffic sampling and export functionality. Operational-mode commands that prove useful for 
verifying sampling and export functionality were also demonstrated.

Firewall filters are used to identify traffic that is a candidate for sampling. The sampling 
configuration under the [edit forwarding-options] hierarchy in turn determines how many 
candidates for sampling are actually sampled, and what is done with the sampled traffic. This 



344 Chapter 3 � Firewall Filter and Traffic Sampling

section demonstrated the local storage of sampling statistics, the use of cflowd for export of 
flow records to a remote host, and port mirroring. Note that you can not configure cflowd and 
port mirroring at the same time, and that a port mirroring configuration might require next hop 
identification, static ARP entries, or the use of the destination keyword, depending on 
whether the mirroring interface is point-to-point or multipoint.

Summary
JNCIE candidates should be prepared to deploy JUNOS software firewall filters that will meet 
any of the configuration scenarios presented in this chapter. Because incorrect application of 
a firewall filter can have a dramatic impact on the operational status of your network, special 
care must be taken whenever packet filtering enters the fray.

This chapter provided configuration and validation techniques for RE-based filters, which 
are designed to protect the local RE, and for transit filtering, which are used to filter traffic from 
a downstream device. Firewall and interface rate limiting, based on the use of policers, was also 
demonstrated, as was the use of Prefix Specific Counters and Policers (PSCP), which allow for 
the simplified configuration of counting and policing actions on individual prefixes. The chapter 
concluded with examples of traffic sampling, cflowd export, and port mirroring, all of which 
used a firewall filter to perform multi-field classifications to identify which packets are candi-
dates for sampling.

Special attention is warranted when deciding on the direction in which a given filter will be 
applied, and to the use of flow-significant keywords such as destination-port versus source-
port when creating your firewall filters. In many cases, the difference between perfection and 
exam point loss comes down to the specific choice of matching keyword or the direction in 
which the filter was applied.

The default firewall filter action of denying all traffic not explicitly permitted by previous 
terms often results in trouble for a less-than-prepared candidate. In many cases, the wording of 
your task will not explicitly warn of the need to support some routing protocol, or a given 
remote access method. It is assumed in these cases that the candidate understands that the appli-
cation of a source address validation filter to prevent spoofed packets should not disrupt existing 
network operation. Even when the candidate is aware of this assumption, the large number of 
routing, signaling, utility, and remote access protocols present in a typical JNCIE test bed often 
result in errors of omission, and a resulting impact to that protocol or service. We all make 
mistakes; adding a log action to a new firewall can help identify any mistakes, thereby allowing 
the candidate to take corrective actions before the proctor gets around to grading the overall 
operation of your test bed.

Although not exhaustive, Table 3.1 identifies typical routing, utility, signaling, and remote 
access protocols that may need support within your firewall filter. The table lists only the well-
known ports and the primary transport protocol associated with the server process. Note that 
not all of these have human-friendly matching keywords. In some instances, the candidate is 
expected to reference outside documents, such as user manuals or RFCs, to determine which 
port/protocol is used to support a given service. Services that ride directly within IP, such as 
OSPF and VRRP, are identified in the table with a PID (Protocol ID) designation, as they are not 



Summary 345

associated with any transport-level protocol ports. Many of the following values are identified 
in the now-obsolete Assigned Numbers RFC (RFC 1700). Currently, assigned numbers are 
tracked in an online database located at www.iana.org/numbers.html.

You can also view common protocol/port-to-application mappings using the JUNOS software 
CLI to view the /etc/services file. You might want to evoke the CLI match functionality due 
to the size of the services file:

[edit]

lab@r3# run file show /etc/services | match ssh

ssh              22/tcp    #Secure Shell Login

ssh              22/udp    #Secure Shell Login

T A B L E 3 . 1 Common Protocol and Port Assignments

Service Protocol Port(s)/Protocol ID

Telnet TCP 23

FTP TCP 20,21

SSH TCP 22

DNS UDP/TCP 53

BOOT/DHCP UDP 67 (server) 68 (client)

HTTP TCP 80

RADIUS UDP 1812

TACACS + TCP 49

NTP UDP 123

VRRP IP PID 112

RSVP IP PID 46

LDP UDP/TCP 646

PING IP PID 1

Traceroute UDP Varies

OSPF IP PID 89

BGP TCP 179



346 Chapter 3 � Firewall Filter and Traffic Sampling

Case Study: Firewall Filter and
Traffic Sampling
This chapter case study is designed to simulate a typical JNCIE-level firewall filtering and traffic 
sampling configuration scenario. To keep things interesting, you will be performing your firewall 
filtering case study using the IS-IS baseline configuration that was discovered and documented 
in the Chapter 1 case study. The IS-IS baseline topology is shown in Figure 3.6 so that you may 
reacquaint yourself with it.

F I G U R E 3 . 6 IS-IS discovery findings

You should load and commit the IS-IS baseline configuration to make sure that your routers 
look and behave like the examples shown here. Before starting the firewall filtering case study, 
it is suggested that you quickly verify the correct operation of the baseline network’s IS-IS IGP, 
RIP redistribution, and IBGP/EBGP peerings. Problems are not expected in the baseline network 

Notes:

Multi-level IS-IS, Areas 0001 and 0002 with ISO NET based on router number.

lo0 address of r3 and r4 not injected into Area 0001 to ensure optimal forwarding between 10.0.3.3 and 10.0.3.4.

Passive setting on r5's core interfaces for optimal Area 0002-to-core routing.

No authentication or route summarization. Routing policy at r5 to leak L1 externals (DC routes) to L2.

Suboptimal routing detected at the data center and at r1/r2 for some locations. This is the result of random nexthop
choice for data center's default, and the result of r1 and r2's preference for r3's RID over r4 with regard to the
10.0/16 route. This is considered normal behavior, so no corrective actions are taken.

Redistribution of static default route to data center from both r6 and r7. Redistribution of 192.168.0/24 through
192.168.3/24 routes from RIP into IS-IS by both r6 and r7.

All adjacencies are up, reachability problem discovered at r1 and r2 caused by local aggregate definition. Corrected
through IBGP policy to effect 10.0/16 route advertisement from r3 and r4 to r1 and r2; removed local aggregate
from r1 and r2.

Area 0001
L1

L2 Area 0002
L1

r2 r4
r7

r6

RIP v2

Data
Center

r5

r3r1

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

M5M5

M5M5

M5M5

M5M5

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

Data
Center



Case Study: Firewall Filter and Traffic Sampling 347

at this stage, but it never hurts to make sure that you are starting off with a functional network. 
Note that MPLS functionality is not present in the IS-IS baseline topology, as was discovered in 
the Chapter 1 case study. The absence of MPLS means that, in contrast to the examples pro-
vided in the chapter body, you do not have to worry about filter support for the RSVP and LDP 
signaling protocols in the case study.

You need to refer to the case study criteria listing and the case study topology, shown in 
Figure 3.7, for the information needed to complete the firewall filter and traffic sampling case 
study. It is expected that a JNCIE candidate will be able to complete this case study in approx-
imately one and one-half hours, with the result being a network that meets the majority of the 
provided criteria with no significant operational problems.

Configuration listings that identify all changes made to the baseline network for all seven 
routers in the test bed are provided at the end of the case study for comparison with your 
own configurations. Because multiple solutions may be possible for a given task, differences 
between the examples provided and your own configurations do not automatically indicate 
that mistakes have been made. Recall that in the JNCIE lab you are graded on the overall 
functionality of your network and on its conformity to all specified criteria. To accommodate 
differing configuration approaches, various operational mode commands are included in the 
case study analysis so that you can compare the behavior of your network to that of a known 
good example.

To complete the case study, your network must be configured to meet these criteria:
� Your firewall filtering case study configuration must be added to the IS-IS based Chapter 1 

case study topology.
� Configure a filter on r5 according to these stipulations:

� Rate limit all ICMP messages to 500Kbps.
� Limit incoming telnet and SSH sessions to sources within AS 65412, including the data 

center prefixes. Ensure that incoming connection attempts from external addresses are 
logged to a file called access-log.

� Allow r5 to initiate telnet, SSH, and FTP connections to all destinations.
� Do not disrupt any existing services or applications while preventing unknown traffic 

from reaching the RE.
� Prevent source address spoofing at all customer peering points. Count and log any spoofed 

packets.
� Rate limit HTTP responses sent from r4 to C1 in accordance with the following:

� Accept all traffic at or below 1Mbps.
� Mark traffic in excess of 1Mbps for local discard in the event of output congestion.
� Discard traffic in excess of 2Mbps.

� Rate limit all traffic arriving from T1 to 5% of the peering interface’s bandwidth.
� Count and police traffic sent to all host IDs on the 192.168.0/24 subnet at r5, according 

to these restrictions:
� Count and police traffic originated from external sources that is directed at FTP and web 

servers only.



348 Chapter 3 � Firewall Filter and Traffic Sampling

F I G U R E 3 . 7 Firewall filtering case study

17
2.

16
.3

0/
24

10
.0

.2
.1

2/
30

.2
00

:a
0:

c9
:6

9:
c1

:d
8

Da
ta

Ce
nt

er
(R

IP
)

Da
ta

 C
ol

le
ct

io
n

De
vi

ce
AS

 6
52

22
13

0.
13

0/
16

T1

AS
 6

50
20

22
0.

22
0/

16
C2

AS
 6

50
10

20
0.

20
0/

16

C1

.2
54

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

fe
-0

/0
/1

fe
-0

/0
/0

r1 r2

Lo
op

ba
ck

s

r3

r5

fe-
0/0

/3

fe
-0

/0
/0

r1
 =

 1
0.

0.
6.

1
r2

 =
 1

0.
0.

6.
2

r3
 =

 1
0.

0.
3.

3
r4

 =
 1

0.
0.

3.
4

r5
 =

 1
0.

0.
3.

5
r6

 =
 1

0.
0.

9.
6

r7
 =

 1
0.

0.
9.

7

fe
-0

/0
/1

fe
-0

/0
/1

fe
-0

/0
/2

10.0.5/24

10.0.4.4/30

fe
-0

/0
/3

fe
-0

/0
/0

10
.0

.4
.1

2/
30

17
2.

16
.0

.1
2/

30

AS
 6

50
50

12
0.

12
0/

16
10

.0
.2

.4
/3

0

fe
-0

/0
/1

fe
-0

/3
/1

fe
-0

/0
/0

(192.168.0-3)

fe
-0

/0
/1

fe
-0

/3
/3

fe
-0

/0
/3

fe-
0/3

/2

10
.0

.2
.0

/3
0

fe-0/0/3

10
.0

.8
.4

/3
0

10
.0.

8.0
/3

0

fe-
0/

1/
2

10
.0

.8
.8

/3
0

10
.0

.2
.8

/3
0

so
-0

/2
/0

so
-0/

1/1
so

-0
/1

/0

so
-0

/1
/0

at-
0/

1/
0

at-
0/

2/
1

.1
.1

4
.1

3.1
3

.1
4

.1
3

.9

.5

.6

.9

.1

.9

.1
0

10
.0.

8.1
2/3

0

fe-
0/3

/0

.1
4

.1
3.1

.2

.1
7 .1

fe
-0

/0
/3

fe
-0

/0
/2

fe-
0/0

/0
fe-

0/1
/0

fe
-0

/1
/1fe

-0
/1

/3

17
2.

16
.0

.8
/3

0

.1
.5

.1
8

.2
.1

0
.9

10
.0

.4
.8

/3
0

10
.0

.2
.1

6/
30

17
2.1

6.0
.0/

30
17

2.1
6.0

.4/
30

10
.0.

4.1
6/3

0fe-
0/0/1

fe-
0/0/2

10.0.4.0/30

fe-
0/0

/2
.2

.1
7

.1
8 fe-

0/0
/0

.5

.6
.1

0

.2
.5

r6

r4
r7

P1

.6



Case Study: Firewall Filter and Traffic Sampling 349

� Police FTP to 500Kbps.
� Police HTTP to 2Mbps.
� Configure one policer/counter for every four consecutive host addresses. Ensure that 

you do not create more policer/counter pairs than are required by the parameters 
specified.

� Configure r3 and r4 to forward all HTTP and FTP request traffic received from external 
sources that is addressed to the 192.168.0/24 subnet to r5.

� Configure r5 to perform the following:
� Sample 50% of the TCP connection requests received on its so-0/1/0 interface.
� Ensure that three additional samples are taken for each trigger.
� Forward complete packets for all sampled traffic to the data collection device.

Assume that the data center router has been correctly reconfigured to advertise the 192.168.0-3/
24 routes to both r6 and r7 using RIP. Please refer back to the Chapter 1 case study for specifics 
on the IS-IS and RIP based route redistribution in the IS-IS baseline network as needed.

Firewall Filtering Case Study Analysis

Each configuration requirement for the case study will now be matched to one or more valid 
router configurations and, where applicable, the commands that are used to confirm that the 
network is operating within the specified case study guidelines. We begin with this criterion 
because it serves to establish your baseline network:
� Your firewall case study configuration must be added to the IS-IS baseline topology from 

the Chapter 1 case study.

The case study analysis begins with a quick operational sanity check of the IS-IS baseline 
network. It is assumed that the corresponding baseline configurations have been loaded up and 
committed at this time:

[edit]

lab@r3# run show isis adjacency

Interface             System         L State        Hold (secs) SNPA

at-0/1/0.0            r5             2 Up                   25

fe-0/0/0.0            r1             1 Up                    8  0:a0:c9:6f:7b:3e

fe-0/0/1.0            r2             1 Up                    6  0:a0:c9:6f:7a:ff

fe-0/0/3.0            r6             2 Up                    8  0:d0:b7:3f:af:73

so-0/2/0.100          r4             2 Up                   23

[edit]

lab@r3# run show route protocol isis | match /32

10.0.3.4/32        *[IS-IS/18] 00:03:59, metric 10

10.0.3.5/32        *[IS-IS/18] 00:04:05, metric 10

10.0.6.1/32        *[IS-IS/15] 00:04:13, metric 10



350 Chapter 3 � Firewall Filter and Traffic Sampling

10.0.6.2/32        *[IS-IS/15] 00:04:10, metric 10

10.0.9.6/32        *[IS-IS/18] 00:04:04, metric 10

10.0.9.7/32        *[IS-IS/18] 00:02:37, metric 20

This output confirms that all of r3’s IS-IS adjacencies have been successfully established, and 
that the router has received an IS-IS route for the loopback address of all other routers in the test 
bed. These findings provide a strong indication that the baseline network’s IS-IS IGP is opera-
tional. You now verify BGP session status at r3:

[edit]

lab@r3# run show bgp summary

Groups: 5 Peers: 7 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            126807     126796          0          0          0          0

Peer            AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
                                                              Received/Damped...

172.16.0.14  65222 27858   28201     0      0      2:50:31 126792/126792/0  0/0/0

10.0.3.4     65412    11   24775     0      0        4:18 2/2/0            0/0/0

10.0.3.5     65412    10   22083     0      0        4:04 0/0/0            0/0/0

10.0.6.1     65412   332   82893     0      1        4:28 1/1/0            0/0/0

10.0.6.2     65412    11   26245     0      0        4:34 0/1/0            0/0/0

10.0.9.6     65412    11   22087     0      0        4:07 1/5/0            0/0/0

10.0.9.7     65412     8   24866     0      2        2:46 0/6/0            0/0/0

All of r3’s IBGP and EBGP sessions are established, providing further indication that the 
IS-IS baseline network is operating normally. You now quickly confirm the presence of the RIP 
and EBGP peer routes:

[edit]

lab@r3# run show route 120.120/16

inet.0: 126830 destinations, 126841 routes (126830 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

120.120.0.0/16     *[BGP/170] 00:05:27, MED 0, localpref 100, from 10.0.6.1

                      AS path: 65050 I

                    > to 10.0.4.14 via fe-0/0/0.0

                      to 10.0.4.2 via fe-0/0/1.0

                    [BGP/170] 00:05:31, MED 0, localpref 100, from 10.0.6.2

                      AS path: 65050 I

                    > to 10.0.4.14 via fe-0/0/0.0

                      to 10.0.4.2 via fe-0/0/1.0

[edit]

lab@r3# run show route 192.168.0/24



Case Study: Firewall Filter and Traffic Sampling 351

inet.0: 126851 destinations, 126862 routes (126851 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

192.168.0.0/24     *[IS-IS/165] 00:06:17, metric 12

                    > to 10.0.2.13 via fe-0/0/3.0

                    [BGP/170] 00:05:35, MED 2, localpref 100, from 10.0.9.6

                      AS path: I

                    > to 10.0.2.13 via fe-0/0/3.0

                    [BGP/170] 00:04:15, MED 2, localpref 100, from 10.0.9.7

                      AS path: I

                    > to 10.0.2.1 via at-0/1/0.0

                      to 10.0.2.6 via so-0/2/0.100

Though not shown here for reasons of brevity, you may assume that the 200.200/16 and 
220.220/16 customer routes and all T1 routes are also confirmed present on r3. With knowledge 
that the IS-IS baseline network is operational, you begin your firewall case study by addressing 
the configuration changes needed to meet the following case study requirement:
� Configure a filter on r5 according to these stipulations:

� Rate limit all ICMP messages to 500Kbps.
� Limit incoming telnet and SSH sessions to sources within AS 65412, including the data 

center prefixes. Ensure that incoming connection attempts from external addresses are 
logged to a file called access-log.

� Allow r5 to initiate telnet, SSH, and FTP connections to all destinations.
� Do not disrupt any existing services or applications while preventing unknown traffic 

from reaching the RE.

The changes made to r5’s configuration in support of this firewall filter requirement are 
displayed next:

[edit]

lab@r5# show firewall

policer limit-icmp {

    if-exceeding {

        bandwidth-limit 500k;

        burst-size-limit 15k;

    }

    then discard;

}

filter lo0 {

    term police-icmp {

        from {

            protocol icmp;

        }



352 Chapter 3 � Firewall Filter and Traffic Sampling

        then policer limit-icmp;

    }

    term limit-access {

        from {

            source-address {

                10.0.0.0/16;

                192.168.0.0/21;

            }

            protocol tcp;

            destination-port [ ssh telnet ];

        }

        then accept;

    }

    term access-log {

        from {

            source-address {

                0.0.0.0/0;

            }

            protocol tcp;

            destination-port [ 22 23 ];

        }

        then {

            syslog;

            discard;

        }

    }

    term outgoing-tcp-services {

        from {

            protocol tcp;

            source-port [ 22 23 20 21 ];

        }

        then accept;

    }

    term outgoing-udp-services {

        from {

            protocol udp;

            source-port [ 1024-65535 1812 ];

        }

        then accept;

    }

    term bgp {



Case Study: Firewall Filter and Traffic Sampling 353

        from {

            protocol tcp;

            port bgp;

        }

        then accept;

    }

    term else {

        then {

            log;

            discard;

        }

    }

}

The policer’s burst size was not specified in this example; therefore the limit-icmp policer 
has been configured with the recommended burst size for low-speed interfaces of ten times the 
interface’s (lo0) 1500-byte MTU. Note that for a high-speed interface, such as an OC-192, 
the recommended burst size is a function of interface bandwidth times burst duration, where 
burst duration is normally in the range of 3–5 milliseconds. Next is a quick breakdown of the 
functionality supported by each of the terms in the lo0 filter:
� The police-icmp term functions to match on, and then direct all ICMP traffic to, the 

limit-icmp policer.
� The limit-access term is written to accept incoming TCP traffic from internal and data 

center destinations destined for the telnet and SSH services. Note that a destination-port 
match condition is used to support incoming connections to local services, and that 
symbolic keywords are used in lieu of numeric port numbers.

� The access-log term matches all other incoming telnet and SSH connection attempts and 
associates them with a syslog action modifier and a discard action. This term works in 
conjunction with syslog modifications (shown next) to support the requirement that you 
log unauthorized access attempts.

� The outgoing-tcp-services term accepts return traffic associated with TCP connections 
that are initiated to allowed services. Note that the term uses a source-port match 
condition, which is needed to correctly match traffic associated with a TCP connection 
initiated by r5 to a remote service.

� The outgoing-udp-services term functions in the same manner as the outgoing-tcp-
services term, with the exception of its UDP protocol and UDP service–related match 
criteria.

� The bgp term allows TCP connections to and from the port (179) associated with the BGP 
protocol. The use of the port keyword provides bidirectional (incoming and outgoing) 
BGP session support.

� The else term functions to match on all remaining traffic for discard and logging to the 
kernel cache. This term is not a requirement, but its inclusion will make filter verification 
and troubleshooting much easier.



354 Chapter 3 � Firewall Filter and Traffic Sampling

Note that all terms in the filter make use of a protocol test condition to avoid the potential 
for inadvertent matches. To support the logging action of the access-log term, you must modify 
r5’s syslog stanza to write firewall entries to the specified log file, as is shown here with added 
highlights:

[edit]

lab@r5# show system syslog

user * {

    any emergency;

}

file messages {

    any notice;

    authorization info;

}

file r5-cli {

    interactive-commands any;

    archive files 5;

}

file access-log {

    firewall info;

}

The lo0 filter is applied to r5’s loopback interface, in the input direction, which is in keeping 
with the goal of protecting the local RE:

[edit]

lab@r5# show interfaces lo0

unit 0 {

    family inet {

        filter {

            input lo0;

        }

        address 10.0.3.5/32;

    }

    family iso {

        address 49.0002.5555.5555.5555.00;

    }

}

Verification of the RE protection filter begin with analysis of the cache log to quickly 
determine if valid traffic is being filtered:

lab@r5> show firewall log

lab@r5>



Case Study: Firewall Filter and Traffic Sampling 355

The lack of entries is a very good sign because it indicates that the filter has been written 
to correctly accommodate all valid services. Note that firewall filters do not function for the iso 
family, and therefore no actions are necessary to support the IS-IS IGP used by the test bed. 
To verify that the filter is preventing unauthorized services, you attempt an FTP session from 
r5 to r5 and examine the firewall cache:

lab@r5> ftp 10.0.3.5

^C

lab@r5> show firewall log

Log :

Time      Filter    Action Interface  Protocol Src Addr         Dest Addr

13:45:18  lo0       D      local      TCP      10.0.3.5          10.0.3.5

The TCP entry in the cache indicates that FTP was blocked, and also confirms the else 
term’s logging functions are working. The next set of commands verifies incoming telnet 
connections from internal sources, and also shows that r5 can initiate telnet sessions to all 
destinations:

[edit]

lab@r6# run telnet 10.0.3.5

Trying 10.0.3.5...

Connected to 10.0.3.5.

Escape character is '^]'.

r5 (ttyp2)

login: lab

Password:

Last login: Sun Mar  9 13:49:08 from 10.0.8.5

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

The connection request from an internal host is honored. Now logged into r5, you attempt 
a telnet session to an external destination:

lab@r5> telnet 200.200.0.1

Trying 220.220.0.1...

Connected to 220.220.0.1.

Escape character is '^]'.

C1 (ttyp0)

login: lab

Password:

Last login: Fri Mar  7 13:15:15 from 172.16.0.5



356 Chapter 3 � Firewall Filter and Traffic Sampling

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@c1>

The outgoing connection works as required. Now logged into C1, you attempt to telnet back 
to r5. This connection should fail with an entry being written to the syslog at r5:

lab@c1> telnet source 200.200.0.1 10.0.3.5

Trying 10.0.3.5...

^C

lab@c1>

The telnet connection initiated by an external source fails as required, and back at r5, the 
syslog entry is confirmed:

lab@r5> show log access-log

Mar 9 13:53:38 r5 clear-log[1348]: logfile cleared

Mar  9 13:53:46 r5 feb FW: so-0/1/0.0   D  tcp 200.200.0.1 10.0.3.5  2918    23
   (1 packets)

Although it is not shown here, you may assume that SSH and FTP functionality is also 
confirmed with the approach shown for telnet verification. Next, you verify the UDP-based 
traceroute and RADIUS applications:

lab@r5> traceroute 130.130.0.1

traceroute to 130.130.0.1 (130.130.0.1), 30 hops max, 40 byte packets

 1  10.0.2.2 (10.0.2.2)  1.371 ms  1.030 ms  1.139 ms

 2  130.130.0.1 (130.130.0.1)  1.091 ms  1.018 ms  1.170 ms

The output confirms that traceroutes are working. To test RADIUS, you could verify RADIUS 
transactions by monitoring the traffic on the OoB network while authenticating a user at r3, or 
you can take the approach shown next. This technique disables automatic consultation of the 
local password database for authentication when the RADIUS server becomes unreachable. 
Note that confirmed is used when the changes are committed; it never hurts to play things safe 
when dealing with your access to a router:

lab@r5> configure

Entering configuration mode 

[edit]

lab@r5# delete system authentication-order password

[edit]

lab@r5# commit confirmed 5

commit confirmed will be automatically rolled back in 5 minutes unless confirmed

commit complete

[edit]



Case Study: Firewall Filter and Traffic Sampling 357

lab@r5# quit

Exiting configuration mode

lab@r5> quit

r5 (ttyp0)

login: lab

Password:

Last login: Sun Mar  9 13:49:12 from 10.0.8.5

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@r5>

The ability to log in to r5, without being prompted for your local password, confirms that 
the lo0 filter adequately supports the RADIUS protocol. The following capture shows the 
effects of a filter that does not support RADIUS in the context of the current authentication-
order settings. The highlight calls out the local password prompt, which results from the inability 
to authenticate through RADIUS; note this prompt does not occur in the previous capture, which 
proves that RADIUS is supported by the lo0 filter:

lab@r5> quit

r5 (ttyp0)

login: lab

Password:

Local password:

Last login: Thu Mar 13 14:59:33 from 10.0.1.100

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@r5>

Make sure that you return the baseline configuration to its original state now that RADIUS 
functionality is confirmed. The use of confirmed when issuing the commit helps to ensure that 
temporary changes such as these will in fact be temporary! The final lo0 filter confirmation 
involves verification of BGP protocol support. Because no BGP traffic is showing up in the cache 



358 Chapter 3 � Firewall Filter and Traffic Sampling

file, the chances that BGP has been adversely affected by your filter are virtually nil, but it never 
hurts to be sure.

[edit]

lab@r5# run show bgp summary

Groups: 1 Peers: 6 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            126865     126854          0          0          0          0

Peer         AS  InPkt  OutPkt  OutQ  Flaps  Last Up/Dwn State|#Active/Received/
                                                                       Damped...

10.0.3.3  65412  24144     223     0      0     1:50:19 126850/126850/0    0/0/0

10.0.3.4  65412    222     223     0      0     1:50:29 2/2/0              0/0/0

10.0.6.1  65412    221     223     0      0     1:50:27 1/1/0              0/0/0

10.0.6.2  65412    221     223     0      0     1:50:23 0/1/0              0/0/0

10.0.9.6  65412    223     223     0      0     1:50:14 1/5/0              0/0/0

10.0.9.7  65412    220     220     0      0     1:48:50 0/6/0              0/0/0

The quick assessment that all BGP sessions are still in the established state at r5 quickly belies 
any remaining concerns for BGP, and serves to complete the verification of the RE protection 
case study task. The next case study requirement to address is as follows:
� Prevent source address spoofing at all customer peering points. Count and log any spoofed 

packets.

It might be argued that, because you are already on r5, you should attempt to 
group together all case study tasks involving configuration changes at r5 in an 
effort to minimize the number of times that you must visit the router. While this 
is a valid philosophy, this author finds that with telnet sessions always open
to all routers, the amount of time lost by having to revisit a given router numer-
ous times in the same scenario is minimal. Time issues aside, the remaining 
requirements for r5 are somewhat complex, so moving on to some of the more 
straightforward requirements, in an effort to get as many points as possible in 
the event that you can not complete a difficult task, is a testing strategy that 
also has merit.

This configuration task requires that you apply an input filter on all customer-facing 
interfaces to discard any traffic not using a source address that is assigned to that customer’s 
site. The filter shown next functions correctly for the r4–C1 and r7–C1 peering points by virtue 
of the /29 netmask, which is designed to match the source address of packets originated from 
either of C1’s EBGP peering interfaces:

[edit firewall filter no-spoof]

lab@r4# show

term 1 {

    from {

        source-address {



Case Study: Firewall Filter and Traffic Sampling 359

            200.200.0.0/16;

            172.16.0.0/29;

        }

    }

    then accept;

}

term 2 {

    then {

        count spoofs;

        discard;

    }

}

Because the count action modifier changes the default action of the term to accept, an 
explicit discard action is needed for proper operation. Using a reject action is a mistake 
when dealing with packets that have bogus addresses, because the generation of reject messages 
can result in a smurf-like attack when they are sent to the legitimate (and innocent) owner of the 
spoofed address. Term 2 in this example has no match criteria, and therefore matches every-
thing not accepted by the first term. The no-spoof filter is applied as an input filter for both C1 
peering interfaces. The example shown here displays the correct filter application for the 
context of r4:

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        filter {

            input no-spoof;

        }

        address 172.16.0.5/30;

    }

}

Note that similar firewall filter functionality is needed at r6 for the C2 peering. You need to 
modify the filter’s match criteria to reflect the 172.16.0.8/30 address used on the r6-C2 peering 
interface, however.

Unless you have the ability to reconfigure the C1 and C2 routers, it will be difficult to 
confirm the behavior of the no-spoof filter in the presence of spoofed packets. This is because 
you need to assign a non-customer-owned address to one of their interfaces before you can use 
the source switch to generate packets with “spoofed” address. In this example, the match 
conditions are pretty straightforward, so confirmation is limited to visual inspection of the con-
figuration and verification that the no-spoof filter is not causing any operational problems on 
customer peering links.

[edit]

lab@r4# run traceroute 200.200.0.1 source 10.0.3.4



360 Chapter 3 � Firewall Filter and Traffic Sampling

traceroute to 200.200.0.1 (200.200.0.1) from 10.0.3.4, 30 hops max,
   40 byte packets

 1  200.200.0.1 (200.200.0.1)  0.794 ms  0.495 ms  0.430 ms

[edit]

lab@r4# run ping 200.200.0.1

PING 200.200.0.1 (200.200.0.1): 56 data bytes

64 bytes from 200.200.0.1: icmp_seq=0 ttl=255 time=0.682 ms

64 bytes from 200.200.0.1: icmp_seq=1 ttl=255 time=0.506 ms

^C

--- 200.200.0.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.506/0.594/0.682/0.088 ms

The output confirms that traceroutes and pings are unaffected by the firewall filter. BGP 
session status is now confirmed:

[edit]

lab@r4# run show bgp neighbor 172.16.0.6

Peer: 172.16.0.6+2023 AS 65010 Local: 172.16.0.5+179  AS 65412

  Type: External    State: Established    Flags: <>

  Last State: OpenConfirm   Last Event: RecvKeepAlive

  Last Error: None

  Export: [ ebgp-out ]

  Options: <Preference HoldTime AdvertiseInactive PeerAS Refresh>

  Holdtime: 90 Preference: 170

  Number of flaps: 0

  Peer ID: 200.200.0.1      Local ID: 10.0.3.4         Active Holdtime: 90

  Keepalive Interval: 30

  Local Interface: fe-0/0/0.0

  NLRI advertised by peer: inet-unicast

  NLRI for this session: inet-unicast

  Peer supports Refresh capability (2)

  Table inet.0 Bit: 10000

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            2

    Received prefixes:          2

    Suppressed due to damping:  0

  Last traffic (seconds): Received 3    Sent 3    Checked 13

  Input messages:  Total 82792  Updates 82785   Refreshes 0     Octets 7508078

  Output messages: Total 52959  Updates 52950   Refreshes 0     Octets 4903028

  Output Queue[0]: 0



Case Study: Firewall Filter and Traffic Sampling 361

The final check is to display the spoofed address counter, which should be 0 in the absence 
of spoofed packets:

[edit]

lab@r7# run show firewall

Filter: no-spoof

Counters:

Name                                                Bytes              Packets

spoofs                                                  0                    0

Though not shown, similar commands and techniques are used to quickly verify BGP session 
status and traffic forwarding at the r6–C2 and r7–C1 peering points. Assuming that you obtain 
results similar to those shown here for the r4–C1 peering, you can consider the address spoofing 
aspect of the case study confirmed. This brings the following requirement to the top of your case 
study processing heap:
� Rate limit HTTP responses sent from r4 to C1 according to these requirements:

� Accept all traffic at or below 1Mbps.
� Mark traffic in excess of 1Mbps for local discard in the event of output congestion.
� Discard traffic in excess of 2Mbps.

The policing behavior described here requires that you evoke the services of two distinct 
policers for the same traffic. To accomplish this task, you need to define the two policers and 
craft a firewall filter that uses the next term action modifier to allow the same traffic to be 
processed by consecutive filter terms. The completed policers are displayed first:

[edit]

lab@r4# show firewall policer 1m-http

if-exceeding {

    bandwidth-limit 1m;

    burst-size-limit 15k;

}

then loss-priority high;

[edit]

lab@r4# show firewall policer 2m-http

if-exceeding {

    bandwidth-limit 2m;

    burst-size-limit 15k;

}

then discard;

Followed by the firewall filter that will evoke them:

[edit]

lab@r4# show firewall filter limit-http

term 1 {



362 Chapter 3 � Firewall Filter and Traffic Sampling

    from {

        protocol tcp;

        source-port 80;

    }

    then {

        policer 1m-http;

        next term;

    }

}

term 2 {

    from {

        protocol tcp;

        source-port 80;

    }

    then policer 2m-http;

}

term 3 {

    then accept;

}

The highlights call out the differing actions associated with the two new policers, and the key 
aspects of the limit-http firewall filter that calls them. The use of source-port based match-
ing correctly identifies only HTTP response traffic that is being sent back to clients within C1’s 
network. Term 1 evokes the 1m-http policer for matching traffic, which returns all traffic back 
to term 1 with a loss priority bit setting of either 0 (low priority) for in-profile traffic or 1 for 
traffic in excess of the policer’s limits. This makes the presence of the next term action modifier 
critical, because without it, all matching will be accepted by term 1, defeating the second level 
of policing and causing exam point loss. Note that a final term has been added to ensure that 
all other traffic is passed out the fe-0/0/0 interface unimpeded.

The limit-http filter is applied as output to r4’s fe-0/0/0 interface:

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        filter {

            input no-spoof;

            output limit-http;

        }

        address 172.16.0.5/30;

    }

}

Verifying the correct operation of the limit-http filter and its related policers will be 
difficult without access to a web server and/or traffic generation equipment. Note that the 



Case Study: Firewall Filter and Traffic Sampling 363

confirmation of accurate policing is almost impossible when relying on user applications, due to 
the presence of implicit back-off and other congestion control mechanisms. Assuming that you 
lack the ability to surf the Web from site C1, and that you do not have access to traffic generation 
equipment, validation is limited to the simple confirmation that the limit-http filter has not 
broken anything between r4 and C1:

[edit]

lab@r4# run traceroute 200.200.0.1

traceroute to 200.200.0.1 (200.200.0.1), 30 hops max, 40 byte packets

 1  200.200.0.1 (200.200.0.1)  0.647 ms  0.501 ms  0.431 ms

[edit]

lab@r4# run show bgp summary | match 172.16.0.6

172.16.0.6   65010   34496   26501    0    2     1:44 2/2/0       0/0/0

When you are really desperate to prove that a filter, policer, or counter functions 
correctly for an application that is not available in the JNCIE test bed, you might 
consider modifying the filter to match on traffic that can be empirically tested 
from within the lab. By way of example, you could change the limit-http filter’s 
match criteria to also include ICMP, which is a protocol that can easily be gener-
ated with a rich variety of options while in the test bed. Although confirming the 
setting of the loss priority will still be difficult (because this bit never leaves the 
chassis), the counters associated with each policer should indicate whether
two-level policing is working. Make sure that you do not forget to remove any 
additional match criteria when you are finished to avoid point loss, however.

The output confirms that application of the limit-http filter has not impacted traceroute and 
BGP functionality between r4 and C1, and this finding concludes the verification steps for the 
two-level rate-limiting configuration task. This brings you to the next case study requirement:
� Rate limit all traffic arriving from T1 to 5% of the peering interface’s bandwidth.

Because this task involves rate limiting all of the traffic received on a given interface, you can 
meet the requirements with a policer applied directly to the r3’s fe-0/0/2 interface. If desired, you 
can also call the policer from within a firewall filter employing a match-all term. Note that you 
do not need to worry about various protocol families because only IPv4 traffic is present on the 
peering interface. The choice of a Fast Ethernet interface for this facet of the JNCIE test bed 
prevents the deployment of interface-based rate-limiting approaches such as leaky bucket rate 
limiting or subrate configuration. The approach shown here adopts the policer applied directly to 
interface approach, which is chosen over a firewall filter solution due to its simplicity:

[edit]

lab@r3# show firewall policer t1

if-exceeding {

    bandwidth-percent 5;

    burst-size-limit 15k;



364 Chapter 3 � Firewall Filter and Traffic Sampling

}

then discard;

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        policer {

            input t1;

        }

        address 172.16.0.13/30;

    }

}

Note that the t1 policer is configured to use bandwidth-percent, as opposed to the previously 
demonstrated bandwidth-limit, which is in keeping with the need to limit received traffic to 5% 
of the peering interface’s speed. Setting the policer to a bandwidth-limit of 5Mbps might 
result in exam point loss, even though 5% of 100Mbps equates to 5Mbps. While this may seem 
draconian, consider the case of an OC-3 interface that is later upgraded to an OC-12. While this 
may seem a bit of a stretch, consider that a PIC swap-out would allow the interface configuration 
stanza to be used for all SONET PICS from OC-3 to OC-192! If the PIC is swapped, it will be 
hard to claim that the static bandwidth-limit setting adequately complies with the need to 
operate at 5% of the interface’s speed.

The burst parameter has again been set to the recommended default, owing to the fact that 
no burst tolerance parameters were specified. After committing the changes, the effect of the t1 
policer can be verified with some rapid pings as shown here. You begin by clearing the firewall 
counters at r3:

[edit]

lab@r3# run clear firewall all

The ping test is now performed at the T1 router:

[edit]

lab@T1-P1# run ping rapid count 100 size 1400 10.0.3.4 source 130.130.0.1

PING 10.0.3.4 (10.0.3.4): 1400 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!.!

--- 10.0.3.4 ping statistics ---

100 packets transmitted, 97 packets received, 3% packet loss

round-trip min/avg/max/stddev = 1.248/1.259/1.442/0.024 ms

The display indicates approximately 3% packet loss for traffic originating at the T1 router. 
Back at r3, the loss is confirmed to be the result of policer discards:

[edit]

lab@r3# run show policer



Case Study: Firewall Filter and Traffic Sampling 365

Policers:

Name                                              Packets

__default_arp_policer__                                 0

fe-0/0/2.0-in-policer                                   3

Also note that you can confirm application of an interface policer by including the detail 
switch when displaying the interface’s status:

[edit]

lab@r3# run show interfaces fe-0/0/2 detail

Physical interface: fe-0/0/2, Enabled, Physical link is Up

  Interface index: 14, SNMP ifIndex: 17, Generation: 13

. . .

Logical interface fe-0/0/2.0 (Index 7) (SNMP ifIndex 18) (Generation 6)

    Flags: SNMP-Traps Encapsulation: ENET2

    Protocol inet, MTU: 1500, Generation: 14, Route table: 0

      Flags: None

      Policer: Input: fe-0/0/2.0-in-policer

      Addresses, Flags: Is-Preferred Is-Primary

        Destination: 172.16.0.12/30, Local: 172.16.0.13, Broadcast: 172.16.0.15,
           Generation: 12

With interface policing now confirmed, you move on to the next case study configu-
ration task:
� Count and police traffic sent to all host IDs on the 192.168.0/24 subnet at r5, according 

to these restrictions:
� Count and police traffic originated from external sources that is directed at FTP and web 

servers only.
� Police FTP to 500Kbps.
� Police HTTP to 2Mbps.
� Configure one policer/counter for every four consecutive host addresses. Ensure that 

you do not create more policer/counter pairs than are required by the parameters 
specified.

To meet the specified behavior, you need to configure PSCP at r5 with two different prefix-
action sets. The following highlights call out changes made to existing configuration stanzas 
on r5 in support of this configuration challenge:

[edit firewall]

lab@r5# show family inet

prefix-action ftp {

    policer ftp;

    count;

    subnet-prefix-length 24;

    destination-prefix-length 30;



366 Chapter 3 � Firewall Filter and Traffic Sampling

}

prefix-action http {

    policer http;

    count;

    subnet-prefix-length 24;

    destination-prefix-length 30;

}

The two prefix-action definitions correctly link associated traffic to a counting action and 
a policer definition. The lack of a filter-specific statement means that a set of counters 
and policers will be created for each term in the firewall that calls the related prefix-action 
set. Besides giving you per term granularity for counter/policer statistics, this fact becomes signif-
icant later when you decide to display the resulting policers and counters.

The use of a destination-prefix-length setting of 30 correctly maps each grouping of 
four consecutive host IDs to a counter/policer pair, in that there are four combinations to bits 30 
and 31, which lie outside of the specified prefix length. Setting the prefix length to 32 results in 
a one-to-one mapping of prefix to policer/counter instances. The subnet-prefix-length 
parameter is set to 24, which permits the creation of 256 policer/counter pairs. The actual number 
of policer/counter instances is determined by the formula 2 ^ (prefix-length – subnet-length), 
which in this case yields 2 ̂  (30 – 24), or 2 ̂  6, which yields a total of 64 policer/counter pairs. 
With each policer/counter pair being shared by four consecutive host IDs, the prefix-action 
configuration shown correctly accommodates the need to count and police traffic to all 254 
hosts assumed present on the 192.168.0/24 subnet. Note that the admonition against creating 
more policer/counter pairs than are actually required can easily lead a candidate to the incorrect 
setting of the subnet-prefix-length parameter if the formula shown earlier is not well under-
stood. The bottom line is that you need a total of 64 policer/counter instances, each policing 
four consecutive host addresses, to get these exam points. The configuration shown earlier 
meets these requirements, even though the subnet length setting shown often causes the 
uninitiated to believe that you will end up with 256 policer/counter pairs, in clear violation of 
the “no extra policer counter pairs” clause.

You now examine the new policer definitions at r5:

[edit firewall]

lab@r5# show policer ftp

if-exceeding {

    bandwidth-limit 500k;

    burst-size-limit 15k;

}

then discard;

[edit firewall]

lab@r5# show policer http

if-exceeding {

    bandwidth-limit 2m;



Case Study: Firewall Filter and Traffic Sampling 367

    burst-size-limit 15k;

}

then discard;

There is nothing very fancy about the ftp and http policer definitions. Each policer makes 
use of the recommended burst size and correctly limits traffic rates to 500Kbps and 2Mbps, 
respectively. You now display the firewall filter that is used to direct matching traffic to the 
associated prefix-action set:

[edit firewall]

lab@r5# show filter dc-pscp

term ftp-traffic {

    from {

        source-address {

            0.0.0.0/0;

            10.0.0.0/16 except;

        }

        destination-address {

            192.168.0.0/24;

        }

        protocol tcp;

        destination-port [ ftp ftp-data ];

    }

    then prefix-action ftp;

}

term http-traffic {

    from {

        source-address {

            0.0.0.0/0;

            10.0.0.0/16 except;

        }

        destination-address {

            192.168.0.0/24;

        }

        protocol tcp;

        destination-port http;

    }

    then prefix-action http;

}

term all-else {

    then accept;

}



368 Chapter 3 � Firewall Filter and Traffic Sampling

The first two terms in the dc-pscp filter match on the TCP protocol and the destination 
ports associated with either FTP or HTTP traffic, in accordance with the requirements of the 
scenario. Note that the terms also make use of destination and source address match criteria 
that limit matches to packets with source addresses that do not equal 10.0/16 and destination 
addresses that are equal to 192.168.0/24. Traffic matching the ftp-traffic or http-traffic 
terms is directed to the appropriate prefix-action set. The final term in the dc-pscp filter 
functions to accept all other traffic without counting or policing, which accommodates the 
requirement that you count only FTP and HTTP traffic streams. The dc-pscp firewall filter is 
applied as an output to both of r5’s Fast Ethernet interfaces. This ensures that all traffic hitting 
r5, which is destined for the 192.168.0/24 subnet, will be screened against the filter for possible 
counting and policing:

[edit]

lab@r5# show interfaces fe-0/0/0

unit 0 {

    family inet {

        filter {

            output dc-pscp;

        }

        address 10.0.8.6/30;

    }

    family iso;

}

[edit]

lab@r5# show interfaces fe-0/0/1

unit 0 {

    family inet {

        filter {

            output dc-pscp;

        }

        address 10.0.8.9/30;

    }

    family iso;

}

To verify the correct operation of r5’s PSCP configuration, you need to complete the next 
case study task. This is because you need to be sure that all FTP and HTTP request traffic des-
tined for the 192.168.0/24 data center subnet that is received at r3 and r4 from the T1 and C1 
peerings is routed through r5 if you hope to get accurate measurements. Note that, currently, 
traffic arriving from T1 that is addressed to the 192.168.0/24 subnet is normally sent from r3 
directly to r6, while similar traffic arriving from C1 is normally sent from r4 directly to r7. This 
forwarding behavior is the result of metrics, and stems from the fact that both r6 and r7 advertise 



Case Study: Firewall Filter and Traffic Sampling 369

the data center prefixes with a metric of 2 (the RIP metric) while r5 advertises the same routes 
with a metric of 12.

Note that simply downing the r3–r6 and r4–r7 links in an attempt to force traffic 
through r5 will result in the loss of the IBGP sessions between r3/r4 and r6/r7. The IBGP 
session interruption stems from the presence of a local 10.0/16 aggregate definition on both 
r6 and r7, coupled with the lack of r3/r4 loopback address advertisement in their Level 1 
IS-IS area.

The choice of r5 as the location for PSCP functionality serves to complicate your confirmation 
of PSCP behavior owing to the fact that qualifying traffic normally never passes through r5! The 
default forwarding behavior described previously is confirmed here with a traceroute from C1:

lab@c1> traceroute 192.168.0.1 source 200.200.0.1

traceroute to 192.168.0.1 (192.168.0.1) from 200.200.0.1, 30 hops max,
   40 byte packets

 1  172.16.0.5 (172.16.0.5)  0.505 ms  0.336 ms  0.280 ms

 2  10.0.2.17 (10.0.2.17)  0.206 ms  0.175 ms  0.173 ms

 3  192.168.0.1 (192.168.0.1)  0.343 ms  0.288 ms  0.283 ms

For now, confirmation of PSCP at r5 is confined to the verification that no services or appli-
cations have been adversely affected by the application of the dc-pscp filter. You can also 
display the PSCP counters and policers to verify that the required number of policer/counter 
instances exist for both the HTTP and FTP protocols:

lab@r5> show firewall prefix-action-stats filter dc-pscp prefix-action

   http-http-traffic

Filter: dc-pscp

Counters:

Name                                                Bytes              Packets

http-http-traffic-0                                     0                    0

http-http-traffic-1                                     0                    0

. . .

http-http-traffic-62                                    0                    0

http-http-traffic-63                                    0                    0

Policers:

Name                                              Packets

http-http-traffic-0                                     0

http-http-traffic-1                                     0

. . .

http-http-traffic-62                                    0

http-http-traffic-63                                    0

As expected, there are 64 policer/counter instances present for the http prefix-action. 
Note that you must specify the term name of the calling firewall filter to display the counter and 
policer values because the prefix-actions sets in this example are not identified as being filter 
specific. In this example, the http prefix-action set is called from the http-traffic term 



370 Chapter 3 � Firewall Filter and Traffic Sampling

in the dc-pscp filter; the http-traffic term name can be seen concatenated to the end of the 
command in the display. You can assume that a similar display is provided for the ftp prefix-
action set. With the required number of counters and policers confirmed for both the HTTP 
and FTP protocols, you move on to the next case study requirement:
� Configure r3 and r4 to forward all HTTP and FTP request traffic received from external 

sources and addressed to the 192.168.0/24 subnet to r5.

The previous task confirmed that r3 and r4 do not forward through r5 when routing to the 
192.168.0/24 subnet. You therefore need to use FBF on r3 and r4 to direct matching HTTP and 
FTP traffic into a routing instance that forwards the selected traffic through r5 to complete this 
configuration task. Note that you need to modify the existing no-spoof input filter in place at 
r4 to add FBF functionality, because FBF can only be called from an input filter and only one 
filter is allowed per direction on a given logical unit. The following highlights call out the 
changes made to r4’s configuration to support the FBF task. Note that the terms in the original 
no-spoof filter have been renamed, and rearranged, using the rename and insert commands. 
Also note that by default the new dc term was added to the end of the no-spoof filter, where 
it had absolutely no effect:

[edit]

lab@r4# show firewall filter no-spoof

term dc {

    from {

        source-address {

            200.200.0.0/16;

            172.16.0.4/30;

        }

        protocol tcp;

        destination-port [ http ftp ftp-data ];

    }

    then routing-instance dc;

}

term valid-sa {

    from {

        source-address {

            200.200.0.0/16;

            172.16.0.0/29;

        }

    }

    then accept;

}

term spoofed-sa {

    then {

        count spoofs;



Case Study: Firewall Filter and Traffic Sampling 371

        discard;

    }

}

The new dc term, which functions to direct matching FTP and HTTP traffic to the dc routing 
instance, also includes source address spoofing prevention functionality. Candidates often 
forget to back-port existing firewall functionality to a new term that is added after the fact. 
Remember, failing to prevent spoofed packets from C1 will result in exam point loss! The 
172.16.0.4/30 route filter in the dc term is designed to accommodate the r4–C1 peering link 
only because the dc term is not used in the no-spoof filter on r7. The new routing instance 
is displayed next:

[edit]

lab@r4# show routing-instances

dc {

    instance-type forwarding;

    routing-options {

        static {

            route 0.0.0.0/0 next-hop 10.0.2.9;

        }

    }

}

The default route will direct traffic in this instance to r5, which is the desired behavior in this 
case. To resolve the 10.0.2.9 next hop, you must add interface routes to the dc instance with the 
(much dreaded) RIB group configuration.

[edit]

lab@r4# show routing-options

interface-routes {

    rib-group inet interface-rib;

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

rib-groups {

    interface-rib {

        import-rib [ inet.0 dc.inet.0 ];



372 Chapter 3 � Firewall Filter and Traffic Sampling

    }

}

autonomous-system 65412;

Although not shown here, similar changes are also made at r3. You now generate FTP traffic 
from the C1 site to confirm FBF functionality at r4, while also validating the PSCP configuration 
at r5. You start by clearing all counters at r5:

[edit]

lab@r5# run clear firewall all

With the counters cleared, you verify that forwarding paths for non-HTTP and non-FTP 
traffic do not involve r5:

lab@c1> traceroute 192.168.0.1 source 200.200.0.1

traceroute to 192.168.0.1 (192.168.0.1) from 200.200.0.1, 30 hops max,
   40 byte packets

 1  172.16.0.5 (172.16.0.5)  0.409 ms  0.288 ms  0.278 ms

 2  10.0.2.17 (10.0.2.17)  0.202 ms  0.186 ms  0.173 ms

 3  192.168.0.1 (192.168.0.1)  0.319 ms  0.292 ms  0.286 ms

As required, the FBF configuration at r4 has no effect on the forwarding of UDP-based 
traceroute traffic. If FBF is working at r4, then FTP and HTTP traffic should be forwarded 
through r5, where the PSCP settings will count and police the traffic. With fingers crossed, you 
initiate the test:

lab@c1> ftp 192.168.0.1 interface lo0

Connected to 192.168.0.1.

220 dc FTP server (Version 6.00LS) ready.

Name (192.168.0.1:lab): lab

331 Password required for lab.

Password:

230 User lab logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

The FTP session succeeds. Note that the interface switch is used to source the FTP session 
from C1’s loopback interface. The PSCP counters are now displayed on r5:

lab@r5> show firewall prefix-action-stats filter dc-pscp prefix-action

   ftp-ftp-traffic from 0 to 3

Filter: dc-pscp

Counters:

Name                                                Bytes              Packets

ftp-ftp-traffic-0                                     560                   10

ftp-ftp-traffic-1                                       0                    0

ftp-ftp-traffic-2                                       0                    0

ftp-ftp-traffic-3                                       0                    0



Case Study: Firewall Filter and Traffic Sampling 373

Policers:

Name                                              Packets

ftp-ftp-traffic-0                                       0

ftp-ftp-traffic-1                                       0

ftp-ftp-traffic-2                                       0

ftp-ftp-traffic-3                                       0

The display confirms that the FTP traffic was counted and that no policer discards have 
occurred. To verify that the number of prefixes per counter/policer pair has been correctly con-
figured, FTP connections are now attempted to (nonexistent) hosts 192.168.0.2 and 192.168.0.3:

ftp> quit

221 Goodbye.

lab@c1> ftp 192.168.0.2 interface lo0

^C

lab@c1>

lab@c1> ftp 192.168.0.3 interface lo0

^C

lab@c1>

The PSCP counters are once again analyzed at r5, with the expectation that traffic to hosts 
192.168.0-3 on the 192.168.0/24 subnet will be counted by the first of the 64 policer/counter pairs:

lab@r5> ... firewall prefix-action-stats filter dc-pscp prefix-action

   ftp-ftp-traffic from 0 to 3

Filter: dc-pscp

Counters:

Name                                                Bytes              Packets

ftp-ftp-traffic-0                                     902                   16

ftp-ftp-traffic-1                                       0                    0

ftp-ftp-traffic-2                                       0                    0

ftp-ftp-traffic-3                                       0                    0

Policers:

Name                                              Packets

ftp-ftp-traffic-0                                       0

ftp-ftp-traffic-1                                       0

ftp-ftp-traffic-2                                       0

ftp-ftp-traffic-3                                       0

As expected, only the first counter has incremented. This provides a good indication that the 
PSCP settings at r5 are in accordance with the provided restrictions. The final proof is obtained 
when traffic to 192.168.0.4 causes the second counter to begin incrementing:

lab@c1> ftp 192.168.0.4 interface lo0

^C



374 Chapter 3 � Firewall Filter and Traffic Sampling

lab@c1>

lab@r5> show firewall prefix-action-stats filter dc-pscp prefix-action

   ftp-ftp-traffic from 1 to 1

Filter: dc-pscp

Counters:

Name                                                Bytes              Packets

ftp-ftp-traffic-1                                      60                    1

Policers:

Name                                              Packets

ftp-ftp-traffic-1                                       0

These results confirm FBF functionality at r4 and the PSCP settings at r5. You should 
perform similar tests at r3 to validate the FBF configuration, which is not shown here, before 
proceeding. Note that HTTP validation is difficult because there is no way to source HTTP 
connection request from the loopback address of an M-series or T-series platform. Besides, the 
knowledge that FTP traffic is behaving properly greatly lessens the need for explicit validation 
of HTTP traffic. With FBF confirmed, you arrive at the final case study configuration requirement:
� Configure r5 to perform the following:

� Sample 50% of TCP connection requests received on the so-0/1/0 interface.
� Ensure that three additional samples are taken for each sample trigger.
� Forward samples as complete packets to the data collection device.

The final configuration requirement involves a firewall filter that selectively matches on 
initial TCP segments with a sample action. You also need to configure sampling and the mirroring 
interface parameters needed to communicate with the data collection device. The following 
highlights call out the changes made to r5’s configuration:

[edit]

lab@r5# show firewall filter sample

term 1 {

    from {

        protocol tcp;

        tcp-initial;

    }

    then sample;

}

term 2 {

    then accept;

}

[edit]

lab@r5# show forwarding-options

sampling {



Case Study: Firewall Filter and Traffic Sampling 375

    input {

        family inet {

            rate 2;

            run-length 3;

        }

    }

    output {

        port-mirroring {

            interface fe-0/0/3.0 {

                next-hop 172.16.30.2;

            }

        }

    }

}

[edit]

lab@r5# show interfaces so-0/1/0

encapsulation ppp;

unit 0 {

    family inet {

        filter {

            input sample;

        }

        address 10.0.2.9/30;

    }

    family iso;

}

[edit]

lab@r5# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 172.16.30.1/24 {

            arp 172.16.30.2 mac 00:a0:c9:69:c1:d8;

        }

    }

}

The changes to r5’s configuration illustrate a correct sampling ratio of 1:2 (50%) and a 
properly written firewall filter that passes all traffic while evoking the sample action modifier 
for initial TCP SYN segments only. The correct identification of the mirroring interface and the 
presence of a next-hop entry, which is required when using a multipoint interface for mirroring 
output, are evident in the sampling output stanza. The fe-0/0/3 mirroring interface has been 



376 Chapter 3 � Firewall Filter and Traffic Sampling

appropriately configured with an IP address from the data collection subnet and the MAC 
address of the data collection device. A static ARP entry is required when the attached test 
equipment does not respond to ARP requests; the inclusion of the MAC address on the case 
study topology is a strong indication that a static ARP entry is required in this case.

As we discussed in the section on port mirroring, trying to validate a port mirroring 
configuration without access to the data collection device can be difficult. In this example, you 
could monitor the fe-0/0/3 interface on r5 while you generate TCP connection requests over the 
10.0.2.8/30 subnet, all the while hoping that you will see a definitive correlation in the packet 
counts. Although you can easily generate this type of traffic at site C1 with the commands 
shown in the PSCP and FBF confirmation steps, note that generating a large or even a fixed 
number of initial TCP SYN segments is all but impossible when relying on the user interface to 
a TCP protocol stack. Another approach involves temporary changes to the sample filter so 
that it also marks ICMP traffic as a candidate for sampling. With these modifications in place, 
you can generate flood pings over r4’s so-0/1/1 interface while expecting to see a significant 
reflection of this traffic in the counter-related output of a monitor interface fe-0/0/3 com-
mand at r5. Because this approach was demonstrated in the section on port mirroring, it will 
not be repeated here. Assume that the changes shown in r5’s configuration have been verified 
as working, at least to the extent made possible by the restrictions of the test bed. If you decide 
to modify the sample filter as suggested previously, make sure that you return the firewall filter to 
its original form when you are done with your confirmation.

It is recommended that you spend a few more moments quickly reassessing the operational 
state of your network before you consider your firewall filter and traffic sampling case study 
complete. Your confirmations should include the overall health of your test bed’s IGP and BGP 
protocols, as well as internal and external connectivity. While everyone makes mistakes in a lab 
environment, it is often the undetected mistake that tends to have the most significant impact 
on your final grade.

Firewall Filter and Traffic Sampling Case Study 

Configurations

The changes made to the IS-IS baseline network topology to support the firewall filter and 
traffic sampling case study are listed here for all routers in the test bed; highlights have been 
added to Listings 3.1 to 3.5 as needed to call out changes to existing configuration stanzas.

r1’s configuration required no modifications to complete this case study.
r2’s configuration required no modifications to complete this case study.

Listing 3.1: Firewall Filter Case Study Configuration for r3

[edit]

lab@r3# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.4.13/30;

        }



Case Study: Firewall Filter and Traffic Sampling 377

        family iso;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.1/30;

        }

        family iso;

    }

}

fe-0/0/2 {

    unit 0 {

        family inet {

            filter {

                input dc;

            }

            policer {

                input t1;

            }

            address 172.16.0.13/30;

        }

    }

}

fe-0/0/3 {

    unit 0 {

        family inet {

            address 10.0.2.14/30;

        }

        family iso;

    }

}

at-0/1/0 {

    atm-options {

        vpi 0 {

            maximum-vcs 64;

        }

    }

    unit 0 {

        point-to-point;

        vci 50;



378 Chapter 3 � Firewall Filter and Traffic Sampling

        family inet {

            address 10.0.2.2/30;

        }

        family iso;

    }

}

so-0/2/0 {

    dce;

    encapsulation frame-relay;

    unit 100 {

        dlci 100;

        family inet {

            address 10.0.2.5/30;

        }

        family iso;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.3/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.3/32;

        }

        family iso {

            address 49.0001.3333.3333.3333.00;

        }

    }

}

[edit]

lab@r3# show firewall

policer t1 {

    if-exceeding {

        bandwidth-percent 5;

        burst-size-limit 15k;



Case Study: Firewall Filter and Traffic Sampling 379

    }

    then discard;

}

filter dc {

    term 1 {

        from {

            protocol tcp;

            destination-port [ ftp ftp-data http ];

        }

        then routing-instance dc;

    }

    term 2 {

        then accept;

    }

}

[edit]

lab@r3# show routing-options

interface-routes {

    rib-group inet interface-rib;

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

rib-groups {

    interface-rib {

        import-rib [ inet.0 dc.inet.0 ];

    }

}

autonomous-system 65412;

[edit]

lab@r3# show routing-instances

dc {

    instance-type forwarding;



380 Chapter 3 � Firewall Filter and Traffic Sampling

    routing-options {

        static {

            route 0.0.0.0/0 next-hop 10.0.2.1;

        }

    }

}

Listing 3.2: Firewall Filter Case Study Configuration for r4

[edit]

lab@r4# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            filter {

                input no-spoof;

                output limit-http;

            }

            address 172.16.0.5/30;

        }

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.4.9/30;

        }

        family iso;

    }

}

fe-0/0/2 {

    unit 0 {

        family inet {

            address 10.0.4.17/30;

        }

        family iso;

    }

}

fe-0/0/3 {

    unit 0 {

        family inet {

            address 10.0.2.18/30;



Case Study: Firewall Filter and Traffic Sampling 381

        }

        family iso;

    }

}

so-0/1/0 {

    encapsulation frame-relay;

    unit 100 {

        dlci 100;

        family inet {

            address 10.0.2.6/30;

        }

        family iso;

    }

}

so-0/1/1 {

    encapsulation ppp;

    unit 0 {

        family inet {

            address 10.0.2.10/30;

        }

        family iso;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.4/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.4/32;

        }

        family iso {

            address 49.0001.4444.4444.4444.00;

        }

    }

}



382 Chapter 3 � Firewall Filter and Traffic Sampling

[edit]

lab@r4# show firewall

policer 1m-http {

    if-exceeding {

        bandwidth-limit 1m;

        burst-size-limit 15k;

    }

    then loss-priority high;

}

policer 2m-http {

    if-exceeding {

        bandwidth-limit 2m;

        burst-size-limit 15k;

    }

    then discard;

}

filter no-spoof {

    term dc {

        from {

            source-address {

                200.200.0.0/16;

                172.16.0.4/30;

            }

            protocol tcp;

            destination-port [ http ftp ftp-data ];

        }

        then routing-instance dc;

    }

    term valid-sa {

        from {

            source-address {

                200.200.0.0/16;

                172.16.0.0/29;

            }

        }

        then accept;

    }

    term spoofed-sa {

        then {

            count spoofs;

            discard;

        }



Case Study: Firewall Filter and Traffic Sampling 383

    }

}

filter limit-http {

    term 1 {

        from {

            protocol tcp;

            source-port 80;

        }

        then {

            policer 1m-http;

            next term;

        }

    }

    term 2 {

        from {

            protocol tcp;

            source-port 80;

        }

        then policer 2m-http;

    }

    term 3 {

        then accept;

    }

}

[edit]

lab@r4# show routing-options

interface-routes {

    rib-group inet interface-rib;

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

rib-groups {

    interface-rib {



384 Chapter 3 � Firewall Filter and Traffic Sampling

        import-rib [ inet.0 dc.inet.0 ];

    }

}

autonomous-system 65412;

[edit]

lab@r4# show routing-instances

dc {

    instance-type forwarding;

    routing-options {

        static {

            route 0.0.0.0/0 next-hop 10.0.2.9;

        }

    }

}

Listing 3.3: Firewall Filter Case Study Configuration for r5

[edit]

lab@r5# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            filter {

                output dc-pscp;

            }

            address 10.0.8.6/30;

        }

        family iso;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            filter {

                output dc-pscp;

            }

            address 10.0.8.9/30;

        }

        family iso;

    }

}

fe-0/0/3 {



Case Study: Firewall Filter and Traffic Sampling 385

    unit 0 {

        family inet {

            address 172.16.30.1/24 {

                arp 172.16.30.2 mac 00:a0:c9:69:c1:d8;

            }

        }

    }

}

so-0/1/0 {

    encapsulation ppp;

    unit 0 {

        family inet {

            filter {

                input sample;

            }

            address 10.0.2.9/30;

        }

        family iso;

    }

}

at-0/2/1 {

    atm-options {

        vpi 0 {

            maximum-vcs 64;

        }

    }

    unit 0 {

        point-to-point;

        vci 50;

        family inet {

            address 10.0.2.1/30;

        }

        family iso;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.5/24;

        }

    }



386 Chapter 3 � Firewall Filter and Traffic Sampling

}

lo0 {

    unit 0 {

        family inet {

            filter {

                input lo0;

            }

            address 10.0.3.5/32;

        }

        family iso {

            address 49.0002.5555.5555.5555.00;

        }

    }

}

[edit]

lab@r5# show firewall

policer limit-icmp {

    if-exceeding {

        bandwidth-limit 500k;

        burst-size-limit 15k;

    }

    then discard;

}

policer ftp {

    if-exceeding {

        bandwidth-limit 500k;

        burst-size-limit 15k;

    }

    then discard;

}

policer http {

    if-exceeding {

        bandwidth-limit 2m;

        burst-size-limit 15k;

    }

    then discard;

}

family inet {

    prefix-action ftp {

        policer ftp;



Case Study: Firewall Filter and Traffic Sampling 387

        count;

        subnet-prefix-length 24;

        destination-prefix-length 30;

    }

    prefix-action http {

        policer http;

        count;

        subnet-prefix-length 24;

        destination-prefix-length 30;

    }

}

filter lo0 {

    term police-icmp {

        from {

            protocol icmp;

        }

        then policer limit-icmp;

    }

    term limit-access {

        from {

            source-address {

                10.0.0.0/16;

                192.168.0.0/21;

            }

            protocol tcp;

            destination-port [ ssh telnet ];

        }

        then accept;

    }

    term access-log {

        from {

            source-address {

                0.0.0.0/0;

            }

            protocol tcp;

            destination-port [ 22 23 ];

        }

        then {

            syslog;

            discard;

        }



388 Chapter 3 � Firewall Filter and Traffic Sampling

    }

    term outgoing-tcp-services {

        from {

            protocol tcp;

            source-port [ 22 23 20 21 ];

        }

        then accept;

    }

    term outgoing-udp-services {

        from {

            protocol udp;

            source-port [ 1024-65535 1812 ];

        }

        then accept;

    }

    term bgp {

        from {

            protocol tcp;

            port bgp;

        }

        then accept;

    }

    term else {

        then {

            log;

            discard;

        }

    }

}

filter dc-pscp {

    term ftp-traffic {

        from {

            source-address {

                0.0.0.0/0;

                10.0.0.0/16 except;

            }

            destination-address {

                192.168.0.0/24;

            }

            protocol tcp;

            destination-port [ ftp ftp-data ];



Case Study: Firewall Filter and Traffic Sampling 389

        }

        then prefix-action ftp;

    }

    term http-traffic {

        from {

            source-address {

                0.0.0.0/0;

                10.0.0.0/16 except;

            }

            destination-address {

                192.168.0.0/24;

            }

            protocol tcp;

            destination-port http;

        }

        then prefix-action http;

    }

    term all-else {

        then accept;

    }

}

filter sample {

    term 1 {

        from {

            protocol tcp;

            tcp-initial;

        }

        then sample;

    }

    term 2 {

        then accept;

    }

}

[edit]

lab@r5# show forwarding-options

sampling {

    input {

        family inet {

            rate 2;

            run-length 3;

        }



390 Chapter 3 � Firewall Filter and Traffic Sampling

    }

    output {

        port-mirroring {

            interface fe-0/0/3.0 {

                next-hop 172.16.30.2;

            }

        }

    }

}

Listing 3.4: Firewall Filter Case Study Configuration for r6

[edit]

lab@r6# show interfaces

fe-0/1/0 {

    unit 0 {

        family inet {

            address 10.0.8.5/30;

        }

        family iso;

    }

}

fe-0/1/1 {

    unit 0 {

        family inet {

            address 10.0.2.13/30;

        }

        family iso;

    }

}

fe-0/1/2 {

    unit 0 {

        family inet {

            address 10.0.8.2/30;

        }

        family iso;

    }

}

fe-0/1/3 {

    unit 0 {

        family inet {

            filter {

                input no-spoof;



Case Study: Firewall Filter and Traffic Sampling 391

            }

            address 172.16.0.9/30;

        }

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.6/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.9.6/32;

        }

        family iso {

            address 49.0002.6666.6666.6666.00;

        }

    }

}

[edit]

lab@r6# show firewall

filter no-spoof {

    term 1 {

        from {

            source-address {

                200.200.0.0/16;

                172.16.0.8/30;

            }

        }

        then accept;

    }

    term 2 {

        then {

            count spoofs;

            discard;

        }

    }

}



392 Chapter 3 � Firewall Filter and Traffic Sampling

Listing 3.5: Firewall Filter Case Study Configuration for r7

[edit]

lab@r7# show interfaces

fe-0/3/0 {

    unit 0 {

        family inet {

            address 10.0.8.14/30;

        }

        family iso;

    }

}

fe-0/3/1 {

    unit 0 {

        family inet {

            address 10.0.8.10/30;

        }

        family iso;

    }

}

fe-0/3/2 {

    unit 0 {

        family inet {

            filter {

                input no-spoof;

            }

            address 172.16.0.1/30;

        }

    }

}

fe-0/3/3 {

    unit 0 {

        family inet {

            address 10.0.2.17/30;

        }

        family iso;

    }

}

fxp0 {

    unit 0 {

        family inet {



Case Study: Firewall Filter and Traffic Sampling 393

            address 10.0.1.7/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.9.7/32;

        }

        family iso {

            address 49.0002.7777.7777.7777.00;

        }

    }

}

[edit]

lab@r7# show firewall

filter no-spoof {

    term 1 {

        from {

            source-address {

                200.200.0.0/16;

                172.16.0.0/29;

            }

        }

        then accept;

    }

    term 2 {

        then {

            count spoofs;

            discard;

        }

    }

}



394 Chapter 3 � Firewall Filter and Traffic Sampling

Spot the Issues: Review Questions
1. You must deploy a firewall filter at r4 that permits all outgoing TCP sessions from C1 while 

preventing all incoming TCP connections. Will the configuration shown next achieve the desired 
behavior?

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        filter {

            input c2;

        }

        address 172.16.0.5/30;

    }

}

[edit]

lab@r4# show firewall filter c1

term 1 {

    from {

        protocol tcp;

        tcp-established;

    }

    then {

        count estab;

        accept;

    }

}

term 2 {

    from {

        protocol tcp;

    }

    then {

        count initial;

        reject;

    }

}

term 3 {

    then accept;

}



Spot the Issues: Review Questions 395

2. This filter is not protecting the RE from unauthorized traffic. Can you spot the reason?

[edit]

lab@r5# show firewall filter lo0

filter lo0 {

    term police-icmp {

        from {

            protocol icmp;

        }

        then policer limit-icmp;

    }

    term limit-access {

        from {

            source-address {

                10.0.0.0/16;

                192.168.0.0/21;

            }

            protocol tcp;

            destination-port [ ssh telnet ];

        }

        then accept;

    }

    term access-log {

        from {

            source-address {

                0.0.0.0/0;

            }

            protocol tcp;

            destination-port [ 22 23 ];

        }

        then {

            syslog;

            discard;

        }

    }

    term outgoing-tcp-services {

        from {

            protocol tcp;

            source-port [ 22 23 20 21 ];

        }

        then accept;

    }



396 Chapter 3 � Firewall Filter and Traffic Sampling

    term outgoing-udp-services {

        from {

            protocol udp;

            source-port [ 1024-65535 1812 ];

        }

        then accept;

    }

    term bgp {

        from {

            protocol tcp;

            port bgp;

        }

        then accept;

    }

    term else {

        then {

            log;

        }

    }

}

[edit]

lab@r5# show interfaces lo0

unit 0 {

    family inet {

        filter {

            input lo0;

        }

        address 10.0.3.5/32;

    }

    family iso {

        address 49.0002.5555.5555.5555.00;

    }

}

3. Based on the prefix-action set shown here, how many policer/counter pairs will be created?

[edit firewall]

lab@r5# show family inet prefix-action ftp

policer ftp;

count;

subnet-prefix-length 29;

destination-prefix-length 30;



Spot the Issues: Review Questions 397

4. Can you spot the problem in r3’s FBF configuration from the case study topology?

[edit]

lab@r3# show routing-options

interface-routes {

    rib-group inet interface-rib;

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

rib-groups {

    interface-rib {

        import-rib [ inet.0 dc.inet.0 ];

        import-policy fbf;

    }

}

autonomous-system 65412;

[edit]

lab@r3# show routing-instances

dc {

    instance-type forwarding;

    routing-options {

        static {

            route 0.0.0.0/0 next-hop 10.0.2.1;

        }

    }

}

[edit]

lab@r3# show policy-options policy-statement fbf

term 1 {

    from {

        protocol [ static local ];

        route-filter 10.0.2.0/30 orlonger;

    }



398 Chapter 3 � Firewall Filter and Traffic Sampling

    then accept;

}

term 2 {

    then reject;

}

[edit]

5. The port mirroring component of the case study is not working. Is anything amiss in r5’s 
configuration?

[edit]

lab@r5# show forwarding-options

sampling {

    input {

        family inet {

            rate 2;

            run-length 3;

        }

    }

    output {

        port-mirroring {

            interface fe-0/0/3.0 {

            }

        }

    }

}

[edit]

lab@r5# show firewall filter sample

term 1 {

    from {

        protocol tcp;

        tcp-initial;

    }

    then sample;

}

term 2 {

    then accept;

}



Spot the Issues: Review Questions 399

[edit]

lab@r5# show interfaces so-0/1/0

encapsulation ppp;

unit 0 {

    family inet {

        filter {

            input sample;

        }

        address 10.0.2.9/30;

    }

    family iso;

}



400 Chapter 3 � Firewall Filter and Traffic Sampling

Spot the Issues: Answers to Review 
Questions
1. No. The problem with this firewall filter lies in the direction in which it has been applied to r4’s 

fe-0/0/0 interface. The c1 filter will prevent site C1 from initiating TCP connections when applied 
as an input filter. 

2. The problem with this firewall filter lies in the final term called else. Using a log action 
modifier without the inclusion of an explicit discard or reject action results in the acceptance 
of all traffic that matches the else term. Note that the default term action of discard is 
changed to accept when an action modifier is used. 

3. According to the formula provided in the chapter body, there should be two policer/counter 
instances. Each instance will be shared by four consecutive IP addresses with the prefix length 
of 30 that is configured. 
lab@r5> show firewall prefix-action-stats filter dc-pscp prefix-action

   ftp-ftp-traffic

Filter: dc-pscp

Counters:

Name                                           Bytes              Packets

ftp-ftp-traffic-0                                  0                    0

ftp-ftp-traffic-1                                  0                    0

Policers:

Name                                         Packets

ftp-ftp-traffic-0                                  0

ftp-ftp-traffic-1                                  0

4. The problem lies in the import policy being applied to the interface-rib RIB group. The fbf 
policy fails to include direct routes, and r3 needs the 10.0.2.0/30 direct route in the dc.inet.0 
routing instance to activate the static default route. Note that with this configuration the 
10.0.2.2/32 route is installed in the dc.inet.0 instance, but the static default route is not, 
because of the inability to resolve the static route’s 10.0.2.1/32 next hop: 
[edit]

lab@r3# run show route table dc

dc.inet.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.2.2/32        *[Local/0] 00:02:33

                      Local via at-0/1/0.0



Spot the Issues: Answers to Review Questions 401

To correct this situation, add the direct protocol to term 1 of the fbf policy. Note that you do 
not need to include the static protocol:

[edit policy-options policy-statement fbf]

lab@r3# show

term 1 {

    from {

        protocol direct;

        route-filter 10.0.2.0/30 orlonger;

    }

    then accept;

}

term 2 {

    then reject;

}

[edit policy-options policy-statement test]

lab@r3# run show route table dc

dc.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[Static/5] 00:00:07

                    > to 10.0.2.1 via at-0/1/0.0

10.0.2.0/30        *[Direct/0] 00:00:07

                    > via at-0/1/0.0

5. r5’s port-mirroring configuration is broken because the next-hop parameter is missing from the 
sampling output stanza. The specification of a next hop is required when mirroring over a 
multipoint interface. A functional sampling output stanza for the case study topology contains 
the next-hop parameter, as shown next: 
[edit]

lab@r5# show forwarding-options sampling output

port-mirroring {

    interface fe-0/0/3.0 {

        next-hop 172.16.30.2;

    }

}





 

Chapter

 

4

 

Multicast

 

JNCIE LAB SKILLS COVERED IN THIS 
CHAPTER:

�

 

IGMP

�

 

Static joins

�

 

DVMRP

�

 

PIM

�

 

Dense mode
�

 

Sparse mode (Bootstrap and Auto-RP)

�

 

MSDP

�

 

Any-Cast RP
�

 

Interdomain



 

This chapter exposes the reader to a variety of JNCIE-level 
configuration scenarios that validate a candidate’s theoretical and 
practical understanding of multicast technology on M-series 

and T-series routing platforms. It is assumed that the reader already has a working knowledge 
of multicast protocols and their operation, to the extent covered in the 

 

JNCIS Study Guide

 

 
(Sybex, 2003).

Juniper Networks routing platforms support a variety of multicast protocols and standards, 
including Internet Group Management Protocol (IGMP) versions 1, 2, and 3, Distance Vector 
Multicast Routing Protocol (DVMRP), Protocol Independent Multicast (PIM) versions 1 and 2 
(in both dense and sparse mode), Session Announcement Protocol (SAP), Session Discovery 
Protocol (SDP), and Multicast Source Discovery Protocol (MSDP). Note that a tunnel services 
(TS) Physical Interface Card (PIC) is required when supporting DVMRP tunnels across non-
multicast enabled network elements. A TS is also needed at the Rendezvous Point (RP) and in 
first hop routers (those routers with directly attached multicast sources), when deploying a PIM 
sparse mode topology.

Use the 

 

show

 

 

 

chassis

 

 

 

fpc

 

 

 

pic-status

 

 command to determine if your router is equipped 
with a TS PIC:

 

lab@montreal> 

 

show chassis fpc pic-status

 

Slot 0 Online

  PIC 0    4x OC-3 SONET, SMIR

  PIC 2    2x OC-3 ATM, MM

Slot 3 Online

  PIC 1    4x OC-3 SONET, MM

Slot 6 Online

  PIC 0    1x G/E, 1000 BASE-SX

  PIC 1    1x G/E, 1000 BASE-SX

  PIC 2    1x Tunnel

Slot 7 Online

 

Note that the absence of a TS PIC can have a dramatic impact on the overall 
success of a given multicast design. A prepared JNCIE candidate will know 
when (and where) TS PICs are needed, and will be ready to perform inventory 
steps on their test bed to ensure that their network design makes appropriate 

 

use of routers that are outfitted with TS PICs.



 

Multicast

 

405

 

The chapter’s case study is designed to closely approximate a typical JNCIE multicast 
configuration scenario. Examples of key operational mode command output are provided 
to allow for an operational comparison of your network to that of a known good example. 
Examples of baseline configuration modifications that are known to meet all case study 
requirements are provided at the end of the case study for all routers in the multicast
test bed.

The examples demonstrated in the chapter body are based on the IS-IS baseline configuration 
as discovered in the case study for Chapter 1, “Network Discovery and Verification.” If you are 
unsure as to the state of your test bed, you should take a few moments to load up and confirm 
the operation of the IS-IS discovery configuration before proceeding. Figure 4.1 reviews the 
IS-IS IGP discovery findings from the case study in Chapter 1.

 

F I G U R E 4 . 1

 

Summary of IS-IS IGP discovery

Notes:

Multi-level IS-IS, Areas 0001 and 0002 with ISO NET based on router number.

lo0 address of r3 and r4 not injected into Area 0001 to ensure optimal forwarding between 10.0.3.3 and 10.0.3.4.

Passive setting on r5's core interfaces for optimal Area 0002-to-core routing.

No authentication or route summarization. Routing policy at r5 to leak L1 externals (DC routes) to L2.

Suboptimal routing detected at the data center and at r1/r2 for some locations. This is the result of random nexthop
choice for data center's default, and the result of r1 and r2's preference for r3's RID over r4 with regard to the
10.0/16 route. This is considered normal behavior, so no corrective actions are taken.

Redistribution of static default route to data center from both r6 and r7. Redistribution of 192.168.0/24 through
192.168.3/24 routes from RIP into IS-IS by both r6 and r7.

All adjacencies are up, reachability problem discovered at r1 and r2 caused by local aggregate definition. Corrected
through IBGP policy to effect 10.0/16 route advertisement from r3 and r4 to r1 and r2; removed local aggregate
from r1 and r2.

Area 0001
L1

L2 Area 0002
L1

r2 r4
r7

r6

RIP v2

Data
Center

r5

r3r1

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

M5M5

M5M5

M5M5

M5M5

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

Data
Center



 

406

 

Chapter 4 �

 

Multicast

 

IGMP

 

The Internet Group Management Protocol (IGMP) is used by hosts and routers to determine 
whether there are any attached listeners for a given multicast group address (G). Routers will 
stop forwarding traffic addressed to G when the IGMP protocol indicates that no attached 
hosts are interested in the corresponding traffic. IGMP uses a variety of timers, and the con-
cept of a querier router, to facilitate and control the exchange of IGMP messages on a given 
subnet.

By default, IGMP version 2 is enabled on all broadcast interfaces when you configure PIM 
or DVMRP on that interface. You must explicitly enable IGMP on point-to-point interfaces 
when needed; the default JUNOS software behavior reflects the fact that multicast hosts are 
normally attached to routers using some form of Ethernet topology while point-to-point links 
are normally used to interconnect routers themselves.

After verifying the operation of the baseline network using the steps outlined in previous 
chapters, your multicast configuration scenario begins with these IGMP configuration 
requirements:
�

 

Enable IGMP version 3 to MR1. You must not configure PIM or DVMRP at this time.
�

 

Configure 

 

r5

 

 to wait no more than 5 seconds for IGMP responses.
�

 

Without interacting with MR1, ensure that 

 

r5

 

 displays a 

 

∗

 

,G join for group 225.0.0.1.

Figure 4.2 focuses on the subset of routers that make up the multicast test bed and provides 
additional details about the multicast receiver, MR1.

 

F I G U R E 4 . 2

 

Multicast test bed topology

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

fe-0/0/0
10.0.4.12/30

10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.1 .14 .13

.9

.1

.1
.5

.18

.2 .10 .910.0.4.8/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.6 .10

.2
.5

r4

Loopbacks

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5

.6

so-0/2/0

M5M5

.1

.2

fe
-0

/0
/3

172.16.30/24

r5

.200

MS1

MR1



 

IGMP

 

407

 

Configuring IGMP

 

You begin at 

 

r5

 

 by configuring its fe-0/0/3 interface for proper connectivity to the MR1 device:

 

[edit interfaces]

lab@r5# 

 

set fe-0/0/3 unit 0 family inet address 172.16.30.1/24

 

The modified configuration is displayed for confirmation:

 

[edit interfaces]

lab@r5# 

 

show fe-0/0/3

 

unit 0 {

    family inet {

        address 172.16.30.1/24;

    }

}

 

The following command sequence correctly configures IGMP for the criteria posed in this 
example:

 

[edit protocols igmp]

lab@r5# 

 

set query-response-interval 5

 

[edit protocols igmp]

lab@r5# 

 

set interface fe-0/0/3 version

 

 

 

3

 

[edit protocols igmp]

lab@r5# 

 

set interface fe-0/0/3 static group 225.0.0.1

 

The configuration changes are displayed:

 

[edit protocols igmp]

lab@r5# 

 

show

 

query-response-interval 5;

interface fe-0/0/3.0 {

    version 3;

    static {

        group 225.0.0.1;

    }

}

 

Note that the query-response-interval has been set to the required 5 seconds, and that IGMP 
version 3 has been specified. The static join does not include a source address, which correctly 
meets the stipulations that you create a

 

 ∗

 

,G join state. Note that including a source address 
results in a S,G state for that particular source. Satisfied with your changes, you commit your 
candidate configuration at 

 

r5

 

:

 

[edit protocols igmp]

lab@r5# 

 

commit and-quit



 

408

 

Chapter 4 �

 

Multicast

 

commit complete

Exiting configuration mode

lab@r5>

 

Verifying IGMP

 

Multicast protocols can take a rather long time to converge. Candidates that are 
not experienced with multicast protocols sometimes postpone (or prevent) 
proper operation by continuously changing their configurations, or by constantly 
restarting 

 

rpd

 

 or rebooting the router. By way of example, a PIM bootstrap 
router will remain in the candidate state for at least 60 seconds, during which 
time it monitors bootstrap messages in an attempt to determine whether it will 
remain a BSR candidate or be elected the BSR. During this time, other routers 
will not learn of this router’s candidate RP status. In some cases, a restart of 
the routing daemon may expedite multicast protocol convergence, because 
restarting 

 

rpd

 

 may eliminate state information that would otherwise have to 
age out. The bottom line with multicast convergence is that when you think you 
have waited long enough for some multicast related protocol to “do its thing,” 
you are well advised to wait “some more” before making changes to your 

 

configuration.

 

The verification of your IGMP configuration begins with the determination that 

 

r5

 

’s fe-0/0/3 
interface is operational:

 

lab@r5> 

 

show interfaces fe-0/0/3 terse

 

Interface               Admin Link Proto Local                 Remote

fe-0/0/3                up    up

fe-0/0/3.0              up    up   inet  172.16.30.1/24

 

The display confirms that the fe-0/0/3 interface is operational and provides you with an ideal 
opportunity to reconfirm that the correct address was assigned. A ping test is now performed 
to MR1 to verify interface operation:

 

lab@r5> 

 

ping 172.16.30.2 count 2

 

PING 172.16.30.2 (172.16.30.2): 56 data bytes

--- 172.16.30.2 ping statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

 

Noting that the ping test fails, you decide to examine the Address Resolution Protocol (ARP) 
cache on 

 

r5

 

:

 

lab@r5> 

 

show arp

 

MAC Address            Address         Name            Interface

00:b0:d0:10:73:2f      10.0.1.100      10.0.1.100      fxp0.0

00:03:47:42:37:7c      10.0.1.102      10.0.1.102      fxp0.0



 

IGMP

 

409

 

Total entries: 2

lab@r5>

 

The absence of an ARP entry for the MR1 device helps to explain why the ping test between 

 

r5

 

 and MR1 fails. These symptoms could indicate interface configuration mistakes, hardware 
malfunctions, or that the MR1 device does not really exist. Lacking access to the MR1 device, 
there is little you can do to fault isolate this situation further without assistance from the proc-
tor. In this case, assume that the proctor has confirmed that the lack of ARP entry and IGMP 
echo failures are “normal.” This feedback provides a strong clue that the MR1 device does not 
really exist, or that it is some type of test equipment such as a packet sniffer. The lack of a multi-
cast receiver should not impair your ability to configure and verify multicast forwarding as long 
as you are able to create static IGMP joins that direct traffic out any interfaces associated with 
identified multicast receivers.

Having gone as far as you can with regard to verification of the link between 

 

r5

 

 and MR1, 
you decide to move on to IGMP verification:

 

lab@r5> 

 

show igmp interface

 

Interface: fe-0/0/3.0

    Querier:  172.16.30.1

    State: Up         Timeout:    None    Version:  3    Groups:      1

Configured Parameters:

IGMP Query Interval: 125.0

IGMP Query Response Interval: 5.0

IGMP Last Member Query Interval: 1.0

IGMP Robustness Count: 2

Derived Parameters:

IGMP Membership Timeout: 255.0

IGMP Other Querier Present Timeout: 252.500000

 

The highlighted entries confirm that the fe-0/0/3 interface is considered “up” from the per-
spective of IGMP, that IGMP version 3 is configured, that r5 is the querier for the 172.16.30/24 
subnet, and that the response interval has been correctly set to 5 seconds. The indication that 
a single multicast group is active on this interface is also highlighted. Your next command 
displays information about active multicast groups:

lab@r5> show igmp group

Interface: fe-0/0/3.0

    Group: 225.0.0.1

        Source: 0.0.0.0   Last Reported by: 0.0.0.0

        Timeout:       0          Type: Static

The output confirms the presence of a static join to group 225.0.0.1 for traffic generated by 
any source address (0.0.0.0). The display confirms that you have correctly configured IGMP 



410 Chapter 4 � Multicast

and the static ∗,G join state, as outlined by the restrictions in this configuration example. 
Displaying general IGMP statistics often helps to draw attention to problem areas:

lab@r5> show igmp statistics

IGMP packet statistics for all interfaces

IGMP Message type      Received       Sent  Rx errors

Membership Query              0         10          0

V1 Membership Report          0          0          0

DVMRP                         0          0          0

PIM V1                        0          0          0

Cisco Trace                   0          0          0

V2 Membership Report          0          0          0

Group Leave                   0          0          0

Mtrace Response               0          0          0

Mtrace Request                0          0          0

Domain Wide Report            0          0          0

V3 Membership Report          0          0          0

Other Unknown types                                 0

IGMP v3 unsupported type                            0

IGMP v3 source required for SSM                     0

IGMP v3 mode not applicable for SSM                 0

IGMP Global Statistics

Bad Length                    0

Bad Checksum                  0

Bad Receive If                0

Rx non-local                  0

The statistics output indicates that no protocol errors are occurring and that r5 has sent 
10 membership queries since the statistics were cleared (or started in this case). Considering that 
there are no active multicast receives attached to r5 at this time, the lack of membership reports 
and group leave messages is normal in this case. IGMP statistics can be cleared with the clear 
igmp statistics operational mode command. Although not called for in this example, IGMP 
tracing may prove invaluable when troubleshooting group join and leave issues. The highlights 
in the next capture call out a typical IGMP tracing configuration:

[edit protocols igmp]

lab@r5# show

traceoptions {

    file igmp;

    flag leave detail;

    flag report detail;

    flag query detail;

}



IGMP 411

query-response-interval 5;

interface fe-0/0/3.0 {

    version 3;

    static {

        group 225.0.0.1;

    }

}

The trace output garnered from this configuration indicates that the only IGMP traffic 
present on the 172.16.30/24 subnet is in the form of version 3 membership queries. This is 
expected, considering the lack of multicast receivers on this subnet:

[edit protocols igmp]

lab@r5# run monitor start igmp

[edit protocols igmp]

lab@r5#

*** igmp ***

Mar 26 14:27:37 IGMP SENT 172.16.30.1 -> 224.0.0.1 Membership Query(v3):
   length 12 intvl 5

lab@r5# Mar 26 14:29:39 IGMP SENT 172.16.30.1 -> 224.0.0.1 Membership Query(v3):
   length 12 intvl 5

Mar 26 14:31:41 IGMP SENT 172.16.30.1 -> 224.0.0.1 Membership Query(v3):
   length 12 intvl 5

The IGMP verification steps shown in this section have all indicated that IGMP is opera-
tional and configured in accordance with the provided criteria.

IGMP Summary

IGMP is used by routers and multicast receivers to communicate group membership status. IGMP 
is used by multicast receivers only. Note that multicast senders are not required to join any 
multicast groups; therefore, a multicast sender does not have to support the IGMP protocol.

The operation of IGMP ensures that routers will stop forwarding multicast traffic to a given 
subnet shortly after the last interested host indicates that it no longer wishes to receive traffic 
for that group. By default, JUNOS software operates according to IGMP version 2; you can 
explicitly configure IGMP version 1 or 3 as needed. A router configured for IGMP version 3 will 
fall back to IGMP version 2 (or 1) when needed, but this behavior will prevent version 3 
features, such as Source Specific Multicast (SSM), from functioning.

IGMP is automatically enabled on broadcast interfaces when PIM or DVMRP is enabled 
on that interface. You can explicitly configure IGMP when needed, such as in the case of a 
point-to-point interface, or when interface-specific behavior is desired. You can configure 
static IGMP join state to help test and verify multicast forwarding in the absence of multicast 



412 Chapter 4 � Multicast

receivers. The static join can take the form of a ∗,G or S,G entry, based on the inclusion of 
a source address in the latter case. You need to include a source address when configuring a 
static SSM join.

The operation of IGMP can be verified with a variety of operational mode commands that 
were demonstrated in this section. You can also trace IGMP protocol exchanges to assist in fault 
isolation.

DVMRP
This section details a typical Distance Vector Multicast Routing Protocol (DVMRP) configuration 
scenario. Various verification and confirmation techniques for general multicast routing, and 
for DVMRP in particular, are provided in the confirmation section.

DVMRP operates much like the RIP protocol, in that it is based on the periodic announce-
ment (every 60 seconds) of multicast reachability (a vector) along with an associated metric 
(distance) to all neighboring DVMRP routers. DVMRP is a dense protocol that operates 
according to a flood and prune model. By default, all multicast traffic is flooded away from 
the source (according to Reverse Path Forwarding [RPF] procedures) to all downstream 
nodes using what is called a truncated broadcast tree. Leaf nodes with no interested listeners 
send prune messages to their upstream neighbors to cease the flow of multicast traffic for 
that particular ∗,G entry. DVMRP supports a graft mechanism that allows the rapid removal 
of prune state in the event that a multicast receiver expresses interest in a previously pruned 
group.

The DVMRP protocol represents infinity with a metric of 32; however, the protocol uses 
poison reverse in a unique way. Specifically, a router that considers itself to be downstream 
for a particular source prefix adds 32 to the received route metric, and then proceeds to 
advertise the “poisoned” route back to the neighbor it was learned from. Upon seeing the 
poison reverse metric setting, the upstream neighbor adds the interface associated with
the downstream router into its outgoing interface list (OIL). Figure 4.3 illustrates this behav-
ior in the context of r3 and r5 for the 10.0.5.200/24 prefix associated with MS1. In this 
case, the 10.0.5/24 route is advertised by r3 to r5 with a metric of 2. r5 adds 1 to the revived 
metric upon receipt. After determining that it wishes to be added to r3’s OIL for the 10.0.5/24 
route, r5 adds 32 to the route metric and sends the route back to r3, now with a metric
of 35.

The hardest part about configuring DVMRP relates to the need for a multicast specific routing 
table, which is used by DVMRP to store and advertise multicast routes. To facilitate Reverse 
Path Forwarding (RPF) checks, you must ensure that interface routes are also placed into this 
routing table. These requirements necessitate the use of RIB groups, which are a common source 
of confusion for the uninitiated. Juniper Networks recommends that you use the inet.2 routing 
table to house your interface and DVMRP routes, and the examples in this section are in line 
with this recommendation.



DVMRP 413

F I G U R E 4 . 3 DVMRP poison reverse

To complete this section, you must alter your configurations to meet these criteria:
� Configure DVMRP on r1, r2, r3, r4, and r5 so that multicast traffic sent from MS1 to 

group 225.0.0.1 is made available to MR1.
� Configure DVMRP to wait 40 seconds before it declares the loss of a neighbor.
� Adjust DVMRP metrics to ensure that traffic from MS1 to MR1 transits the 10.0.2.8/30 

subnet between r4 and r5.

Configuring DVMRP

You start DVMRP configuration on r5 by creating an interface RIB group called interface-rib, 
which is used to populate the inet.2 routing table with interface routes. Interface routes are 
needed to perform RPF checks:

[edit routing-options]

lab@r5# set interface-routes rib-group inet interface-rib

The next set of commands instructs r5 to copy the contents of the interface-rib into 
both the inet.0 and inet.2 routing tables: 

[edit routing-options]

Mar 27 13:32:58  DVMRP SENT 10.0.2.1    224.0.0.4 len 70 Report:  Vers:  3.255

Mar 27  13:32:58
       mask 255.255.255.255:
             10.0.6.1            35

mask 255.255.255.252:
      10.0.2.4            34
      10.0.4.16           35

Mar 27  13:32:58
       mask 255.255.255.0:
             10.0.5.0            35

[DVMRP Report Tracing at r5:]

M5M5 M5M5
fe-0/0/1fe-0/0/0

r1 r3

10
.0

.5
/2

4

fe-0/0/0
.1 .14 .13

at-0/1/0
at-0/2/110.0.2.0/3010.0.4.12/30 .2

M5M5
.1

.1

.2

fe
-0

/0
/3

172.16.30/24

r5

10.0.5/24, Metric 2

10.0.5/24, Metric 35

.200

MS1

MR1



414 Chapter 4 � Multicast

lab@r5# set rib-groups interface-rib import-rib inet.0

[edit routing-options]

lab@r5# set rib-groups interface-rib import-rib inet.2

The final RIB-related configuration steps relate to the creation of a RIB group for DVMRP, 
which is called dvmrp-rg in this example. The dvmrp-rg is associated with the DVMRP 
protocol in a subsequent configuration step. The import and export RIB statements instruct 
the dvmrp-rg group to import and export routes from the inet.2 routing table:

[edit routing-options]

lab@r5# set rib-groups dvmrp-rg import-rib inet.2

[edit routing-options]

lab@r5# set rib-groups dvmrp-rg export-rib inet.2

The RIB group configuration in support of DVMRP is shown at r5, with recent changes 
highlighted:

[edit routing-options]

lab@r5# show

interface-routes {

    rib-group inet interface-rib;

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

rib-groups {

    interface-rib {

        import-rib [ inet.0 inet.2 ];

    }

    dvmrp-rg {

        export-rib inet.2;

        import-rib inet.2;

    }

}

autonomous-system 65412;

The DVMRP protocol is now configured at r5. In this example, the all keyword is used to 
save some typing by enabling DVMRP on all of the router’s interfaces. Because the all shortcut 
catches the OoB interface, the router’s fxp0 interface is explicitly disabled to ensure that DVMRP 
does not attempt to operate over the OoB network:

[edit protocols dvmrp]

lab@r5# set interface all hold-time 40



DVMRP 415

[edit protocols dvmrp]

lab@r5# set interface fxp0 disable

[edit protocols dvmrp]

lab@r5# set rib-group dvmrp-rg

The completed DVMRP stanza at r5 is displayed:

[edit protocols dvmrp]

lab@r5# show

rib-group dvmrp-rg;

interface all {

    hold-time 40;

}

interface fxp0.0 {

    disable;

}

The specification of the RIB group that is to be used by DVMRP is critical. In this example, 
you can see the correct specification of the dvmrp-rg RIB group. Recall that previous RIB group 
configuration steps in this section function to link the dvmrp-rg to the inet.2 routing table for 
route import and export purposes.

Although not shown, a similar DVMRP configuration is needed on r1, r2, r3, and r4. You 
might consider the use of load merge terminal to replicate the basic DVMRP configuration in 
these routers. A sample configuration that highlights the DVMRP changes at r3 is shown next:

lab@r3# show routing-options

interface-routes {

    rib-group inet interface-rib;

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

rib-groups {

    interface-rib {

        import-rib [ inet.0 inet.2 ];

    }

    dvmrp-rg {

        export-rib inet.2;

        import-rib inet.2;



416 Chapter 4 � Multicast

    }

}

autonomous-system 65412;

[edit]

lab@r3# show protocols dvmrp

rib-group dvmrp-rg;

interface all {

    hold-time 40;

}

interface fxp0.0 {

    disable;

}

With similar changes in r1 through r5, you commit your configurations and proceed to the 
verification section. Note that additional configuration changes may be required to ensure that 
multicast traffic from MS1 to MR1 traverses the POS link between r4 and r5.

Verifying DVMRP

When testing DVMRP with the 5.6R2.4 code installed in the test bed, this author 
encountered a known bug that prevented proper operation. The bug is tracked 
under PR 32590. At the time of this writing, the fix for the problem was available 
only in the 5.x release train through a daily JUNOS software build, which was 
loaded to allow confirmation of DVMRP operation. Candidates should expect 
to find only production releases of JUNOS software in the actual JNCIE test 
bed. The 5.6R2.4 production code will be reloaded onto the routers at the 
conclusion of DVMRP testing.

You begin verification of DVMRP by confirming the presence of interface (and DVMRP) 
routes in the inet.2 table:

[edit]

lab@r3# run show route table inet.2

inet.2: 27 destinations, 27 routes (27 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.1.0/24        *[Direct/0] 03:21:36

                    > via fxp0.0

10.0.1.3/32        *[Local/0] 03:10:05

                      Local via fxp0.0

10.0.2.0/30        *[Direct/0] 03:21:36

                    > via at-0/1/0.0



DVMRP 417

10.0.2.2/32        *[Local/0] 03:10:05

                      Local via at-0/1/0.0

10.0.2.4/30        *[Direct/0] 02:52:57

                    > via so-0/2/0.100

10.0.2.5/32        *[Local/0] 02:52:57

                      Local via so-0/2/0.100

10.0.2.8/30        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

10.0.2.12/30       *[Direct/0] 03:12:54

                    > via fe-0/0/3.0

10.0.2.14/32       *[Local/0] 03:10:05

                      Local via fe-0/0/3.0

10.0.2.16/30       *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.6 via so-0/2/0.100

10.0.3.3/32        *[Direct/0] 03:21:36

                    > via lo0.0

10.0.3.4/32        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.6 via so-0/2/0.100

10.0.3.5/32        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

10.0.4.0/30        *[Direct/0] 00:54:36

                    > via fe-0/0/1.0

10.0.4.1/32        *[Local/0] 00:54:36

                      Local via fe-0/0/1.0

10.0.4.4/30        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.4.2 via fe-0/0/1.0

10.0.4.8/30        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.4.2 via fe-0/0/1.0

10.0.4.12/30       *[Direct/0] 02:59:03

                    > via fe-0/0/0.0

10.0.4.13/32       *[Local/0] 02:59:03

                      Local via fe-0/0/0.0

10.0.4.16/30       *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.6 via so-0/2/0.100

10.0.5.0/24        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.4.2 via fe-0/0/1.0

10.0.6.1/32        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.4.14 via fe-0/0/0.0

10.0.6.2/32        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.4.2 via fe-0/0/1.0

10.0.8.4/30        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.1 via at-0/1/0.0



418 Chapter 4 � Multicast

10.0.8.8/30        *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

172.16.0.13/32     *[Local/0] 03:10:05

                      Reject

172.16.30.0/24     *[DVMRP/110] 00:00:46, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

The inet.2 routing table on r3 contains the expected interface routes, as well as entries 
learned through DVMRP. The highlighted entry calls out the 172.16.30/24 prefix associated 
with MR1. You may assume that r1 through r4 have similar entries in their inet.2 routing 
tables. Displays such as this one indicate that your interface and dvmrp-rg RIB groups are 
correctly configured. The next confirmation step involves the verification of DVMRP neighbor 
status at r1 through r5:

[edit]

lab@r4# run show dvmrp neighbors

Neighbor     Interface     Version    Flags   Routes    Timeout   Transitions

10.0.4.10    fe-0/0/1.0      3.255     PGM         4         31             2

10.0.4.18    fe-0/0/2.0      3.255     PGM         1         32             1

10.0.2.5     so-0/1/0.100    3.255     PGM         4         33             1

10.0.2.9     so-0/1/1.0      3.255     PGM         4         33             1

The sample display, which was obtained at r5, confirms that all expected DVMRP neighbors 
are present and that two-way communications has been successfully established. Note that two-
way communications is indicated by the absence of a 1 in the Flags column. The indication that 
routes have been received from each neighbor provides additional confirmation that DVMRP 
is working properly. Though not shown, you can assume that all DVMRP neighbors are cor-
rectly listed for all routers in the multicast test bed. The next command verifies that the correct 
routes are being advertised and received thorough the DVMRP protocol:

[edit protocols igmp]

lab@r5# run show route protocol dvmrp

inet.0: 36 destinations, 44 routes (36 active, 0 holddown, 4 hidden)

+ = Active Route, - = Last Active, * = Both

224.0.0.4/32       *[DVMRP/0] 01:06:23

                      MultiRecv

inet.1: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

225.0.0.1,10.0.5.200/32*[DVMRP/110] 00:32:29

                      Multicast (IPv4)



DVMRP 419

inet.2: 26 destinations, 26 routes (26 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.2.4/30        *[DVMRP/110] 00:00:27, metric 2

                    > to 10.0.2.2 via at-0/2/1.0

10.0.2.12/30       *[DVMRP/110] 00:00:27, metric 2

                    > to 10.0.2.2 via at-0/2/1.0

10.0.2.16/30       *[DVMRP/110] 00:00:29, metric 2

                    > to 10.0.2.10 via so-0/1/0.0

10.0.3.3/32        *[DVMRP/110] 00:00:27, metric 2

                    > to 10.0.2.2 via at-0/2/1.0

10.0.3.4/32        *[DVMRP/110] 00:00:29, metric 2

                    > to 10.0.2.10 via so-0/1/0.0

10.0.4.0/30        *[DVMRP/110] 00:00:29, metric 3

                    > to 10.0.2.10 via so-0/1/0.0

10.0.4.4/30        *[DVMRP/110] 00:00:27, metric 3

                    > to 10.0.2.2 via at-0/2/1.0

10.0.4.8/30        *[DVMRP/110] 00:00:29, metric 2

                    > to 10.0.2.10 via so-0/1/0.0

10.0.4.12/30       *[DVMRP/110] 00:00:27, metric 2

                    > to 10.0.2.2 via at-0/2/1.0

10.0.4.16/30       *[DVMRP/110] 00:00:29, metric 2

                    > to 10.0.2.10 via so-0/1/0.0

10.0.5.0/24        *[DVMRP/110] 00:00:27, metric 3

                    > to 10.0.2.2 via at-0/2/1.0

10.0.6.1/32        *[DVMRP/110] 00:00:27, metric 3

                    > to 10.0.2.2 via at-0/2/1.0

10.0.6.2/32        *[DVMRP/110] 00:00:27, metric 3

                    > to 10.0.2.2 via at-0/2/1.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

All the expected DVMRP routes are present. The highlights call out the fact that the DVMRP 
routes are installed into the inet.2 routing table, and the presence of the 10.0.5/24 route asso-
ciated with the multicast sender, MS1. The metric for this route is set to 3, which correctly 
reflects the hop count (+1) between r5 and the 10.0.5/24 subnet. Note that the inet.1 routing 
table functions as a cache that houses transit multicast state. In this example, the inet.1 entry 
indicates that source 10.0.5.200 is currently sending to group 225.0.0.1. Noting that IS-IS 
entries also exist in the main routing table for many of the routes displayed helps to drive home 
the fact that DVMRP maintains a separate routing table:

[edit protocols igmp]

lab@r5# run show route 10.0.5.0/24



420 Chapter 4 � Multicast

inet.0: 36 destinations, 44 routes (36 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[IS-IS/18] 01:41:27, metric 30

                      to 10.0.2.10 via so-0/1/0.0

                    > to 10.0.2.2 via at-0/2/1.0

inet.2: 26 destinations, 26 routes (26 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[DVMRP/110] 00:00:10, metric 3

                    > to 10.0.2.2 via at-0/2/1.0

Issuing a show route receiving-protocol dvmrp neighbor command also proves helpful 
when monitoring and troubleshooting DVMRP operation, as shown here in the context of r3 
and the routes it received from r5:

[edit]

lab@r3# run show route receive-protocol dvmrp 10.0.2.1

inet.0: 37 destinations, 45 routes (37 active, 0 holddown, 0 hidden)

inet.2: 27 destinations, 27 routes (27 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.2.8/30        *[DVMRP/110] 00:00:07, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

10.0.3.5/32        *[DVMRP/110] 00:00:07, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

10.0.8.4/30        *[DVMRP/110] 00:00:07, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

10.0.8.8/30        *[DVMRP/110] 00:00:07, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

172.16.30.0/24     *[DVMRP/110] 00:00:07, metric 2

                    > to 10.0.2.1 via at-0/1/0.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

Note that the show route advertising-protocol dvmrp neighbor command is currently 
not functional and is tracked under PR 6307.

With the gross operation of DVMRP verified, it is now time to begin analysis of actual 
multicast traffic flow between MS1 and MR1. You begin by verifying that the multicast traffic is 
actually being delivered to the MR1 subnet. You can confirm the delivery of multicast traffic by 
monitoring interface counters or with the contents of a show multicast route extensive 



DVMRP 421

command. The former approach is demonstrated here while the latter command is demonstrated 
in subsequent sections; note that you must use the monitor interface command for this test 
because monitor traffic displays only packets that are moving to or from the local Routing 
Engine (RE). Figure 4.4 displays the results of this test.

F I G U R E 4 . 4 Monitor interface output

Figure 4.4 shows that some 31 packets per second are being output on r5’s fe-0/0/3 interface. 
While this in itself does not prove that the traffic is being generated by MS1, the steady state of 
the PPS count, coupled with the knowledge that the 172.16.30/24 subnet is not advertised in 
your IGP or BGP protocols, provides good indication that the counter is most likely reflecting 
multicast traffic. Put another way, besides r5, only DVMRP-enabled routers are aware of the 
172.16.30/24 subnet, making the routing of unicast traffic to this segment all but impossible for 
all other routers in the test bed. You can assume that an identical PPS count is seen at the ingress 
routers, r1 and r2 in this case. Subsequent tests will provide further proof that the packets being 
counted do, in fact, represent the multicast traffic that is generated by MS1.

To be more exact as to the types of packets that are being counted, you can write and apply 
an input firewall filter that counts packets with a destination address of 225.0.0.1 and a source 
address of 10.0.5.200—time permitting, of course.

Output filters do not currently function for multicast traffic.



422 Chapter 4 � Multicast

An example of such an input firewall filter is shown here:

[edit]

lab@r5# show firewall filter count-mcast

term 1 {

    from {

        source-address {

            10.0.5.200/32;

        }

        destination-address {

            225.0.0.1/32;

        }

    }

    then {

        count mcast;

        accept;

    }

}

term 2 {

    then accept;

}

[edit]

lab@r5# show interfaces at-0/2/1

unit 0 {

    family inet {

        filter {

            input count-mcast;

        }

        address 10.0.2.1/30;

    }

}

[edit]

lab@r5# show interfaces so-0/1/0

unit 0 {

    family inet {

        filter {

            input count-mcast;

        }

        address 10.0.2.9/30;

    }

}



DVMRP 423

With delivery of the multicast traffic confirmed at r5, your attention now shifts to the 
ingress routers, r1 and r2, so that you can confirm the forwarding path for the 225.0.0.1 
multicast traffic:

lab@r1# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   P  2     0     MALLOC

The presence of a multicast cache entry for the MS1 source and the 225.0.0.1 group is a good 
sign. A key item to note in this display is that r1 is not forwarding this traffic, as indicated by 
the P value in the Pru column. In this case, the P indicates that the prefix has been pruned, in 
other words, that there are no outgoing interfaces. Adding the extensive switch allows you to 
determine the incoming rate of the multicast traffic from MS1:

[edit]

lab@r1# run show multicast route extensive

Family: INET

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

225.0.0.1       10.0.5.200     /32 A   P  0     293155     0          360

    Upstream interface: fe-0/0/0.0

    Session name: MALLOC

    Forwarding rate: 13 kBps (32 pps)

        Source: 10.0.5.200

Family: INET6

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

Multicast Applications

While developing this chapter, this author used a combination of UNIX- and Windows-based multi-
cast applications. The mgen and drec applications were used when testing with a Linux plat-
form while the Wsend and Wlisten programs were used when testing with a Windows 2000 
platform. As of this writing, mgen can be obtained from http://manimac.itd.nrl.navy.mil/
MGEN/. The Wsend and Wlisten applications are produced by Microsoft, but an Internet source 
could not be located as this section was being developed. This author also found the Stream-
Pump and StreamPlayer applications to be quite useful for generating and receiving multicast 
traffic on a Windows platform. As of this writing, you can download these applications from 
www.vbrick.com/freesoftware.asp.



424 Chapter 4 � Multicast

The indication that some 32 packets are received each second from the 10.0.5.200 source 
serves to further validate that the packet count seen on r5’s fe-0/0/3 interface is in fact the 
multicast traffic generated by MS1. The same command is now issued on r2:

[edit]

lab@r2# run show multicast route extensive

Family: INET

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

225.0.0.1       10.0.5.200     /32 A   F  97    219820     0          360

    Upstream interface: fe-0/0/0.0

    Session name: MALLOC

    Forwarding rate: 14 kBps (34 pps)

        Source: 10.0.5.200

Family: INET6

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

The display from r2 confirms that it is forwarding the traffic from 10.0.5.200, as indicated 
by the F in the Pru column. The display further indicates that the traffic is being sent out the 
interface associated with a NHid of 97. The show multicast next-hops command displays 
the interface to NHid mapping in a most convenient fashion:

[edit]

lab@r2# run show multicast next-hops

Family: INET

ID      Refcount  KRefcount Downstream interface

97             2          1 fe-0/0/2.0

Family: INET6

The downstream interface listing of fe-0/0/2 tells you that traffic from MS1 is being sent from 
r2 to r3 over the 10.0.4.0/30 subnet. Although not shown, you can assume that a monitor 
interface at-0/2/1 command issued at r5 confirms that some 32 packets per second are 
being received from r3. The commands shown next also indicate that multicast traffic from 
MS1 to MR1 is being sent over the ATM link between r3 and r5, which is not in accordance 
with the criteria posed in this scenario:

[edit]

lab@r3# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   F  6     117   MALLOC



DVMRP 425

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name

[edit]

lab@r3# run show multicast next-hops

Family: INET

ID      Refcount  KRefcount Downstream interface

117            2          1 at-0/1/0.0

Family: INET6

Well, the good news is that multicast traffic is flowing between the source and receiver 
subnet; the bad news is that the forwarding path does not comply with the restrictions imposed 
by this configuration scenario. A JNCIE candidate will have to be familiar with the operation 
of DVMRP to understand why this forwarding path was chosen, and more importantly, how 
to influence DVMRP’s forwarding paths.

In this case, r3 is receiving DVMRP advertisements for the 10.0.5/24 subnet from both r1 
and r2. Because the route metrics are the same, r3 chooses the upstream router based on the 
lower of the two IP addresses. This results in the generation of a poison reverse advertisement 
to r2, but not to r1, which in turn leads to the prune/forwarding state observed at r1 and r2, 
respectively. Note that r2 is not forwarding to r4 at this time because r4 has generated a 
DVMRP prune for the S,G pair in question:

[edit]

lab@r4# run show dvmrp prunes

Group           Source Prefix      Timeout Neighbor

225.0.0.1       10.0.5.200     /32    1565 10.0.4.10

The prune was generated by r4 because it has no downstream interfaces associated with this 
S,G pair.

Modifying DVMRP Metrics

With two equal-cost paths between r5 and the source network, r5 is installing itself as a 
downstream node for r3, but not r4. As previously noted, this is due to r3’s lower IP address. 
To achieve the desired forwarding path, you need to make r5 prefer the route advertisements 
for the 10.0.5/24 source network from r4 over the same route that it receives from r3. Because 
DVMRP interface-based metric settings affect only the cost of directly connected networks, as 
opposed to adjusting the metrics for all updates sent out that interface, a policy-based approach 
for DVMRP metric setting is used in this example. Note that setting a DVMRP interface metric 
on r1 and/or r2 will not result in the desired forwarding path in this example because r5 still 
receives two equal-cost routes for the 10.0.5/24 source network, given the current test bed 
topology. The policy-related changes made to r3 are shown here with highlights:

[edit]

lab@r3# show policy-options policy-statement dvmrp-metric



426 Chapter 4 � Multicast

from {

    route-filter 10.0.5.0/24 exact;

}

then {

    metric 3;

    accept;

}

[edit]

lab@r3# show protocols dvmrp

rib-group dvmrp-rg;

export dvmrp-metric;

interface all {

    hold-time 40;

}

interface fxp0.0 {

    disable;

}

After committing the dvmrp-metric related export policy at r3, the results are easy to 
confirm at r5:

[edit protocols]

lab@r5# run show route 10.0.5/24

inet.0: 36 destinations, 44 routes (36 active, 0 holddown, 4 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[IS-IS/18] 00:08:15, metric 30

                    > to 10.0.2.10 via so-0/1/0.0

                      to 10.0.2.2 via at-0/2/1.0

inet.2: 26 destinations, 26 routes (26 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[DVMRP/110] 00:00:45, metric 3

                    > to 10.0.2.10 via so-0/1/0.0

With r5 now preferring the route from r4, it generates a poison reverse update back to r4, 
thereby producing the desired forwarding state at r4:

lab@r4# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   F  6     119   MALLOC



DVMRP 427

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name

[edit]

lab@r4# run show multicast next-hops

Family: INET

ID      Refcount  KRefcount Downstream interface

119            2          1 so-0/1/1.0

Family: INET6

The output from r4 confirms that traffic associated with the 10.0.5.200, 225.0.0.1 S,G 
pairing is being forwarded to r5 over its so-0/1/1 POS interface, in accordance with your restric-
tions. With r4 now forwarding the multicast traffic, you expect to see that r3 has pruned this 
S,G entry and that it has issued a prune back to r2:

[edit]

lab@r3# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 I   P  6     0     MALLOC

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name

[edit]

lab@r3# run show dvmrp prunes

Group           Source Prefix      Timeout Neighbor

225.0.0.1       10.0.5.200     /32    6698 10.0.4.2

The results match your expectations and provide confirmation that DVMRP has been 
correctly configured and is operating in full accordance with all provided guidelines and restric-
tions. Before moving on, you should confirm that multicast traffic from group 225.0.0.1 is still 
being delivered to the MR1 subnet. Although not shown, you can assume that the multicast 
traffic is still being correctly delivered to the MR1 subnet.

DVMRP Tracing

Although DVMRP appears to be working fine in the current test bed, protocol tracing is an 
excellent way to gain additional familiarity with the normal operation of any protocol. The tracing 



428 Chapter 4 � Multicast

configuration shown here provides a fair dose of meat without overwhelming the operator with 
meaningless details:

[edit protocols dvmrp]

lab@r3# show traceoptions

file dvmrp;

flag neighbor detail;

The trace output capture shown next was taken after the DVMRP protocol is deactivated 
and reactivated on r3:

[edit]

lab@r3# activate protocols dvmrp

[edit]

lab@r3# commit

commit complete

[edit]

lab@r3# 

Mar 28 18:01:03 DVMRP RECV 10.0.4.14 -> 224.0.0.4 len 16 Probe: Vers: 3.255
   flags: PGM genid: 0x3ef3843e nbrs: 10.0.4.13

Mar 28 18:01:03 DVMRP SENT 10.0.4.13 -> 10.0.4.14 len 42 Report: Vers: 3.255

        mask 255.255.255.252:

                10.0.4.0          1

Mar 28 18:01:03

        mask 255.255.255.255:

                10.0.3.3          1

Mar 28 18:01:03

        mask 255.255.255.252:

                10.0.2.12         1

                10.0.2.4          1

                10.0.2.0          1

Mar 28 18:01:03 DVMRP RECV 10.0.4.2 -> 224.0.0.4 len 16 Probe: Vers: 3.255
   flags: PGM genid: 0x45f3843e nbrs: 10.0.4.1

Mar 28 18:01:03 DVMRP SENT 10.0.4.1 -> 10.0.4.2 len 42 Report: Vers: 3.255

        mask 255.255.255.252:

                10.0.4.12         1

. . .

Mar 28 18:01:14 DVMRP SENT 10.0.2.2 -> 224.0.0.4 len 44 Report: Vers: 3.255

        mask 255.255.255.252:

                10.0.2.8          34

Mar 28 18:01:14

        mask 255.255.255.0  :

                172.16.30.0       34



Protocol Independent Multicast 429

Mar 28 18:01:14

        mask 255.255.255.252:

                10.0.8.8          34

                10.0.8.4          34

Mar 28 18:01:14

        mask 255.255.255.255:

                10.0.3.5          34

. . .

The trace output shows DVMRP neighbor probes, and route reports being sent and 
received. The truncated capture also shows some instances of DVMRP poison reverse, as 
indicated by metrics higher than 32.

DVMRP Summary

DVRP builds a multicast routing table that is used for RPF checks in support of multicast 
forwarding. Because the inet.2 routing table is designed to hold multicast routing information, 
it is recommended that you configure your DVMRP RIB groups to populate the inet.2 table. 
Successful RPF checks require the presence of directly connected interface routes in the routing table 
used by DVMRP. You configure an interface RIB group and link it to the DVMRP routing 
table to install copies of interface routes for RPF checking.

DVMRP operates neighbor to neighbor using periodic updates, in a behavior that is similar 
to RIP. DVMRP builds truncated multicast trees based on downstream nodes using poison 
reverse to indicate that they consider the upstream node to be closer to the multicast source, 
thereby showing the node’s desire to be added to the particular source tree. When metrics are 
equal, a DVMRP router breaks a tie by selecting the advertisement associated with the lowest 
IP address. You can adjust metrics (using policy or with direct interface settings for directly 
connected networks) to influence the multicast topology. You can trace the operation of 
DVMRP to observe neighbor establishment and routing exchanges.

This section demonstrated a number of multicast monitoring and troubleshooting techniques 
that can be applied to virtually any multicast network. These commands and techniques include 
displaying multicast routes, multicast next hops, statistics; examining RPF results; and monitoring 
interface traffic loads to detect the presence of multicast.

Although DVMP has lost favor to various flavors of PIM, the protocol is still in use and is 
supported by JUNOS software. A well-prepared JNCIE candidate will take time to hone their 
DVMRP configuration and troubleshooting skills to ensure that they are not caught off guard 
by a DVMRP configuration scenario.

Protocol Independent Multicast
This section covers various Protocol Independent Multicast (PIM) configuration scenarios. PIM 
gets its name from the fact that it makes use of the main routing table (inet.0) for RPF purposes, 
regardless of what routing protocols are used to populate the main routing table. JUNOS 
software supports PIM versions 1 and 2 in dense, sparse, or sparse-dense modes of operation.



430 Chapter 4 � Multicast

In dense mode, PIM uses a flood and prune model that is similar to DVMRP, the primary 
exception being that initial flooding is based on interfaces with detected neighbors yielding a 
broadcast-like behavior that is referred to as a broadcast tree. The broadcast tree morphs into 
a minimal spanning tree once all prune actions have occurred, however.

In most cases, PIM is deployed in a sparse mode (PIM-SM). PIM-SM makes use of a Rendezvous 
Point (RP) that acts as the root of a shared tree for all senders and some particular group range. 
The shared tree is denoted as ∗,G.

When a receiver first joins the shared tree for a given group, it receives traffic that is sent to 
this group (regardless of source address) using the shared tree. After receiving traffic from a par-
ticular sender, S, the receiver establishes a source rooted tree, denoted as a S,G state, and then 
proceeds to prune itself from the RP-based shared tree for that particular S,G pair. The net result 
is that receivers make initial contact with active senders through the RP and its shared tree, with 
the intent of signaling source-specific trees (also known as shortest path trees) for active senders 
to achieve optimal forwarding paths between each sender and receiver.

PIM sparse mode makes use of register messages to tunnel multicast traffic from the first hop 
router to the RP using unicast packets. Once received by the RP, the register encapsulation is 
stripped off and the native multicast traffic is flooded down the shared RP tree. A tunnel services 
(TS) PIC is required in nodes with active multicast sources to support the register encapsulation 
process, and at the RP to permit de-encapsulation of the register messages. A TS PIC is not 
required for PIM dense mode, or in a PIM-SM network when the only active sources are directly 
attached to the RP.

Although RPs can be statically identified, most PIM-SM networks are not configured this 
way because a statically defined RP represents a single point of failure; various mechanisms are 
defined within PIM to provide RP redundancy and automatic RP discovery. The bootstrap pro-
tocol functions to identify candidate RPs, which are then advertised in a hop-by-hop manner to 
all PIM routers. A hashing function is used by each router to map particular multicast groups 
to a given RP. The bootstrap mapping function automatically distributes the load among 
multiple RPs, and allows for the failover of multicast groups to another candidate RP in the 
event of RP failure. The bootstrap protocol is supported in PIM version 2 only, however.

In contrast, the non-RFC based Auto-RP mechanism makes use of dense mode flooding on 
reserved group addresses to inform mapping agents of candidate RPs, and to allow the mapping 
agents to inform other routers of the RP that has been chosen. Unlike bootstrap-based RP elec-
tion, Auto-RP procedures normally result in the election of a single RP that handles all traffic 
for a given group range.

Any-Cast refers to a technique that uses Auto-RP procedures in conjunction with duplicate 
RP addresses and MSDP to facilitate load sharing among multiple RPs elected through Auto-RP. 
Any-Cast is discussed in detail in the “MSDP” section later in this chapter.

PIM Dense Mode

This section covers PIM dense mode (PIM-DM) configuration and testing. To complete this 
scenario, you must configure your network according to these requirements:
� Remove DVMRP-related configuration from r1 through r5.
� Configure PIM-DM on r1, r2, r3, r4, and r5 so that multicast traffic sent from MS1 to 

group 225.0.0.1 is made available to MR1.



Protocol Independent Multicast 431

� Make sure that r1 is not elected a DR on any segments with neighbors.
� Ensure that traffic from MS1 to MR1 transits the 10.0.2.8/30 subnet between r4 and r5.
� Do not alter the IGMP or interface configuration currently in place at r5.

The requirement listing for the PIM dense mode scenario is virtually identical to the goals 
specified for DVMRP. In effect, your goal is to replace DVMRP with PIM dense mode while 
maintaining existing multicast functionality. Refer back to Figure 4.2 for topology details as 
needed.

Configuring PIM Dense Mode

You begin your PIM-DM configuration task by removing all DVMRP-related configuration 
from r1 through r5. Do not forget to remove the metric-related policy at r3, as well as the 
DVMRP RIB group configuration. The commands shown here remove all traces of DVMRP 
configuration from r4:

[edit]

lab@r4# delete protocols dvmrp

[edit]

lab@r4# delete routing-options interface-routes

[edit]

lab@r4# delete routing-options rib-groups

To confirm the complete removal of all DVMRP-related configuration, the candidate 
configuration is compared to the IS-IS baseline configuration from Chapter 1:

[edit]

lab@r4# show | compare r4-baseline-isis

[edit]

- version 5.6R1.3;

+ version 5.6R2.4;

Note that the only difference between the two configurations is the JUNOS software version, 
which was upgraded to R2.4 when the newer 5.6 release was made publicly available as this 
book was being written. You should issue similar commands on all routers in the multicast 
topology before proceeding. After deleting the DVMRP-related settings at r5, the following 
capture confirms that the existing IGMP and MR1 interface configuration has been correctly 
left in place:

[edit]

lab@r5# show | compare r5-baseline-isis

[edit]

- version 5.6R1.3;

+ version 5.6R2.4;

[edit interfaces]

+   fe-0/0/3 {



432 Chapter 4 � Multicast

+       unit 0 {

+           family inet {

+               address 172.16.30.1/24;

+           }

+       }

+   }

[edit protocols]

+   igmp {

+       query-response-interval 5;

+       interface fe-0/0/3.0 {

+           version 3;

+           static {

+               group 225.0.0.1;

+           }

+       }

+   }

You begin PIM-DM configuration at r3 by creating the PIM instance as shown next:

[edit protocols]

lab@r3# set pim interface all mode dense

[edit protocols]

lab@r3# set pim interface fxp0 disable

Note that you have enabled PIM-DM by virtue of placing all PIM interfaces into dense mode. 
The use of the interface all shortcut results in the need to explicitly disable PIM on the 
router’s OoB interface. The initial PIM stanza on r3 is now displayed and committed:

[edit protocols]

lab@r3# show pim

interface all {

    mode dense;

}

interface fxp0.0 {

    disable;

}

[edit protocols]

lab@r3# commit

commit complete

The basic PIM configuration shown should be enough to get PIM-DM up and running. Note 
that the forwarding path requirements of this scenario may force some modifications to your 
initial PIM configuration down the road. Before proceeding to the verification section, you should 
ensure that all routers in the multicast test bed have a PIM-DM configuration that is similar to 



Protocol Independent Multicast 433

that shown for r3. Note that r1’s configuration must take into account the fact that it cannot 
be elected as a PIM DR on segments with attached neighbors. Setting r1’s priority to 0 on all 
of its interfaces configures the prescribed behavior:

[edit]

lab@r1# show protocols pim

interface all {

    mode dense;

    priority 0;

}

interface fxp0.0 {

    disable;

}

Verifying PIM Dense Mode

The verification of the PIM-DM control plane follows the general approach demonstrated for 
DVMRP; specifically, you need to verify that PIM is enabled on the correct interfaces, that PIM 
neighbor discovery is functioning correctly, and that RPF checks through the inet.0 routing 
table are working. You begin with the determination of PIM interface status at r5:

[edit]

lab@r5# run show pim interfaces

Instance: PIM.master

Name                   Stat Mode       IP V State Count DR address

at-0/2/1.0             Up   Dense       4 2 P2P       1

fe-0/0/0.0             Up   Dense       4 2 DR        0 10.0.8.6

fe-0/0/1.0             Up   Dense       4 2 DR        0 10.0.8.9

fe-0/0/3.0             Up   Dense       4 2 DR        0 172.16.30.1

lo0.0                  Up   Dense       4 2 DR        0 10.0.3.5

so-0/1/0.0             Up   Dense       4 2 P2P       1

The PIM interface display confirms that r5 is running PIM in dense mode on all transit 
interfaces, including the links to r6 and r7, which are not used in the current multicast test 
bed. The added highlights call out that r5’s at-0/2/1 interface is Up, that it is considered a 
point-to-point interface, and that a single neighbor has been detected on this interface. Note 
that point-to-point interfaces do not elect a PIM designated router (DR), which can be seen 
in r5’s output. The display also confirms that PIM version 2 is the default in the 5.6 version of 
JUNOS software currently deployed in the test bed. Note that no PIM neighbors have been 
detected on r5’s Fast Ethernet links. This is because r6 and r7 are not configured to run PIM 
(or multicast in general) in the current multicast topology. PIM neighbor discovery is confirmed, 
once again at r5:

[edit]

lab@r5# run show pim neighbors

Instance: PIM.master



434 Chapter 4 � Multicast

Interface           IP V Mode        Option      Uptime Neighbor addr

at-0/2/1.0           4 2             HPL       00:07:40 10.0.2.2

so-0/1/0.0           4 2             HPL       00:07:32 10.0.2.10

The output confirms that r5 has correctly detected both r3 and r4 as PIM neighbors. The 
Option flags indicate that the neighbor supports the Hello Option Holdtime, the Hello Option 
DR Priority, and the LAN Option LAN Prune Delay, respectively. The Mode column is used to 
indicate the PIM mode when it is known. The mode can be Sparse, Dense, SparseDense, or 
as shown in this example, blank (unknown). Note that the mode is always unknown when 
running PIM version 2.

The PIM.master indication simply means that you are viewing the main routing instance’s 
PIM-related information; it does not, unfortunately, indicate that you have reached multicast 
nirvana by being designated a “PIM Master.” The PIM interface display shown previously 
confirmed that all of r5’s PIM interfaces are correctly set for dense mode operation. To obtain 
details on negotiated values and timer settings, add the detail switch:

[edit]

lab@r5# run show pim neighbors detail

Instance: PIM.master

Interface: at-0/2/1.0

    Address: 10.0.2.1,  IPv4, PIM v2, Mode: Dense

        Hello Option Holdtime: 65535 seconds

        Hello Option DR Priority: 1

        Hello Option LAN Prune Delay: delay 500 ms override 2000 ms

                                      Join Suppression supported

. . .

The next command verifies that the PIM RPF check is working through the main routing table:

lab@r5# run show multicast rpf 10.0.5/24

Multicast RPF table: inet.0, 24 entries

10.0.5.0/24

    Protocol: IS-IS

    Interface: at-0/2/1.0

    Neighbor: 10.0.2.2

The output confirms that the RPF check to the 10.0.5/24 source network has succeeded, and 
that the inet.0 routing table is used for this purpose via a route that was learned through 
IS-IS. Your next command draws an interesting contrast between DVMRP and PIM, in that 
in the former case both an IS-IS and a DVMRP version of the 10.0.5/24 route were present (with 
the DVMRP copy being placed in the inet.2 table):

[edit]

lab@r5# run show route 10.0.5/24

inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both



Protocol Independent Multicast 435

10.0.5.0/24        *[IS-IS/18] 02:20:37, metric 30

                      to 10.0.2.10 via so-0/1/0.0

                    > to 10.0.2.2 via at-0/2/1.0

The single IS-IS-based route entries should hammer home the fact that PIM does not require 
a special routing table for RPF checking. Recall that PIM-DM does not make use of an RP; the 
absence of a PIM RP is quickly confirmed at r3, and the display (or lack of) serves to draw an 
interesting contrast with PIM-SM, which is deployed in a later section:

[edit protocols]

lab@r3# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

Before moving on to the PIM forwarding plane, you quickly confirm that r1’s priority setting 
correctly prevents its election as a PIM DR when another PIM router is present:

[edit]

lab@r1# run show pim interfaces

Instance: PIM.master

Name                   Stat Mode       IP V State Count DR address

fe-0/0/0.0             Up   Dense       4 2 NotDR     2 10.0.5.2

fe-0/0/1.0             Up   Dense       4 2 NotDR     1 10.0.4.13

fe-0/0/2.0             Up   Dense       4 2 NotDR     1 10.0.4.6

fe-0/0/3.0             Up   Dense       4 2 NotDR     1 10.0.4.17

lo0.0                  Up   Dense       4 2 DR        0 10.0.6.1

The output shows that r1 is not considered the DR on any interface with at least one neighbor 
detected. This display confirms the desired DR election behavior at r1.

Verification of the PIM-DM forwarding plan begins with an examination of the multicast 
routes at r1 and r2, which are the first hop routers connected to the MS1 source network:

[edit]

lab@r1# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   F  2     87    MALLOC

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name



436 Chapter 4 � Multicast

The output from r1 confirms that the S,G entry for MS1 exists, and that r1 is forwarding this 
traffic. The multicast next hop mapping to NHid 87 on r1 is displayed next:

[edit]

lab@r1# run show multicast next-hops

Family: INET

ID      Refcount  KRefcount Downstream interface

87             2          1 fe-0/0/1.0

                            fe-0/0/3.0

Family: INET6

The output indicates that r1 is forwarding the multicast traffic to r3 over its fe-0/0/1 interface 
and to r4 over the fe-0/0/3 interface. Before leaving r1, you display its PIM join state:

[edit]

lab@r1# run show pim join

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: dense

    Upstream interface: fe-0/0/0.0

Instance: PIM.master Family: INET6

The PIM join display shows that r1 has joined the S,G groups associated with the MS1 
source, and that the protocol is operating in dense mode. Given that r1 is forwarding for this 
S,G pair, you find yourself starting to wonder what r2 is doing with the same traffic. The 
following command rapidly dispatches your curiosity on this front:

[edit]

lab@r2# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   F  2     87    MALLOC

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name

Interesting; it would seem that r2 is also forwarding the 10.0.5.200, 225.0.0.1 multicast traffic. 
You note that this situation differs from the default behavior observed with DVMRP in the 
previous section, and move on to display the multicast next hop(s) at r2. In this case, you opt 
to use the extensive switch with the show pim join command:

[edit]

lab@r2# run show pim join extensive



Protocol Independent Multicast 437

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: dense

    Upstream interface: fe-0/0/0.0

    Downstream interfaces:

        fe-0/0/1.0 (Pruned timeout 252)

        fe-0/0/2.0 (Pruned timeout 115)

        fe-0/0/3.0 (Pruned timeout 119)

Instance: PIM.master Family: INET6

The additional information provided by the extensive switch proves quite useful in this 
case. The highlights call out that r2 is really not forwarding the S,G traffic at this moment by vir-
tue of its having received PIM prunes on all of its downstream interfaces. Note that the nature of 
PIM-DM flood and prune behavior will result in r2 periodically timing out the prunes, which in 
turn results in r2 forwarding the S,G traffic for a few moments before it receives another prune. The 
fact that a multicast network is always in some state of flux can complicate your verification and 
confirmation tasks, especially if you are the type of person who expects a steady state of affairs!

Knowing that r1 was last seen forwarding the S,G traffic to both r3 and r4, you issue similar 
commands at r3 to further discover the PIM forwarding topology:

[edit protocols]

lab@r3# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   F  5     96    MALLOC

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name

The multicast route display confirms that r3 is forwarding the S,G traffic, but to where? 
Analyzing the PIM join state at r3 provides your answer:

[edit protocols]

lab@r3# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: dense

    Upstream interface: fe-0/0/0.0

    Downstream interfaces:

        fe-0/0/1.0 (Assert Lost)



438 Chapter 4 � Multicast

        at-0/1/0.0

        so-0/2/0.100 (Pruned timeout 110)

Instance: PIM.master Family: INET6

The highlights in this output are quite telling. Here you can see that r3 has received a prune 
from r4, which makes a great deal of sense when you consider that r1 was seen to be forwarding 
the S,G traffic directly to r4. You can also see that r3 has lost the assert exchange with r2, 
which means that r3 will not forward the S,G traffic to the 10.0.4.0/30 subnet. The assert 
process is triggered by the receipt of S,G traffic on an interface that is in the Outgoing Interface 
List (OIL). When this occurs, a PIM router sends an assert message to determine which router 
will be the forwarder for this source. The router with the lowest metric back to the source, 
which is r2 in this case, wins the assert competition. In the case of equal metrics, the router with 
the highest IP address “wins.” Note that r2 is not forwarding to this subnet due to the receipt 
of a prune from r3. The final highlight in the display confirms that r3 is forwarding the S,G traffic 
to r5 over its at-0/1/0 interface. A quick look at r5’s PIM join state confirms that it is forwarding 
the S,G traffic to MR1 over its fe-0/0/3 interface:

[edit]

lab@r5# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: dense

    Upstream interface: at-0/2/1.0

    Downstream interfaces:

        fe-0/0/3.0

        so-0/1/0.0 (Assert Lost)

Instance: PIM.master Family: INET6

At this time, r4 is observed not to be forwarding the S,G traffic to r5:

[edit]

lab@r4# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: dense

    Upstream interface: fe-0/0/1.0

    Downstream interfaces:

        fe-0/0/2.0 (Assert Lost)

        so-0/1/0.100

        so-0/1/1.0 (Pruned timeout 20)

Instance: PIM.master Family: INET6



Protocol Independent Multicast 439

The results displayed thus far indicate that PIM-DM is operational and confirm that multicast 
traffic is being delivered to MR1. However, the displays also show that the traffic is transiting 
the ATM link between r3 and r5. Your rules of engagement state that this traffic should flow 
from r4 to r5 using the POS interface. The tricky part of this task relates to the fact that PIM 
itself does not advertise routes, and therefore has no metric settings that can be used to influence 
the PIM forwarding behavior. Recall that r5 is currently receiving two equal-cost IS-IS routes 
for the 10.0.5/24 source network:

[edit]

lab@r5# run show route 10.0.5/24

inet.0: 25 destinations, 25 routes (25 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[IS-IS/18] 00:07:08, metric 30

                      to 10.0.2.10 via so-0/1/0.0

                    > to 10.0.2.2 via at-0/2/1.0

Because a PIM router can select only one interface for performing RPF checks to each source, 
the presence of equal-cost IS-IS routes for 10.0.5/24 at r5 results in the RPF checks that use one 
interface, or the other, based on the IGP route that is currently active—in other words, the 
one with the > next to it. The policy changes shown here eliminate the equal-cost route condition 
by making r3 advertise the 10.0.5/24 route with a metric that is higher than that being 
advertised by r4.

[edit]

lab@r3# show | compare rollback 1

[edit protocols isis]

+   export ms1;

[edit policy-options]

    policy-statement r2 { ... }

+   policy-statement ms1 {

+       term 1 {

+           from {

+               protocol isis;

+               level 1;

+               route-filter 10.0.5.0/24 exact;

+           }

+           to level 2;

+           then {

+               metric 40;

+               accept;

+           }

+       }

+   }



440 Chapter 4 � Multicast

Note that the changes also include the application of the new ms1 policy as an export to the 
IS-IS instance. The result of these changes is that r5 now installs the so-0/1/0 interface into its 
Incoming Interface List (IIL) for the 10.0.5/24 source in a deterministic manner, thereby yielding 
the desired forwarding behavior:

[edit]

lab@r5# run show route 10.0.5/24

inet.0: 25 destinations, 25 routes (25 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[IS-IS/18] 00:02:15, metric 30

                    > to 10.0.2.10 via so-0/1/0.0

With only one viable route to the source network now present at r5, its RPF table indicates 
that the so-0/1/0 interface is now considered an upstream interface, which means that r5 correctly 
expects to receive multicast traffic from source 10.0.5/24 on its so-0/1/0 interface:

[edit]

lab@r5# run show multicast rpf 10.0.5.24

Multicast RPF table: inet.0, 25 entries

10.0.5.0/24

    Protocol: IS-IS

    Interface: so-0/1/0.0

    Neighbor: 10.0.2.10

The PIM join display at r5 further confirms that the S,G traffic between MS1 and MR1 is 
now transiting the POS link between r4 and r5:

[edit]

lab@r5# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: dense

    Upstream interface: so-0/1/0.0

    Downstream interfaces:

        fe-0/0/3.0

        at-0/2/1.0 (Assert Lost)

Instance: PIM.master Family: INET6

The results shown in this section verify that you have now met all specified criteria for the 
PIM-DM configuration scenario. Note that the policy changes made to r3 do not actually affect 
r3’s routing to the source network, but the changes do eliminate r5’s ability to load balance to 
the 10.0.5/24 subnet.



Protocol Independent Multicast 441

PIM Sparse Mode

This section covers PIM sparse mode (PIM-SM) configuration and testing. Recall that sparse 
mode operation makes use of one or more Rendezvous Points (RPs) that form a ∗,G shared tree 
by which receivers make initial contact with multicast senders. Once a receiver begins to receive 
traffic from a given source, S, over the shared tree, it generates a S,G join back towards this 
source in an effort to establish a SPT for that source. Once the SPT is established, the last hop 
router can prune the S,G entry from the RP-based tree (RPT) to prevent the receipt of duplicate 
traffic. You will need a TS PIC installed in M-series and T-series routers that function as an RP 
or have directly connected multicast sources, in other words first hop routers. Recall that the TS 
PIC is needed to perform PIM register message encapsulation functions that were discussed 
previously.

Lastly, recall that several mechanisms exist to elect one or more RPs for a given group of 
multicast destinations. This section will demonstrate the use and testing of the Bootstrap and 
Auto-RP election mechanisms. The configuration of static RPs is not demonstrated here due 
to it relative simplicity and the fact that reliability concerns generally prevent the widescale 
deployment of static RPs.

Configuring PIM-SM Using Bootstrap

To complete this scenario, you must configure the multicast test bed according to these 
requirements:
� Remove all PIM-DM related configuration from r1 through r5.

Backwards Routing

Multicast routing has been called “routing in reverse” and “upside-down routing,” in an 
attempt to capture the fact that multicast packets are, in essence, routed away from their 
source based on the packet’s source address. The fact that the multicast traffic from MS1 is 
successfully delivered to the receiver, MR1, is a testament to this point. This “backwards rout-
ing” is really brought home when you consider that r5 is the only router in the test bed with a 
route to MR1!

[edit]
lab@r3# run show route 172.16.30/24

[edit]
lab@r3#

The remaining routers cannot route to the 172.16.30/24 subnet because r5’s fe-0/0/3 interface 
is not running an IGP and the interface route is not being advertised into any of its routing pro-
tocols. The fact that packets sent from MS1 are being delivered to MR1 really helps to make the 
point that multicast routing is, well, routing in reverse!



442 Chapter 4 � Multicast

� Configure PIM-SM on r1, r2, r3, r4, and r5 so that multicast traffic sent from MS1 to 
group 225.0.0.1 is made available to MR1.

� You must use sparse mode only on all transit interfaces.
� Ensure that there is no single point of RP failure.
� Do not alter the IGMP or interface configuration currently in place at r5.

Refer back to Figure 4.2 as needed for the details of the multicast topology deployed in the 
current test bed.

Your PIM-SM configuration starts with the removal of the leftover PIM-DM confi-
guration from r1 through r5. Do not forget to remove the metric-related IS-IS policy at
r3 also:

[edit]

lab@r3# delete protocols pim

[edit]

lab@r3# delete protocols isis export ms1

[edit]

lab@r3# delete policy-options policy-statement ms1

If time permits, you should confirm the complete removal of previous configuration changes 
by comparing the current configuration to the baseline configuration as demonstrated in the 
previous section.

You begin PIM-SM configuration by deciding on a bootstrap router and RP plan. Because 
you are dealing with PIM-SM, it is a good idea to start your planning with a determination of 
what routers are equipped with TS PICs, as shown here for r5 and r3:

[edit]

lab@r5# run show chassis fpc pic-status | match tunnel

[edit]

lab@r5#

[edit]

lab@r3# run show chassis fpc pic-status | match tunnel

  PIC 3    1x Tunnel

[edit]

lab@r3#

The output confirms that no TS PICs are installed in r5. This newfound knowledge 
should have a definite impact on how you design your RP topology, as you now know that 
r5 cannot be an RP! In contrast, the display from r3 confirms the presence of a TS PIC in 
PIC slot 3.



Protocol Independent Multicast 443

The wording of the requirements in this PIM-SM scenario is intentionally vague 
with respect to the placement and number of RPs in the resulting design. The 
open-ended nature of your task amounts to a long piece of rope, in that a 
candidate can get into trouble if they fail to think out their PIM-SM design, and 
specifically in this case, how that design may impose hardware requirements 
on certain routers. Note that a router with a local RP configuration will allow a 
commit even though that router does not have the required TS PIC installed. 
This is by design, and in keeping with the general behavior of JUNOS software 
with regard to being able to configure hardware that is not installed. However, 
the TS PIC’s absence will likely cause operational problems in your PIM-SM 
network, and these problems often prove very difficult to troubleshoot. The 
results-based grading approach of the JNCIE examination will likely exact a 
harsh penalty on any PIM-SM design that does not have a functional RP.

After your inventory of all routers in the multicast test bed, you conclude that r1, r2, r3, and 
r4 are equipped with TS PICs that allow them to operate as RPs or first hop routers. Given these 
findings, you decide on the PIM-SM topology shown in Figure 4.5.

F I G U R E 4 . 5 PIM-SM topology

Figure 4.5 shows that r3 and r4 will be configured as RPs for the entire 224.0.0.0/4 address 
range. Note that no address range is given in your configuration criteria; therefore both RPs 
must be able to handle the entire class D address space to meet the redundancy requirements 
posed in this example. Further, your design indicates the use of bootstrap protocol to elect, and 

Note: Tunnel Services PICs are installed in r1,r2,r3,and r4.

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

fe-0/0/0
10.0.4.12/30

10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.1 .14 .13

.9

.1

.1
.5

.18

.2 .10 .910.0.4.8/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.6 .10

.2
.5

r4

RP
(224/4)

BSR

RP
(224/4)

BSR

.6

so-0/2/0

M5M5

.1

.2
fe

-0
/0

/3
172.16.30/24

r5

Loopbacks

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5

.200

MS1

MR1



444 Chapter 4 � Multicast

then communicate, RP information to the remaining nodes; note that Auto-RP is prohibited in 
this case by the stipulation that you run sparse mode only on all interfaces. You must configure 
at least two bootstrap capable routers to avoid a single point of failure with regard to RP 
election. In this example, r4 and r5 will both function as bootstrap routers (BSRs) to provide 
the required redundancy. Note that there is no need for a TS PIC in a BSR, and that a BSR can 
also be a candidate RP as is the case with r4 in this design.

You begin configuration on r3 with the following commands:

[edit protocols]

lab@r3# set pim interface all mode sparse

[edit protocols]

lab@r3# set pim interface fxp0 disable

Note that you have configured PIM sparse mode only and that the OoB interface is once 
again excluded from running PIM. The next command configures r3’s local RP properties:

[edit protocols]

lab@r3# set pim rp local address 10.0.3.3

It is customary to use the router’s lo0 address as the RP address for added robustness in the 
face of interface failures. The completed PIM stanza is displayed at r3:

[edit protocols]

lab@r3# show pim

rp {

    local {

        address 10.0.3.3;

    }

}

interface all {

    mode sparse;

}

interface fxp0.0 {

    disable;

}

The PIM configuration for r4 is similar, and is shown here:

[edit protocols pim]

lab@r4# show

rp {

    bootstrap-priority 10;

    local {

        address 10.0.3.4;

    }

}



Protocol Independent Multicast 445

interface all {

    mode sparse;

}

interface fxp0.0 {

    disable;

}

A key difference in r4’s configuration is the presence of a bootstrap priority. The non-zero 
setting makes r4 a BSR candidate. Recall that the BSR functions to build, and then disseminate, 
a list of candidate RPs for advertised groups ranges. Each router then runs a hashing algorithm 
that results in all routers selecting the same candidate RP for a given range of group addresses. 
r4 is also configured to function as an RP for the 224/4 group range. The PIM-SM configu-
ration of r5 is displayed:

[edit]

lab@r5# show protocols pim

rp {

    bootstrap-priority 10;

}

interface all {

    mode sparse;

}

interface fxp0.0 {

    disable;

}

Note that r5 is not configured with local RP parameters, which is in keeping with the PIM-SM 
design shown earlier in Figure 4.5. r5 is configured with a non-zero bootstrap priority, thus 
allowing it to function as a BSR as needed. The PIM-SM configuration of r1 and r2 are virtually 
identical. r1’s configuration is shown next:

[edit]

lab@r1# show protocols pim

interface all {

    mode sparse;

}

interface fxp0.0 {

    disable;

}

Note that r1 and r2 are not configured to function as a BSR or RP. Be sure that you commit 
all your PIM-related changes before proceeding to the verification section.

Verifying PIM Sparse Mode

The verification of the PIM-SM control plane follows the general approach demonstrated for 
PIM-DM; specifically, you need to verify that PIM is enabled on the correct interfaces in the 



446 Chapter 4 � Multicast

correct mode, that PIM neighbor discovery is functioning correctly, and that RPF checks through 
the inet.0 routing table are working. In addition, you need to confirm that bootstrap-based 
BSR election and RP selection are working properly. You begin with the determination of PIM 
interface status at r3:

[edit]

lab@r3# run show pim interfaces

Instance: PIM.master

Name                   Stat Mode       IP V State Count DR address

at-0/1/0.0             Up   Sparse      4 2 P2P       1

fe-0/0/0.0             Up   Sparse      4 2 DR        1 10.0.4.13

fe-0/0/1.0             Up   Sparse      4 2 NotDR     1 10.0.4.2

fe-0/0/2.0             Up   Sparse      4 2 DR        0 172.16.0.13

fe-0/0/3.0             Up   Sparse      4 2 DR        0 10.0.2.14

lo0.0                  Up   Sparse      4 2 DR        0 10.0.3.3

pd-0/3/0.32768         Up   Sparse      4 2 P2P       0

pe-0/3/0.32770         Up   Sparse      4 2 P2P       0

so-0/2/0.100           Up   Sparse      4 2 P2P       1

The PIM interface display confirms that r3 is running PIM in sparse mode only on all 
expected interfaces. The added highlights call out the effects of the TS PIC, in that PIM Encap-
sulation (pe) and PIM De-capsulation (pd) interfaces have automatically been created by the 
PIM entity on r3. Note that explicit configuration is not necessary to support PIM register 
encapsulation. The pe and pd interfaces are created automatically based on the presence of a TS 
PIC and related PIM configuration. You move on to the verification of PIM neighbor status, 
again on r3:

[edit]

lab@r3# run show pim neighbors

Instance: PIM.master

Interface           IP V Mode        Option      Uptime Neighbor addr

at-0/1/0.0           4 2             HPL       00:55:37 10.0.2.1

fe-0/0/0.0           4 2             HPL       01:10:26 10.0.4.14

fe-0/0/1.0           4 2             HPL       01:10:26 10.0.4.2

so-0/2/0.100         4 2             HPL       01:10:26 10.0.2.6

The display confirms that r3 has detected four PIM neighbors, which is in keeping with the 
current multicast test bed topology. A quick RPF check at r5 proves that PIM-SM is using 
the inet.0 routing table for RPF checks:

[edit]

lab@r5# run show multicast rpf 10.0.5/24



Protocol Independent Multicast 447

Multicast RPF table: inet.0, 25 entries

10.0.5.0/24

    Protocol: IS-IS

    Interface: so-0/1/0.0

    Neighbor: 10.0.2.10

Your next verification task is to confirm proper BSR election. You begin at r5:

[edit]

lab@r5# run show pim bootstrap

Instance: PIM.master

BSR             Pri Local address   Pri State      Timeout

10.0.3.5         10 10.0.3.5         10 Elected         22

The output shows that r5 has elected itself as the PIM domain’s BSR, as denoted by the BSR 
and local addresses being the same. The router’s modified priority setting is also shown. The 
display at r5 provides a nice contrast when compared to that obtained at r3:

[edit]

lab@r3# run show pim bootstrap

Instance: PIM.master

BSR             Pri Local address   Pri State      Timeout

10.0.3.5         10 10.0.3.3          0 InEligible     118

This output confirms that r3 is not BSR eligible due to its default priority setting. A similar 
bootstrap status is also seen on r1 and r2 (not shown). The BSR status of r4 is now checked:

[edit]

lab@r4# run show pim bootstrap

Instance: PIM.master

BSR             Pri Local address   Pri State      Timeout

10.0.3.5         10 10.0.3.4         10 Candidate      122

The output from r4 shows that r5 has won the BSR contention process while also confirming 
that r4 is a candidate BSR due to its non-zero priority setting. Because r4 and r5 have the same 
BSR priority, the election’s outcome was determined by an IP address comparison that has the 
highest address taking all. With BSR election confirmed, you move on to the verification of RP 
election, this time starting at r4:

[edit]

lab@r4# run show pim rps

Instance: PIM.master

Family: INET



448 Chapter 4 � Multicast

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.3        bootstrap      150     103             0 224.0.0.0/4

10.0.3.4        bootstrap      150     103             0 224.0.0.0/4

10.0.3.4        static           0    None             0 224.0.0.0/4

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

The highlights call out that r4 has learned its own RP address through local (static) assignment, 
as well as from the bootstrap protocol. Also of note is that r4 has learned of r3’s RP capability 
through the bootstrap protocol. Though not shown, a similar display is seen on r5. Because proper 
PIM-SM operation is contingent on all routers electing the same RP for a given group range, it is 
well worth the time to confirm that all routers in the multicast test bed are displaying both candi-
date RPs. r1 has the expected RP display, given the current configuration in the multicast test bed:

[edit]

lab@r1# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.3        bootstrap      150     149             0 224.0.0.0/4

10.0.3.4        bootstrap      150     149             0 224.0.0.0/4

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

In stark contrast, r2 does not return the expected RP election results:

[edit protocols pim]

lab@r2# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

[edit protocols pim]

lab@r2#

The output from r2 indicates that there is a problem in your PIM-SM network as it has failed 
to detect either of the two RP candidates. You should resolve this issue before proceeding.



Protocol Independent Multicast 449

Troubleshooting a PIM-SM RP Election Problem

The displays shown in this section indicate that r2 is the only router in the test bed that has not 
successfully detected the presence of one or more RPs. While various approaches might be 
taken to troubleshoot this problem, this author believes that PIM tracing is often a good way to 
start. The tracing configuration shown here is committed on r2:

[edit]
lab@r2# show protocols pim
traceoptions {
    file pim;
    flag general detail;
    flag hello detail;
    flag rp detail;
}
interface all {
    mode dense;
}
interface fxp0.0 {
    disable;
}

Note that the rp flag is invaluable when you are concerned about either Auto-RP or 
bootstrap-related problems. After the tracing changes are committed, you observe the 
output shown next:

[edit]
lab@r2# run monitor start pim

lab@r2#
Apr  4 02:19:15 CHANGE   224.0.1.24.10.0.5.200/64  PIM      pref 105/0 metric
   <Delete Int>
Apr  4 02:19:15 rt_close: 1 route proto PIM.master
Apr  4 02:19:15
Apr  4 02:19:16 PIM fe-0/0/0.0 RECV 172.16.30.1 -> 224.0.0.13 V2 Bootstrap sum
   0x55a0 len 46
Apr  4 02:19:16 PIM Bootstrap not enabled on fe-0/0/0.0
Apr  4 02:19:16 PIM fe-0/0/1.0 RECV 10.0.4.9 -> 224.0.0.13 V2 Bootstrap sum 
   0x2341 len 46
Apr  4 02:19:16 PIM Bootstrap not enabled on fe-0/0/1.0
Apr  4 02:19:16 PIM fe-0/0/2.0 RECV 10.0.4.1 -> 224.0.0.13 V2 Bootstrap sum 
   0xcc3f len 46
Apr  4 02:19:16 PIM Bootstrap not enabled on fe-0/0/2.0
Apr  4 02:19:16 PIM fe-0/0/0.0 RECV 10.0.5.1 -> 224.0.0.13 V2 Bootstrap sum 
   0x66cd len 46
Apr  4 02:19:16 PIM Bootstrap not enabled on fe-0/0/0.0
Apr  4 02:19:16 PIM fe-0/0/3.0 RECV 10.0.4.5 -> 224.0.0.13 V2 Bootstrap sum 
   0x66cd len 46
Apr  4 02:19:16 PIM Bootstrap not enabled on fe-0/0/3.0
Apr  4 02:19:17 PIM fe-0/0/3.0 SENT 10.0.4.6 -> 224.0.0.13 V2 Hello hold 105
   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26



450 Chapter 4 � Multicast

With all routers now listing both of the candidate RPs, your confirmation actions transition 
into the PIM-SM forwarding plane. As before, you start with an examination of the multicast 
routes at the first hop routers, r1 and r2:

[edit]

lab@r1# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   F  2     76    MALLOC

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name

This output shows that r1 is forwarding for the S,G pair in question. You now examine the 
state of PIM joins, again on r1:

[edit]

lab@r1# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse

    Upstream interface: fe-0/0/0.0

    Upstream State: Local Source

    Keepalive timeout: 192

    Downstream Neighbors:

Apr  4 02:19:19 PIM fe-0/0/0.0 RECV 172.16.30.1 -> 224.0.0.13 V2 Hello hold 105 
   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26
Apr  4 02:19:19 PIM fe-0/0/0.0 RECV 10.0.5.1 -> 224.0.0.13 V2 Hello hold 105 
   T-bit LAN prune 500 ms override 2000 ms pri 0 sum 0x55b2 len 26

*** monitor and syslog output disabled, press ESC-Q to enable ***

Can you identify the problem in r2’s configuration based on the trace output shown? If you 
focused in on the errors regarding bootstrap not being enabled on any interfaces, then you are 
certainly getting close. The question now becomes “What is needed to enable bootstrap on an 
M-series router?” Note that r1 appears to be functioning correctly and that it has no explicit 
bootstrap-related configuration. The key to this problem lies in the fact that bootstrap is only 
enabled on a sparse mode interface, and all of r2’s interfaces have been incorrectly left in dense 
mode from the last scenario. The setting of sparse vs. dense does not prevent PIM neighbor 
detection, but the configured mode clearly has an impact on the bootstrap protocol’s opera-
tion. After correctly setting r2’s interfaces to operate in sparse mode, RP election is confirmed 
to be working on all routers in the multicast test bed.



Protocol Independent Multicast 451

        Interface: fe-0/0/3.0

            10.0.4.17 State: Join   Flags: S    Timeout: 159

Instance: PIM.master Family: INET6

The various highlights in the capture confirm that r1 has established a SPT for 10.0.5.200, 
225.0.0.1, and that it has pruned itself from the RPT-based tree. This is indicated by the lack 
of a ∗,G entry and the presence of a S,G entry. Recall that forwarding over the RPT tree is short-
lived, in that once a receiver detects multicast traffic from source “S” via the shared tree it 
initiates a S,G join to effect a shortest path tree between that source and its local receivers. It is 
noted that at this time r2 has pruned this multicast route:

[edit]

lab@r2# run show multicast route

Family: INET

Group           Source prefix     Act Pru InIf  NHid  Session Name

225.0.0.1       10.0.5.200     /32 A   P  2     0     MALLOC

Family: INET6

Group           Source prefix     Act Pru InIf  NHid  Session Name

The pruned state is reflected in the downstream interfaces listed in the output of a PIM join at r2:

[edit]

lab@r2# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse

    Upstream interface: fe-0/0/0.0

    Upstream State: Local Source

    Keepalive timeout: 153

    Downstream Neighbors:

Instance: PIM.master Family: INET6

The next step in the verification of the PIM-SM data plane takes you to r4 because previous 
output from r1 indicated that its fe-0/0/3 interface is downstream for the S,G entry being tracked:

[edit]

lab@r4# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse



452 Chapter 4 � Multicast

    Upstream interface: fe-0/0/2.0

    Upstream State: Join to Source

    Keepalive timeout: 158

    Downstream Neighbors:

        Interface: so-0/1/1.0

            10.0.2.9 State: Join   Flags: S    Timeout: 160

Instance: PIM.master Family: INET6

As with r1, r4’s display confirms that S,G state has been correctly established. The indication 
that r4’s so-0/1/1 interface is downstream tells you that the S,G multicast traffic should be flowing 
from r4 to r5 over the POS link. Note that r4 does not show a ∗,G join. This is because it has 
no local group membership to trigger a join to the shared tree. In contrast, the static joins on 
r5 have resulted in joins to both the shared and shortest path trees:

[edit]

lab@r5# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: *

    RP: 10.0.3.3

    Flags: sparse,rptree,wildcard

    Upstream interface: at-0/2/1.0

    Upstream State: Join to RP

    Downstream Neighbors:

        Interface: fe-0/0/3.0

            172.16.30.1 State: Join   Flags: SRW  Timeout: Infinity

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse,spt

    Upstream interface: so-0/1/0.0

    Upstream State: Join to Source, Prune to RP

    Keepalive timeout: 209

    Downstream Neighbors:

        Interface: fe-0/0/3.0

            172.16.30.1 State: Join   Flags: S    Timeout: Infinity

The static group membership definitions on r5 result in a rather long timeout on the PIM 
Joins (Infinity). Also of note is the presence of both a ∗,G and S,G join at r5. The capture shows 
that the bootstrap hashing function has resulted in the selection of 10.0.3.3 as the RP for the 
225.0.0.1 group. It bears stressing that the bootstrap mechanism provides inherent load balancing 



Protocol Independent Multicast 453

among a set of candidate RPs. The result is that you are likely to find that r5 has selected 
10.0.3.4 as the RP for a different group address.

The presence of a SPT for the S,G pair associated with MS1 and the 225.0.0.1 group proves 
that the PIM RP and register functionality must have worked, because without these functions 
there would have been no way for MR1 to discover MS1, and therefore the establishment of the 
SPT shown would not have been possible. The following capture shows the PIM join state for r3:

[edit]

lab@r3# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: *

    RP: 10.0.3.3

    Flags: sparse,rptree,wildcard

    Upstream interface: local

    Upstream State: Local RP

    Downstream Neighbors:

        Interface: at-0/1/0.0

            10.0.2.1 State: Join   Flags: SRW  Timeout: 193

Group: 225.0.0.1

    Source: 10.0.5.200

    RP: 10.0.3.3

    Flags: sparse,rptree

    Upstream interface: local

    Upstream State: Local RP

    Keepalive timeout:

    Downstream Neighbors:

        Interface: at-0/1/0.0             (pruned)

            10.0.2.1 State: Prune  Flags: SR   Timeout: 193

It is interesting to note that r3 has pruned itself from the S,G SPT, and that it confirms it is 
the RP for ∗, 225.0.0.1 by virtue of the Local RP designation for the ∗,G entry’s upstream state. 
The results seen thus far confirm that PIM SM is operating in accordance with all provided 
criteria. Before leaving this section, you decide to test RP failover by deactivating PIM functionality 
on r3, which is the current RP for the ∗,G being discussed:

[edit]

lab@r3# deactivate protocols pim

[edit]

lab@r3# commit

commit complete



454 Chapter 4 � Multicast

Because it can take a while for multicast protocols and state to reform, you decide to wait a 
few moments before analyzing the results. A few minutes later, proper RP failover, and continued 
PIM-SM data forwarding, are confirmed at r5:

[edit]

lab@r5# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.4        bootstrap      150     119             2 224.0.0.0/4

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

The loss of r3 has not left the PIM domain without an RP, which is in keeping with the 
requirements that there be no single point of RP failure in your design. Data forwarding is again 
confirmed in the face of r3’s recently deactivated PIM stanza:

[edit]

lab@r5# run show pim join extensive

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: *

    RP: 10.0.3.4

    Flags: sparse,rptree,wildcard

    Upstream interface: so-0/1/0.0

    Upstream State: Join to RP

    Downstream Neighbors:

        Interface: fe-0/0/3.0

            172.16.30.1 State: Join   Flags: SRW  Timeout: Infinity

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse

    Upstream interface: so-0/1/0.0

    Upstream State: Join to Source

    Keepalive timeout: 209

    Downstream Neighbors:

        Interface: fe-0/0/3.0

            172.16.30.1 State: Join   Flags: S    Timeout: Infinity

The PIM join display confirms that r5 has now mapped the 225.0.0.1 group address to 
the domain’s remaining RP, and that a S,G join is still in effect. This behavior validates the 



Protocol Independent Multicast 455

redundancy aspects of your PIM design. Before proceeding to the next section, it is suggested 
that you reactivate r3’s PIM configuration:

[edit]

lab@r3# rollback 1

load complete

[edit]

lab@r3# commit

commit complete

Configuring PIM-SM Using Auto-RP

To complete this scenario, you must reconfigure the multicast test bed according to the 
following criteria:
� Replace the current bootstrap based election with Auto-RP.
� Ensure that there is no single point of RP failure.
� Multicast traffic from MS1 to MR1 must be delivered to MR1.

Refer back to Figure 4.2 as needed for the details of the multicast topology that you are 
working with.

The goal of this configuration exercise is to convert the existing network from the use of 
bootstrap to Auto-RP based RP election. Note that your network must continue to provide RP 
redundancy, which leads you to the Auto-RP design shown in Figure 4.6.

F I G U R E 4 . 6 Auto-RP topology

Note: Tunnel Services PICs are installed in r1,r2,r3,and r4.

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

fe-0/0/3

fe-0/0/0 fe-0/0/1

Discovery

Discovery

fe-0/0/1

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

fe-0/0/0
10.0.4.12/30

10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.1 .14 .13

.9

.1

.1
.5

.18

.2 .10 .910.0.4.8/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.6 .10

.2
.5

r4

RP
(224/4)

Mapping

RP
(224/4)

Announce

Mapping

.6

so-0/2/0

M5M5

.1

.2

fe
-0

/0
/3

172.16.30/24

r5

Loopbacks

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5

.200

MS1

MR1



456 Chapter 4 � Multicast

Your PIM-SM Auto-RP design once again presses r3 and r4 into the role of RP for the entire 
224/4 group range. To provide the required redundancy, you must ensure that your network 
has at least two candidate RPs, and at least two mapping agents. In this example, r4 and r5 are 
configured as Auto-RP mapping agents. Once again your design has r4 functioning in a dual 
capacity; this time as a candidate RP and as an Auto-RP mapping agent. Note that an Auto-RP 
mapping agent router also generates announce messages when it is RP capable, and that it also 
listens to discovery messages to learn RP mapping results. When multiple mapping agents are 
present, each mapping agent operates independently; coordination between mapping agents is 
not required because all mapping agents compute the same mapping results, which is in keeping 
with their ability to operate independently.

r3 is configured with the announce option to ensure that it announces its local RP capabilities 
while also listening to Auto-RP mapping messages generated by the mapping agent. Because r1 
and r2 are not configured as RPs, they will be configured to operate in discovery mode, which 
is the most basic Auto-RP option. In this mode, the routers will only listen for mapping mes-
sages to learn the results of RP-to-group range mappings.

The Auto-RP options of discovery, announce, and mapping each build on the 
previous option’s functionality. In other words, discovery listens to mapping 
messages only while the announce options listens to mapping messages while 
also generating announce messages. It is common practice in the “real world” 
to just set all routers to the highest level of functionality (mapping) and then let 
their individual configurations determine if this level of functionality is actually 
used. For example, the lack of local RP settings will prevent a mapping router 
from generating announce messages, although the capability is inherent in its 
mapping setting. Because an examination may be written to test the candidate’s 
understanding of each option, you may be expected to configure only the func-
tionality that is actually required, which is the approach taken here. The moral 
here is that over-configuring a network is not necessarily bad, unless, of course, 
your rules of engagement restrict such over-configuration.

Note that Auto-RP requires the use of dense mode flooding to support announce messages 
(224.0.1.39) and discovery messages (224.0.1.40). Further, proper Auto-RP operation also 
requires that the router’s lo0 interface be assigned a routable IP address and that you configure 
the lo0 interface as a sparse-dense PIM interface.

Your Auto-RP configuration scenario starts with the removal of any bootstrap-related 
configuration from r5 and r4:

[edit protocols]

lab@r3# delete pim rp bootstrap-priority

The Auto-RP configuration starts at r4 with the setting of sparse-dense mode on all PIM 
interfaces. This mode is needed to support dense-mode flooding of Auto-RP discovery and 
mapping messages while still operating in sparse mode for all other groups:

[edit protocols pim]

lab@r4# set interface all mode sparse-dense



Protocol Independent Multicast 457

The required dense mode groups are now defined.

[edit protocols pim]

lab@r4# set dense-groups 224.0.1.39

[edit protocols pim]

lab@r4# set dense-groups 224.0.1.40

In case you are one of those types that has not yet committed Auto-RP’s dense mode groups 
to memory, do not despair! When taking the JNCIE examination, you will have access to the 
JUNOS software documentation for the software release used in the JNCIE lab, and happily, 
the dense mode groups needed for Auto-RP operation are clearly identified in the documenta-
tion set. Even better, the answer is also found with the JUNOS software Online Documentation:

[edit protocols pim]

lab@r4# run help topic pim auto-rp | match dense

   dense mode PIM to advertise control traffic, it provides an important

   If PIM is operating in sparse or sparse-dense mode, configure how the

   you must enable PIM sparse-dense mode on the lo0.0 interface.

   address 127.0.0.1. Also, you must enable PIM sparse-dense mode on the

           1.     Use the mode statement and specify the option sparse-dense

     dense mode for others. The default is to operate in sparse mode unless

     the router is specifically informed of a dense mode group.

           2.     Configure two multicast dense groups (224.0.1.39 and

           224.0.1.40) using the dense-groups statement at the [edit

     occurs through a PIM dense mode model where group 224.0.1.39 is used for

   To configure auto-RP, include the mode, dense-groups, and auto-rp

             dense-groups {

                 mode sparse-dense;

Although the prose is a bit messy after being munged by the CLI’s match function, the high-
lights call out the exact information being sought, most likely faster than this information could 
have been retrieved in any other way! The final command at r4 enables Auto-RP mapping 
functionality:

[edit protocols pim]

lab@r4# set rp auto-rp mapping

The modified PIM stanza is shown next with added highlights:

[edit protocols pim]

lab@r4# show

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {



458 Chapter 4 � Multicast

    local {

        address 10.0.3.4;

    }

    auto-rp mapping;

}

interface all {

    mode sparse-dense;

}

interface fxp0.0 {

    disable;

}

The configuration of r3 is similar, with the primary exception being the use of the announce 
option:

[edit protocols pim]

lab@r3# show

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    local {

        address 10.0.3.3;

    }

    auto-rp announce;

}

interface all {

    mode sparse-dense;

}

interface fxp0.0 {

    disable;

}

The modified PIM stanza for r5 enables Auto-RP mapping functions; note the absence of 
local RP configuration on r5:

[edit]

lab@r5# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    auto-rp mapping;

}



Protocol Independent Multicast 459

interface all {

    mode sparse-dense;

}

interface fxp0.0 {

    disable;

}

Although only shown here for r2, the PIM configuration of r1 is virtually identical. Note 
that these routers are set to perform Auto-RP discovery functions only:

[edit protocols pim]

lab@r2# show

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    auto-rp discovery;

}

interface all {

    mode sparse-dense;

}

interface fxp0.0 {

    disable;

}

Make sure that all modifications are committed before you proceed to the confirmation section.

Verifying PIM Sparse Mode Using Auto-RP

Because the only changes made to the test bed relate to the use of Auto-RP instead of the bootstrap 
protocol, the confirmation steps in this section will be confined to the verification of RP election. 
You begin with the confirmation of sparse-dense mode operation on all PIM interfaces:

[edit protocols pim]

lab@r3# run show pim interfaces

Instance: PIM.master

Name                   Stat Mode       IP V State Count DR address

at-0/1/0.0             Up   SparseDense 4 2 P2P       1

fe-0/0/0.0             Up   SparseDense 4 2 NotDR     1 10.0.4.14

fe-0/0/1.0             Up   SparseDense 4 2 NotDR     1 10.0.4.2

fe-0/0/2.0             Up   SparseDense 4 2 DR        0 172.16.0.13

fe-0/0/3.0             Up   SparseDense 4 2 DR        0 10.0.2.14

lo0.0                  Up   SparseDense 4 2 DR        0 10.0.3.3

pd-0/3/0.32768         Up   Sparse      4 2 P2P       0

pe-0/3/0.32770         Up   Sparse      4 2 P2P       0



460 Chapter 4 � Multicast

The PIM interface display confirms that r3 is correctly configured to run sparse-dense mode. 
Next, you verify that an RP has been successfully elected via the Auto-RP mechanism:

[edit protocols pim]

lab@r3# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.4        auto-rp        150     101             0 224.0.0.0/4

10.0.3.3        static           0    None             0 224.0.0.0/4

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

The output confirms that r3 is locally configured as an RP (static) and that it has learned of 
the 10.0.3.4 RP through the Auto-RP protocol. Similar confirmation of proper Auto-RP 
operation is also seen in the display obtained from r1:

[edit]

lab@r1# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.4        auto-rp        150     124             0 224.0.0.0/4

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

Note that both r1 and r3 display the same RP as learned through Auto-RP; it is critical that 
the results of the Auto-RP mapping function yield a consistent choice of RP-to-group mappings 
for all routers in the PIM domain. Though not shown, you may assume that all five routers are 
correctly displaying r4 (10.0.3.4) as the RP. It is interesting to note that all routers have issued 
dense mode joins to the Auto-RP dense mode groups so that they will receive mapping and 
announce messages:

[edit]

lab@r5# run show pim join

Instance: PIM.master Family: INET

Group: 224.0.1.39

    Source: 10.0.3.3

    Flags: dense

    Upstream interface: at-0/2/1.0



Protocol Independent Multicast 461

Group: 224.0.1.39

    Source: 10.0.3.4

    Flags: dense

    Upstream interface: so-0/1/0.0

Group: 224.0.1.40

    Source: 10.0.3.5

    Flags: dense

    Upstream interface: local

Group: 225.0.0.1

    Source: *

    RP: 10.0.3.4

    Flags: sparse,rptree,wildcard

    Upstream interface: so-0/1/0.0

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse,spt

    Upstream interface: at-0/2/1.0

Instance: PIM.master Family: INET6

With Auto-RP based RP election confirmed, you should again confirm the PIM-SM forwarding 
plane. The steps are not shown here because they are identical to those already demonstrated 
for both PIM-DM and PIM-SM. You may assume that multicast traffic is confirmed to be flowing 
from MS1 to MR1 over a SPT, as indicated by this capture from r3:

[edit protocols pim]

lab@r3# run show pim join extensive

Instance: PIM.master Family: INET

Group: 224.0.1.39

    Source: 10.0.3.3

    Flags: dense

    Upstream interface: local

    Downstream interfaces:

        local

        lo0.0

        fe-0/0/0.0

        fe-0/0/1.0

        at-0/1/0.0

        so-0/2/0.100

Group: 224.0.1.39

    Source: 10.0.3.4



462 Chapter 4 � Multicast

    Flags: dense

    Upstream interface: so-0/2/0.100

    Downstream interfaces:

        local

        lo0.0

        fe-0/0/0.0

        fe-0/0/1.0

        at-0/1/0.0 (Pruned timeout 139)

Group: 224.0.1.40

    Source: 10.0.3.5

    Flags: dense

    Upstream interface: at-0/1/0.0

    Downstream interfaces:

        local

        lo0.0

        fe-0/0/0.0

        fe-0/0/1.0

        so-0/2/0.100 (Pruned timeout 124)

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse

    Upstream interface: fe-0/0/1.0

    Upstream State: Join to Source

    Keepalive timeout: 208

    Downstream Neighbors:

        Interface: at-0/1/0.0

            10.0.2.1 State: Join   Flags: S    Timeout: 159

Instance: PIM.master Family: INET6

Before leaving this section, you decide to test RP failover by deactivating PIM functionality 
on r4, which has been selected as the RP for the 224/4 range by the Auto-RP mapping function:

[edit]

lab@r4# deactivate protocols pim

[edit]

lab@r4# commit

commit complete



Protocol Independent Multicast 463

After waiting a few minutes, RP failover is confirmed at r2:

[edit protocols pim]

lab@r2# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.3        auto-rp        150     146             0 224.0.0.0/4

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

Make sure that you restore r4’s configuration after you are satisfied that all PIM redundancy 
requirements have been met:

[edit]

lab@r4# rollback 1

load complete

[edit]

lab@r4# commit

commit complete

PIM Tracing

As with all protocols, there may be times when you need to closely monitor the operation of 
PIM to diagnose problems or to better understand its operation. This section provides an example 
of PIM tracing in the context of the PIM-SM Auto-RP based topology that is currently in place. 
A typical PIM tracing configuration has been added to r3’s configuration:

[edit protocols pim]

lab@r3# show traceoptions

file pim;

flag rp detail;

flag hello detail;

flag register detail;

flag join detail;

A sample of the tracing output obtained with this configuration is shown next:

[edit protocols pim]

lab@r3# run monitor start pim

*** pim ***

Apr  4 20:52:39 PIM at-0/1/0.0 RECV 10.0.2.1 -> 224.0.0.13 V2 Hello hold 105

   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26

lab@r3#



464 Chapter 4 � Multicast

Apr  4 20:52:41 PIM fe-0/0/1.0 SENT 10.0.4.1 -> 224.0.0.13 V2 JoinPrune to 

   10.0.4.2 holdtime 210 groups 1 sum 0xd61f len 34

Apr  4 20:52:41 group 225.0.0.1 joins 1 prunes 0

Apr  4 20:52:41   join list:

Apr  4 20:52:41     source 10.0.5.200 flags sparse

Apr  4 20:52:45 PIM fe-0/0/1.0 SENT 10.0.4.1 -> 224.0.0.13 V2 Hello hold 105 

   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26

Apr  4 20:52:55 PIM so-0/2/0.100 SENT 10.0.2.5 -> 224.0.0.13 V2 Hello hold 105 

   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26

. . .

Apr  4 20:53:09 PIM at-0/1/0.0 RECV 10.0.2.1 -> 224.0.0.13 V2 Hello hold 105 

   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26

Apr  4 20:53:12 PIM at-0/1/0.0 RECV 10.0.2.1 -> 224.0.0.13 V2 JoinPrune to 

   10.0.2.2 holdtime 210 groups 1 sum 0xd81f len 34

Apr  4 20:53:12 group 225.0.0.1 joins 1 prunes 0

Apr  4 20:53:12   join list:

Apr  4 20:53:12     source 10.0.5.200 flags sparse

Apr  4 20:53:12 PIM fe-0/0/1.0 SENT 10.0.4.1 -> 224.0.0.13 V2 Hello hold 105 

   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26

Apr  4 20:53:19 PIM SENT 10.0.3.3 -> 224.0.1.39+496 AutoRP v1 announce hold 150

   rpcount 1 len 20 rp 10.0.3.3 version 2 groups 1 prefixes 224.0.0.0/4

Apr  4 20:53:19 PIM at-0/1/0.0 RECV 10.0.3.5+496 -> 224.0.1.40 AutoRP v1 

   mapping hold 150 rpcount 1 len 20 rp 10.0.3.4 version 2 groups 1 prefixes 

   224.0.0.0/4

. . .

Apr  4 20:53:37 PIM fe-0/0/1.0 SENT 10.0.4.1 -> 224.0.0.13 V2 JoinPrune to 

   10.0.4.2 holdtime 210 groups 1 sum 0xd61f len 34

Apr  4 20:53:37 group 225.0.0.1 joins 1 prunes 0

Apr  4 20:53:37   join list:

Apr  4 20:53:37     source 10.0.5.200 flags sparse

Apr  4 20:53:38 PIM at-0/1/0.0 RECV 10.0.2.1 -> 224.0.0.13 V2 Hello hold 105 

   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26

Apr  4 20:53:42 PIM fe-0/0/1.0 SENT 10.0.4.1 -> 224.0.0.13 V2 Hello hold 105 

   T-bit LAN prune 500 ms override 2000 ms pri 1 sum 0x55b1 len 26

The edited capture shows quite a few PIM hellos, a join message or two (recall that joins and 
prunes are sent periodically to maintain state), and the presence of Auto-RP announce and map-
ping messages.

PIM Summary

This section presented several JNCIE-level multicast configuration scenarios based on PIM. 
Like DVMRP, enabling PIM on a multi-access interfaces automatically enables the IGMP 



MSDP 465

protocol on that interface. Unlike DVMRP, PIM is not a routing protocol, and PIM does not 
require a special routing table for RPF checks. Many find that the absence of RIB group 
configuration makes PIM far easier to deal with when compared to DVMRP.

When operating in dense mode, PIM uses a flood-and-prune approach based on broadcast 
trees. PIM-DM does not require RPs, and therefore has no need for Bootstrap or Auto-RP func-
tionality and no need for TS PIC hardware. In sparse mode, PIM requires that sources and 
receivers for a given multicast group agree upon a Rendezvous Point (RP) where initial contact 
is made. The RP can be statically defined, or can be dynamically learned using the bootstrap 
protocol (PIM version 2) or the Auto-RP mechanism (PIM versions 1 or 2). You can configure 
multiple RPs with either approach, but load balancing among a set of RPs is possible only with 
the bootstrap protocol (Any-Cast is covered in a later section). For BSR redundancy, ensure that 
you have at least two BSR candidates by setting a non-zero priority in these routers. For Auto-RP 
redundancy, you must ensure that at least two routers are capable of providing the mapping 
function. Recall that Auto-RP requires sparse-dense mode operation and the definition of the 
two dense groups associated with Auto-RP for proper operation.

It can take a few minutes for all routers to learn the domain’s RP, whether you use Auto-RP 
or bootstrap. Be sure that you give your network time to converge before making configuration 
changes or deciding to reboot, as these actions may only serve to prolong RP convergence.

MSDP
The Multicast Source Discovery Protocol (MSDP) is used to convey information about active 
multicast sources between autonomous systems in support of interdomain multicast. MSDP is 
also used within a single multicast domain to support Any-Cast RPs.

MSDP can work with or without MP-BGP. MP-BGP advertises multicast routes using 
Sub-AFI 2. These routes are automatically placed into the inet.2 routing table by JUNOS 
software. Placing multicast routes into a special routing table allows you to have a multicast for-
warding topology that differs from the unicast forwarding topology for the same prefix. When 
MP-BGP is not configured, all routes are placed into the common inet.0 routing table, which 
forces a common forwarding topology for unicast and multicast traffic. Note that to actually 
achieve different forwarding topologies between autonomous domains, you must have multiple 
EBGP peering interfaces and you must configure your unicast and multicast EBGP peering 
sessions to use one, or the other, of these links.

The purpose of MSDP is to provide a mechanism by which active sources in one PIM domain 
are communicated to RPs in other domains. The knowledge of an active source for group G 
results in RPs with ∗,G join state generating S,G joins back toward the active source to establish 
a source-specific tree that spans domain boundaries.

Configure Any-Cast and MSDP

Any-Cast is a technique that allows load balancing among a set of RPs that are learned through 
the Auto-RP mechanism. Recall that normally Auto-RP selects a single RP from a set of 



466 Chapter 4 � Multicast

candidate RPs that will handle all ∗,G traffic for the group range advertised. With Any-Cast, a 
set of RPs are deployed using a duplicated address, such that stations “see” a single RP and sim-
ply direct their joins according to the metrically closest route to the “single” RP address. From 
the perspective of a multicast router, the failure of an Any-Cast RP will either go completely 
undetected, or manifest itself as a metric increase due to the need to begin directing joins and 
register messages to the next metrically closest RP.

Any-Cast makes use of MSDP to tie together the RPs that make up the Any-Cast RP, just as 
the MSDP protocol ties together two or more RPs that exist within independent routing domains.

To complete this section, you must alter your configurations to meet these criteria:
� Use Auto-RP to elect two RPs for the group range 224.0.0.0 through 225.255.255.255.
� Ensure that traffic for these group ranges can be balanced over both RPs.
� Ensure that multicast traffic sent from MS1 is delivered to MR1.

The wording of your objectives does not specifically mention Any-Cast by design. The goal 
here is to verify that the candidate understands the limitations of Auto-RP, and that the Any-
Cast approach is designed to overcome Auto-RP’s load-balancing shortcomings. Also note that 
MSDP is not mentioned anywhere in your list of objectives. Without MSDP, you will likely find 
that traffic will not flow correctly from MS1 to MR1, because the source may send its register 
messages to one RP while the receiver sends its join to the other. Figure 4.7 documents the Any-
Cast design that you have decided on, given the current test bed’s configuration and your new 
configuration objectives.

F I G U R E 4 . 7 Any-Cast topology

Note: Tunnel Services PICs are installed in r1,r2,r3,and r4.

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

fe-0/0/3

fe-0/0/0 fe-0/0/1

Discovery

Discovery

RP
(224/7)

Announce

fe-0/0/1

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

fe-0/0/0
10.0.4.12/30

10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.1 .14 .13

.9

.1

.1
.5

.18

.2 .10 .910.0.4.8/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.6 .10

.2
.5

r4

Loopbacks

RP
(224/7)

Mapping

Mapping

.6

so-0/2/0

M5M5

.1

.2

fe
-0

/0
/3

172.16.30/24

r5

r4 = 10.0.3.4

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3

10.0.3.34

r5 = 10.0.3.5
10.0.3.34

.200

MS1

MR1



MSDP 467

Note that the Any-Cast topology tries to leave as much functionality and configuration in 
place from the previous PIM-SM Auto-RP scenario as practical. A key addition to Figure 4.7 is 
your choice of the non-unique lo0 address that will be used by your RPs, and the new group 
assignment that reflects the group range restrictions posed in this scenario.

You start your Any-Cast configuration on r3 with the assignment of the non-unique lo0 
address that will be shared by all RPs:

[edit interfaces]

lab@r3# set lo0 unit 0 family inet address 10.0.3.3/32 primary

[edit interfaces]

lab@r3# set lo0 unit 0 family inet address 10.0.3.34

Note that the existing (and unique) lo0 address is tagged with the primary keyword to ensure 
that the new, non-unique address cannot become the router’s primary address (because this will 
change the router’s ID and could cause a host of other problems, considering its non-unique 
nature). The primary tag is not strictly needed here because the default behavior makes the 
numerically lowest value the primary address for the interface, but being safe is never a bad idea. 
The added safety net makes inclusion of the primary keyword highly recommended. The 
following commands redefine the router’s local RP properties in accordance with the require-
ments of this scenario:

[edit protocols pim]

lab@r3# set rp local address 10.0.3.34 group-ranges 224/7

Note that the local RP is defined to use the non-unique address that was assigned to r3’s lo0 
interface in the previous step. The last set of commands configures the MSDP peering session 
between r3 and r4:

[edit protocols msdp]

lab@r3# set group as-65412 peer 10.0.3.4

[edit protocols msdp]

lab@r3# set group as-65412 local-address 10.0.3.3

Note that the MSDP peering session must be established to the unique lo0 address at the 
remote router. The source-address statement is mandatory for MSDP; specifying the unique 
lo0 address as the source of MSDP packets is important because the remote router expects to 
peer with this address. The changes to r3’s configuration in support of Any-Cast RP are displayed 
next with added highlights:

[edit]

lab@r3# show protocols msdp

group as-65412 {

    local-address 10.0.3.3;

    peer 10.0.3.4;

}



468 Chapter 4 � Multicast

[edit]

lab@r3# show protocols pim

traceoptions {

    file pim;

    flag rp detail;

    flag hello detail;

    flag register detail;

    flag join detail;

}

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    local {

        address 10.0.3.34;

        group-ranges {

            224.0.0.0/7;

        }

    }

    auto-rp announce;

}

interface all {

    mode sparse-dense;

}

interface fxp0.0 {

    disable;

}

[edit]

lab@r3# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.3/32 {

            primary;

        }

        address 10.0.3.34/32;

    }

    family iso {

        address 49.0001.3333.3333.3333.00;

    }

}



MSDP 469

Note that the majority of r3’s PIM configuration remains in effect from the previous section 
covering Auto-RP. Similar changes are now made to r4. These changes are displayed here with 
highlights:

[edit]

lab@r4# show protocols msdp

group as-65412 {

    local-address 10.0.3.4;

    peer 10.0.3.3;

}

[edit]

lab@r4# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    local {

        address 10.0.3.34;

        group-ranges {

            224.0.0.0/7;

        }

    }

    auto-rp mapping;

}

interface all {

    mode sparse-dense;

}

interface fxp0.0 {

    disable;

}

[edit]

lab@r4# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.4/32 {

            primary;

        }

        address 10.0.3.34/32;

    }



470 Chapter 4 � Multicast

    family iso {

        address 49.0001.4444.4444.4444.00;

    }

}

Be sure to commit all your changes before proceeding to the verification section.

Verifying Any-Cast and MSDP

Verification of Any-Cast operation begins with confirmation that all routers now display a 
single RP that is associated with the non-unique address chosen for your Auto-RP:

[edit]

lab@r3# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.34       auto-rp        150     138             1 224.0.0.0/7

10.0.3.34       static           0    None             1 224.0.0.0/7

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

[edit]

lab@r2# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.34       auto-rp        150     101             0 224.0.0.0/7

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

r2 and r3 display a single RP using the non-unique 10.0.3.34 address that has been 
learned through Auto-RP. You can assume that all routers in the multicast test bed are cor-
rectly displaying the same RP information. The MSDP session status is now confirmed
at r4:

[edit]

lab@r4# run show msdp peer 10.0.3.3

Peer address    Local address   State       Last up/down Peer-Group

10.0.3.3        10.0.3.4        Established     00:23:14 as-65412



MSDP 471

The output confirms that the TCP-based MSDP session between r3 and r4 has been successfully 
established. The presence of a source active message for the 10.0.1.200 source (MS1) is 
confirmed next:

[edit]

lab@r4# run show msdp source-active

Group address   Source address  Peer address    Originator      Flags

224.0.1.24      10.0.5.200      10.0.3.3        10.0.3.3        Accept

225.0.0.1       10.0.5.200      10.0.3.3        10.0.3.3        Accept

Excellent! The display confirms that r4 has received an MSDP source active message for 
source 10.0.5.200, which is sending to group 225.0.0.1, and that this traffic is being accepted. 
The Accept action indicates that no policy-related filtering is in effect that would cause this SA 
message to be filtered. Note that a 224.0.1.24 address is also listed. This address is associated 
with microsoft-ds (Active Directory services), which evidently makes use of multicast and is 
running on MS1. Source active messages are now analyzed at r3:

[edit]

lab@r3# run show msdp source-active

Group address   Source address  Peer address    Originator      Flags

225.0.0.1       10.0.5.200      local           10.0.3.34       Accept

The display at r3 confirms that the multicast source sent register packets to its local RP using 
the non-unique address 10.0.3.34, which in this case was r3, as indicated by the local indica-
tion in the peer column. The presence of an active source resulted in r3 sending a source active 
message to r4, as observed in the previous step.

So far, things are looking very good for the overall operation of Any-Cast in the current test 
bed. The final proof comes with confirmation of successful multicast traffic flow between MS1 
and MR1. The S,G join at r3 confirms that a SPT has been established between MS1 and 
MR1, and indicates that multicast traffic is flowing correctly through the test bed:

[edit]

lab@r3# run show pim join 225.0.0.1 detail

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse

    Upstream interface: fe-0/0/1.0

    Downstream interfaces:

        at-0/1/0.0

It is interesting to note the lack of a ∗,G entry on r3 for the 225.0.0.1 group. This is because 
r5 sent its ∗,G join to the Any-Cast RP address using its so-0/1/0 interface (it has two equal-cost 
paths to the Any-Cast address), making r4 the RP for the 225.0.0.1 shared tree.

[edit]

lab@r4# run show pim join 225.0.0.1 detail

Instance: PIM.master Family: INET



472 Chapter 4 � Multicast

Group: 225.0.0.1

    Source: *

    RP: 10.0.3.34

    Flags: sparse,rptree,wildcard

    Upstream interface: local

    Downstream interfaces:

        so-0/1/1.0

Group: 225.0.0.1

    Source: 10.0.5.200

    Flags: sparse,spt-pending

    Upstream interface: fe-0/0/1.0

    Downstream interfaces:

        so-0/1/1.0             (pruned)

The pruned state for the S,G entry is in keeping with the SPT that happened to form through 
r3 in this case, as shown in the previous capture. The results shown in this section confirm that 
you have configured Any-Cast (and MSDP) according to the provided criteria.

Configuring Interdomain Multicast

As mentioned previously, MSDP’s primary purpose is to support interdomain multicast. In this 
configuration scenario, you configure interdomain multicast between your AS and the T1 
router in AS 65222.

To complete this section, you must meet these criteria:
� Ensure that traffic sent from MS2 in AS 65222 to 225.0.0.1 is delivered to MR1.
� Prevent routers in AS 65222 from discovering the RPs in AS 65412. You may only block 

RP discovery and announce traffic in support of this goal.
� Filter SAs received from T1 for all groups in the 225.8/16 block.

Figure 4.8 provides the details you need to complete this task.
Note that your IS-IS baseline network already contains a working EBGP-related configuration 

for the T1 peer at r3. You can assume that the T1 router has the necessary multicast configu-
ration in place, and that the MS2 device is sending to group 225.0.0.1. To complete this task, 
you therefore need to modify r3’s MSDP stanza and add multicast scoping.

You begin your task at r3 with the goal of defining a new MSDP peer group that contains 
the T1 router. Because the configuration details do not specify how the remote MSDP peer is 
configured with regard to the MSDP peering address (interface vs. lo0), you start with an interface-
based peering configuration because the lack of redundant connections between T1 and r3 
negates the reliability motivations associated with lo0 peering:

[edit]

lab@r3# edit protocols msdp group ext

[edit protocols msdp group ext]

lab@r3# set local-address 172.16.0.13 peer 172.16.0.14



MSDP 473

F I G U R E 4 . 8 Interdomain multicast topology

If the MSDP session does not become established, you can always switch the peering over to 
use lo0 addressing, or monitor the MSDP traffic to get a better understanding of exactly what 
MSDP exchanges are occurring.

MSDP peers wait for the end with the lowest address to initiate the TCP con-
nection. Therefore, attempting to monitor MSDP traffic before r3 is configured 
might result in no MSDP activity, depending on the addressing specifics in T1’s 
configuration.

The modified MSDP stanza is shown next at r3 with highlights:

[edit protocols msdp]

lab@r3# show

group as-65412 {

    local-address 10.0.3.3;

    peer 10.0.3.4;

}

group ext {

    local-address 172.16.0.13;

Note: Tunnel Services PICs are installed in r1,r2,r3,and r4.

fe-0/0/0
M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

fe-0/0/3

fe-0/0/0 fe-0/0/1

Group
225.0.0.1

fe-0/0/1

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

10.0.4.12/30

10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.1 .14 .13

.13

.9

.1

.1
.5

.18

.2 .10 .910.0.4.8/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.6 .10

.2
.5

r4

.6

so-0/2/0

M5M5

.1

.2

fe
-0

/0
/3

172.16.30/24

r5

AS 65222
130.130/16

T1

M5M5
r3

172.16.0.12/30

130.130.16/24

.2
.1

fe-0/0/2

M5M5

Loopbacks

r4 = 10.0.3.4

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3

10.0.3.34

r5 = 10.0.3.5
10.0.3.34

MS2

MR1



474 Chapter 4 � Multicast

    peer 172.16.0.14;

}

There is no need to MSDP-peer r4 with the T1 router because it will receive the source active 
messages sent by T1 through its MSDP peering session to r3. You must ensure that PIM is 
enabled on r3’s external interface to T1 (its fe-0/0/2 interface) in order for RPF checks to suc-
ceed for 130.130/16 sources, however. With the ext MSDP peering group defined, you now 
address the need to filter source active messages received from T1 for groups in the 225.8/16 
range. To this end, you configure the msdp policy as shown here:

[edit policy-options policy-statement msdp]

lab@r3# show

term 1 {

    from {

        route-filter 225.8.0.0/16 orlonger;

    }

    then reject;

}

You apply this policy as import to the ext MSDP peer group. Note that a global application 
of the msdp policy could result in point loss, because your instructions do not indicate that you 
should also filter these groups from any advertisements you receive from r4.

[edit protocols msdp]

lab@r3# set group ext import msdp

The modified MSDP stanza is displayed next at r3:

[edit protocols msdp]

lab@r3# show

group as-65412 {

    local-address 10.0.3.3;

    peer 10.0.3.4;

}

group ext {

    import msdp;

    local-address 172.16.0.13;

    peer 172.16.0.14;

}

The final requirement in the interdomain multicast scenario requires that you filter Auto-RP 
messages from r3 to T1 to prevent T1 from learning your Any-Cast RP. You need to configure 
multicast scoping to block the output of Auto-RP announce and mapping messages on r3’s 
fe-0/0/2 interface to achieve this goal:

[edit routing-options multicast]

lab@r3# set scope announce interface fe-0/0/2 prefix 224.0.1.39

[edit routing-options multicast]

lab@r3# set scope discover interface fe-0/0/2 prefix 224.0.1.40



MSDP 475

Output filters are not possible for multicast traffic with M-series and T-series 
hardware (PR 24404). Multicast-based firewall matches are possible with 
ingress filters, however. Candidates have been observed trying to simulate the 
effects of multicast scoping with firewall filters applied in the output direction; 
these same candidates are normally observed deploying scoping when they 
come back for another go at the examination.

Note that two separate multicast scopes are needed to meet the criteria of blocking only 
Auto-RP related traffic on r3’s fe-0/0/2 interface. The modified routing-options stanza is 
displayed next with the additions highlighted:

[edit]

lab@r3# show routing-options

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

multicast {

    scope announce {

        prefix 224.0.1.39/32;

        interface fe-0/0/2.0;

    }

    scope discover {

        prefix 224.0.1.40/32;

        interface fe-0/0/2.0;

    }

}

When satisfied with your MSDP and scoping changes, you should proceed to the next ses-
sion. Note that you should not yet commit your changes for reasons that will soon be evident!

Verifying Interdomain Multicast

To help confirm (and demonstrate) the operation of MSDP, the tracing changes shown next are 
added to r3’s configuration:

[edit]

lab@r3# show protocols msdp traceoptions

file msdp;

flag source-active detail;



476 Chapter 4 � Multicast

flag normal detail;

flag packets detail;

flag policy detail;

You quickly begin monitoring the msdp log file after committing the changes:

[edit]

lab@r3# commit

commit complete

[edit]

lab@r3# run monitor start msdp

[edit]

lab@r3#

*** msdp ***

Apr  5 23:13:41 MSDP SENT Keepalive peer 10.0.3.4

Apr  5 23:13:49 RPD_MSDP_PEER_UP: MSDP peer 172.16.0.14 peer-group ext into
   Established state

Apr  5 23:13:49 MSDP RECV SA from 172.16.0.14 RP 130.130.0.1 count 2 len 32

Apr  5 23:13:49 MSDP Accept group 225.8.8.8 source 130.130.16.2 originator
   130.130.0.1 from peer 172.16.0.14

Apr  5 23:13:49 MSDP Accept group 225.0.0.1 source 130.130.16.2 originator
   130.130.0.1 from peer 172.16.0.14

Apr  5 23:13:49 MSDP HASH peer 10.0.3.4 adding 225.0.0.1.130.130.16.2 rp
   130.130.0.1 to bucket 8 count 1

Apr  5 23:13:49 MSDP HASH removing 225.0.0.1.130.130.16.2 from bucket 8 count 1

Apr  5 23:13:49 MSDP SENT SA to 10.0.3.4 RP 130.130.0.1 len 20

. . .

The highlights call out the successful establishment of the MSDP session between T1 and 
r3, and also show that source active messages were received from T1 (130.130.0.1) for the 
225.0.0.1 and 225.8.8.8 groups. Note that the trace output indicates that only one of the SA 
messages was forwarded on to MSDP peer 10.0.3.4; a behavior that is in keeping with your 
msdp policy, which serves to block SAs for groups in the 225.8/16 range. The MSDP tracing 
configuration is removed from r3, because it is no longer needed; leaving it in place should 
cause no harm, however:

[edit]

lab@r3# delete protocols msdp traceoptions

You now analyze the SA messages received by r3:

[edit]

lab@r3# run show msdp source-active

Group address   Source address  Peer address    Originator      Flags

225.0.0.1       130.130.16.2    172.16.0.14     130.130.0.1     Accept

225.8.8.8       130.130.16.2    172.16.0.14     130.130.0.1     Accept,Filtered



MSDP 477

The highlights confirm the receipt of two SA messages, and also confirm that the msdp policy 
is correctly filtering SAs in the 225.8/16 range. You next verify the proper conveyance of the SA 
for source 225.0.0.1 to r4. Recall that r3 and r4 are also MSDP peers in support of Any-Cast RP:

[edit]

lab@r4# run show msdp source-active

Group address   Source address  Peer address    Originator      Flags

225.0.0.1       130.130.16.2    10.0.3.3        130.130.0.1     Accept

With MSDP peering and policy confirmed, you move on to verify the correct flow of 
multicast traffic from MS2 to MR1. You start by analyzing the join state at r5:

[edit]

lab@r5# run show pim join 225.0.0.1 detail

Instance: PIM.master Family: INET

Group: 225.0.0.1

    Source: *

    RP: 10.0.3.34

    Flags: sparse,rptree,wildcard

    Upstream interface: at-0/2/1.0

    Downstream interfaces:

        fe-0/0/3.0

Group: 225.0.0.1

    Source: 130.130.16.2

    Flags: sparse,spt-pending

    Upstream interface: at-0/2/1.0

    Downstream interfaces:

        fe-0/0/3.0

The S,G join state confirms that r5 has received traffic from MS2 via the shared RP tree, and 
that it has successfully established a SPT as a result. Another positive indication that traffic is 
being delivered to MR1 is obtained by the determination that both r3 and r5 are displaying the 
same traffic rate for the 130.130.16.2, 225.0.0.1 route:

[edit]

lab@r3# run show multicast route source-prefix 130.130.16.2 extensive

Family: INET

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

225.0.0.1       130.130.16.2   /32 A   F  79    4605       0          360

    Upstream interface: fe-0/0/2.0

    Session name: MALLOC

    Forwarding rate: 3 kBps (5 pps)

[edit]



478 Chapter 4 � Multicast

lab@r5# run show multicast route source-prefix 130.130.16.2 extensive

Family: INET

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

225.0.0.1       130.130.16.2   /32 A   F  105   4876       0          360

    Upstream interface: at-0/2/1.0

    Session name: MALLOC

    Forwarding rate: 3 kBps (5 pps)

r3 shows the correct upstream interface, and a packet rate of five packets per second, which 
matches the data rate shown at r5 nicely.

It may be difficult to confirm the operation of your multicast scoping, especially if you do not 
have access to the T1 device. In this example, you are provided with login information, which 
allows you to confirm that T1 has not learned of your Any-Cast RP:

[edit]

lab@r3# run telnet 130.130.0.1

Trying 130.130.0.1...

Connected to 130.130.0.1.

Escape character is '^]'.

T1-P1 (ttyp0)

login: lab

Password:

Last login: Sat Apr  5 14:10:42 on ttyd0

--- JUNOS 5.2R1.4 built 2002-01-30 17:03:27 UTC

lab@T1-P1> show pim rps

RP address      Type      Holdtime Timeout Active groups Group prefixes

130.130.0.1     static           0    None             1 224.0.0.0/4

Good, T1 has not learned your 10.0.3.34 Any-Cast RP. A quick glance at the PIM stanza 
confirms that T1 is configured to run Auto-RP and is listening to mapping messages, which 
means that it is configured to learn your RP in the event that scoping is not correctly configured:

[edit]

lab@T1-P1# show protocols pim

traceoptions {

    file pim;

    flag rp detail;

}

dense-groups {

    224.0.1.39/32;



MSDP 479

    224.0.1.40/32;

}

rp {

    local {

        address 130.130.0.1;

    }

    auto-rp discovery;

}

interface all {

    mode sparse-dense;

}

The lack of Auto-RP entries at T1 confirms that the multicast scoping at r3 is having the 
desired effect. You can also use the show multicast scope command to confirm scoping 
settings:

[edit]

lab@r3# run show multicast scope

                                                      Resolve

Scope name           Group Prefix       Interface                 Rejects

announce             224.0.1.39/32      fe-0/0/2.0                      2

discover             224.0.1.40/32      fe-0/0/2.0                      0

local                239.255.0.0/16     fe-0/0/2.0                      0

The output confirms that the addition of a custom scope range, in this case to control 
Auto-RP messages, automatically adds scoping for administratively scoped addresses in the 
range of 239.255.0.0 through 239.255.255.255 (239.255/16). The confirmation techniques 
demonstrated in this section indicate that your network meets all specified criteria for the 
interdomain multicast scenario.

MSDP Summary

MSDP is used to support interdomain multicast and Any-Cast RPs. Normally routers configured 
to run MSDP are also configured to function as a PIM RP. MSDP operates by sending source 
active messages to remote peers (using RPF forwarding to prevent loops), which causes the 
remote RP/MSDP peer to join a SPT for the active source when there are local listeners. Once 
the remote receiver begins receiving traffic from the active source via the shared tree, it too 
signals a SPT to the source.

Multicast scoping is used to block certain class D addresses from being sent out the specified 
interface. Scoping is configured under the routing-options stanza; you need to define multiple 
scopes when your goal is to block multiple /32 class D addresses. Note that firewall filters do 
not operate on class D addresses.

You can filter MSDP SAs and PIM joins using routing policy. This section provided an example 
of how import policy can be used to filter source active messages received from an MSDP peer. 
A similar approach is used when the goal is to filter joins to a RP-based shared tree or when 
filtering MSDP SA advertisements.



480 Chapter 4 � Multicast

Summary
This chapter provided various examples of JNCIE-level multicast configuration scenarios ranging 
from IGMP to interdomain multicast using MSDP.

Multicast configuration is not really that difficult to configure. What most candidates do find 
difficult is making sense of the dynamic state and ever-changing landscape that is a multicast 
network. The fact that multicast technologies are not deployed in a widespread manner also 
adds to the mystique and the general lack of understanding when it comes to how multicast pro-
tocols operate. The need for TS PICs in certain multicast environments can also hamper your 
ability to practice multicast configuration and troubleshooting in certain test beds and can lead 
to configuration mistakes in the JNCIE examination if the candidate does not design around the 
presence (or absence) of TS PICs.

A prepared JNCIE candidate will be ready to deploy multicast technology in scenarios similar 
to those demonstrated in this chapter.

Case Study: Multicast
The chapter case study is designed to simulate a JNCIE-level multicast configuration scenario. 
To keep things interesting, you will be adding your multicast configuration to the OSPF baseline 
configuration that was discovered and documented in the Chapter 1 case study. The OSPF 
baseline topology is shown in Figure 4.9 so you can reacquaint yourself with it.

Before starting the multicast case study, quickly verify the correct operation of the baseline 
network’s OSPF IGP, IS-IS route redistribution, and IBGP/EBGP peerings. Refer to previous 
case studies for suggestions on how to quickly verify the baseline network’s operation if needed. 
It is expected that a prepared JNCIE candidate will be able to complete this case study in 
approximately one hour with the resulting network meeting the majority of the specified behav-
iors and operational characteristics.

Configuration listings that identify the changes made to the baseline configurations of all five 
routers in the multicast test bed are provided at the end of the case study for comparison with 
your own configurations. To accommodate differing configuration approaches, various oper-
ational mode commands are included in the case study analysis to permit the comparison of 
your network to that of a known good example.

To complete the case study, you must configure your network to meet these criteria:
� Add your multicast configuration to the OSPF baseline network.
� Ensure that there is no single point of RP failure in your network.
� Deploy PIM version 1 with at least two candidate RPs for groups in the range of 224.0.0.0 

through 224.255.255.255.
� Prevent external sites from discovering your RPs.
� Ensure that traffic sent to group 224.1.1.1 is never sent to C1. This traffic must be delivered 

to MR1.



Case Study: Multicast 481

� Configure r4 to deliver traffic sent to 224.2.2.2 to C1 without having it join a shared tree. 
Note that C1 is not configured to run MSDP.

� Filter all joins and source active messages for the 224.8.8.8 group.

F I G U R E 4 . 9 OSPF discovery findings

You can assume that the T1 and C1 routers are correctly configured, and that you are not 
permitted to modify their configurations or log into them remotely.

Multicast Case Study Analysis

To save space, initial verification of the baseline network is not performed here. Refer to 
previous chapters for suggested baseline network verification techniques and expected displays; 
the OSPF baseline network is assumed to be operational. Each configuration requirement for the 

Area 1: Stub,
default route

Area 0

IS-IS Level 1
Area 0002

r2 r4

r7

r6

Data
Center

r5

r3
r1

Area 2:
NSSA, no

default route,
corrected

M5M5

M5M5

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

Loopback addresses have not been assigned to specific areas (lo0 address advertised in Router LSA in all areas).

Passive OSPF interfaces on P1 and data center segments.

No authentication or route summarization in effect; summaries (LSA type 3) allowed in all areas.

Data center router running IS-IS, Level 1. r6 and r7 compatibly configured and adjacent.

Redistribution of 192.168.0/24 through 192.168.3/24 into OSPF from IS-IS by both r6 and r7.

Adjustment to IS-IS level 1 external preference to ensure r6 and r7 always prefer IS-IS level 1 externals over
OSPF externals.

All adjacencies up and full reachability confirmed.

Sub-optimal routing detected at the data center router for some locations. This is the result of random nexthop
choice for its default route. Considered to be working as designed; no action taken.

Redistribution of OSPF default route to data center from both r6 and r7 was broken. Fixed with default-metric
command on r3, r4, and r5.

Notes:

M5M5

M5M5

OSPF
Passive

OSPF
Passive

OSPF
Passive

OSPF
Passive



482 Chapter 4 � Multicast

case study is matched to one or more valid router configurations and, where applicable, the com-
mands used to confirm that the network’s operation adheres to the case study’s restrictions and 
operational requirements. The case study analysis begins with the following multicast criteria:
� Ensure that there is no single point of RP failure in your network.
� Deploy PIM version 1 with at least two candidate RPs for groups in the range of 224.0.0.0 

through 224.255.255.255.

Based on the need to use PIM version 1, you know that the bootstrap protocol cannot be 
used and a static RP approach does not meet the stated redundancy requirements. Being one to 
take a hint, you decide to deploy an Auto-RP based topology as shown in Figure 4.10.

F I G U R E 4 . 1 0 Multicast case study design

The design shown in Figure 4.10 reflects the fact that TS PICs are installed in r1 through r4 
only, which makes r5 unable to function as an RP. Note that load balancing among your RPs 
is not a stated requirement. This means that you do not have to deploy Any-Cast (and the related 
MSDP session between your RPs) to meet the stipulations provided. Having two RP candidates, 

fe-0/0/0
M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

fe-0/0/3

fe-0/0/0 fe-0/0/1

Group
224.1.1.1

fe-0/0/1

fe-0/0/0

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

10.0.4.12/30

10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.200

.1 .14 .13

.13

.9

.1

.1
.5

.18

.2 .10 .910.0.4.8/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.5 172.16.0.4/30

.6 .10

.2
.5

r4
Loopbacks

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5

.6

so-0/2/0

M5M5

.1

.2

fe
-0

/0
/3

172.16.30/24

r5

AS 65222
130.130/16

T1

M5M5
r3

172.16.0.12/30

130.130.16/24
.2

.1.2

fe-0/0/2

Group
244.1.1.1

Group
244.2.2.2

AS 65010
200.200/16

C1
RPs =  r3 and r4 (range 224/8)
Mapping agents =  r4 and r5

Notes:
Group

244.2.2.2

M5M5

MS1

MR1

MS2

MR2



Case Study: Multicast 483

and at least two mapping agents, provides the RP redundancy required in this example. The 
changes made to r3 are shown next:

[edit protocols pim]

lab@r3# show

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    local {

        address 10.0.3.3;

        group-ranges {

            224.0.0.0/8;

        }

    }

    auto-rp announce;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

The configuration of r4 is similar to that shown for r3, with the exception of its local RP 
address and the use of the mapping keyword. The modifications made to r5 in support of the 
first two case study criteria are displayed next:

[edit protocols pim]

lab@r5# show

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    auto-rp mapping;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

}



484 Chapter 4 � Multicast

Proper PIM version and Auto-RP election are now verified at r5:

[edit protocols pim]

lab@r5# run show pim interfaces

Instance: PIM.master

Name                   Stat Mode       IP V State Count DR address

at-0/2/1.0             Up   SparseDense 4 1 P2P       1

fe-0/0/0.0             Up   SparseDense 4 1 DR        0 10.0.8.6

fe-0/0/1.0             Up   SparseDense 4 1 DR        0 10.0.8.9

lo0.0                  Up   SparseDense 4 1 DR        0 10.0.3.5

so-0/1/0.0             Up   SparseDense 4 1 P2P       1

[edit protocols pim]

lab@r5# run show pim neighbors

Instance: PIM.master

Interface           IP V Mode        Option      Uptime Neighbor addr

at-0/2/1.0           4 1 SparseDense           00:06:22 10.0.2.2

so-0/1/0.0           4 1 SparseDense           00:05:27 10.0.2.10

These displays confirm the correct PIM protocol version, the required sparse-dense mode of 
operation (as needed for Auto-RP), and that PIM neighbors have been detected. You move on 
to verify RP election results, again at r5:

[edit protocols pim]

lab@r5# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.4        auto-rp        150     104             0 224.0.0.0/8

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

Proper RP mapping is confirmed when r3 displays the same Auto-RP elected RP:

[edit protocols pim]

lab@r3# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.4        auto-rp        150     147             0 224.0.0.0/8

10.0.3.3        static           0    None             0 224.0.0.0/8



Case Study: Multicast 485

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

The correct group range of 224/8 (224.0.0.0 through 224.255.255.255) is also con-
firmed by the 224/8 entry in this display. To support the initial case study requirements, 
r1 has its OSPF baseline configuration modified as shown next; r2 has similar changes 
(not shown):

[edit]

lab@r1# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    auto-rp discovery;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

}

Proper RP election is now verified at r1:

[edit]

lab@r1# run show pim rps

Instance: PIM.master

Family: INET

RP address      Type      Holdtime Timeout Active groups Group prefixes

10.0.3.4        auto-rp        150      95             0 224.0.0.0/8

Family: INET6

RP address      Type      Holdtime Timeout Active groups Group prefixes

Though not shown, you can assume that r2 provides a similar display, and that it too 
displays 10.0.3.4 as an Auto-RP learned RP. With a basic PIM version 1 configuration in
all routers, and initial Auto-RP operation confirmed, you move on to these configuration 
criteria:
� Prevent external sites from discovering your RPs.
� Ensure that traffic sent to group 224.1.1.1 is never sent to C1. This traffic must be delivered 

to MR1.



486 Chapter 4 � Multicast

Because you need to configure multicast scoping to prevent other networks from learning 
about your RPs, you decide to also use scoping at r4 in support of the requirement that traffic 
for group 224.1.1.1 is not to be sent to customer C1. Note that trying to meet the stated behavior 
using a PIM join policy such as this one could result in point loss:

[edit policy-options]

lab@r4# show policy-statement pim-join

term 1 {

    from {

        route-filter 224.1.1.1/32 exact reject;

    }

}

This is because the pim-join policy will cause problems when it prevents internal and 
external ∗,G joins for the 224.1.1.1 group. In this example, you need the added granularity of 
scoping, which can be applied to individual interfaces, instead of the global effects that a PIM 
join policy brings to the table. The changes made to r4’s configuration are shown here with 
highlights added:

[edit]

lab@r4# show routing-options

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

multicast {

    scope auto-rp-announce {

        prefix 224.0.1.39/32;

        interface fe-0/0/0.0;

    }

    scope auto-rp-discover {

        prefix 224.0.1.40/32;

        interface fe-0/0/0.0;

    }

    scope block-224.1.1.1 {

        prefix 224.1.1.1/32;

        interface fe-0/0/0.0;

    }

}



Case Study: Multicast 487

In contrast, at r3 you need to scope only the Auto-RP related dense mode groups:

[edit routing-options multicast]

lab@r3# show

scope auto-rp-announce {

    prefix 224.0.1.39/32;

    interface fe-0/0/2.0;

}

scope auto-rp-discover {

    prefix 224.0.1.40/32;

    interface fe-0/0/2.0;

}

You have to limit your scope verification to the output of the show multicast scope 
command, given that you cannot access the T1 and C1 devices:

[edit routing-options multicast]

lab@r4# run show multicast scope

                                                 Resolve

Scope name           Group Prefix       Interface       Rejects

auto-rp-announce     224.0.1.39/32      fe-0/0/0.0           10

auto-rp-discover     224.0.1.40/32      fe-0/0/0.0           11

block-224.1.1.1      224.1.1.1/32       fe-0/0/0.0            0

local                239.255.0.0/16     fe-0/0/0.0            0

Note that both of the dense mode groups associated with Auto-RP related messages and the 
224.1.1.1 group address are shown to be correctly blocked by the scoping configuration at r4. 
The non-zero entries in the Resolve Rejects column indicate that packets have been received, 
for which a resolve request was sent to the multicast routing protocol in the RE. The multicast 
routing protocol handles the resolve request by computing the packet’s incoming and outgoing 
interface lists (IIL and OIL), and by analyzing the resulting OIL for scope settings that will 
prevent the transmission of the packet out that interface. The Resolve Request counter is incre-
mented for the affected interface when the multicast routing protocol determines that scoping 
should block the packet’s transmission on that interface. Note that this counter does not incre-
ment with the receipt of each such packet because the results of the resolve request are cached 
in the Packet Forwarding Engine (PFE) to cut back on resolution request traffic.

You can test the scope for 224.1.1.1 traffic by adding a static join on r4’s fe-0/0/0 interface 
when traffic is sent to this prefix by MS1:

[edit protocols igmp]

lab@r4# set interface fe-0/0/0 static group 224.1.1.1

[edit protocols igmp]

lab@r4# commit

commit complete



488 Chapter 4 � Multicast

[edit protocols igmp]

lab@r4# run show multicast scope

                                                 Resolve

Scope name           Group Prefix       Interface       Rejects

auto-rp-announce     224.0.1.39/32      fe-0/0/0.0           58

auto-rp-discover     224.0.1.40/32      fe-0/0/0.0           58

block-224.1.1.1      224.1.1.1/32       fe-0/0/0.0            9

local                239.255.0.0/16     fe-0/0/0.0            0

The non-zero count value confirms that packets addressed to group 224.1.1.1 are correctly 
blocked at r4’s fe-0/0/0 interface. Also note how the fe-0/0/0 interface is pruned as a result of 
scoping; this behavior means that the block-224.1.1.1 counter increments for only a brief 
period after each clearing of PIM joins at r4:

lab@r4# run show pim join detail 224.1.1.1

Instance: PIM.master Family: INET

Group: 224.1.1.1

    Source: *

    RP: 10.0.3.4

    Flags: sparse,rptree,wildcard

    Upstream interface: local

    Downstream interfaces:

        fe-0/0/0.0             (administratively scoped)

Group: 224.1.1.1

    Source: 10.0.5.200

    Flags: sparse,spt

    Upstream interface: fe-0/0/2.0

    Downstream interfaces:

Note the absence of downstream interfaces in the S,G join for the 224.1.1.1 group due to 
your administrative scoping. Be sure to remove the static join for 224.1.1.1 from r4 when 
satisfied with the operation of your scope settings. With scoping confirmed, you move on
to the following criteria; note that some aspects of the first requirements have already been 
accommodated:
� Ensure that traffic sent to group 224.1.1.1 is never sent to C1. This traffic must be delivered 

to MR1.
� Configure r4 to deliver traffic sent from 10.0.5.200 to group 224.2.2.2 to C1 without 

having it join a shared tree. Note that C1 is not configured to run MSDP.

The first criterion requires a static ∗,G join on r5’s fe-0/0/3 interface, and that you correctly 
establish a MSDP peering session to T1 from all candidate RPs. The wording of the second 
requirement might confuse candidates who are not familiar with the concept of source specific 
multicast (SSM). You do not need to configure IGMP version 3 on r4’s fe-0/0/0 interface to sup-
port a static S,G join, but version 3 is needed to support SSM joins from attached hosts through 
IGMP. Note that configuring version 3 on r4’s fe-0/0/0 interface causes no harm in this scenario.



Case Study: Multicast 489

The changes made to r5 are shown next:

[edit protocols igmp]

lab@r5# show

interface fe-0/0/3.0 {

    static {

        group 224.1.1.1;

    }

}

[edit]

lab@r5# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 172.16.30.2/24;

    }

}

Make sure to configure IP parameters on r5’s fe-0/0/3 interface, which was not used in the 
OSPF baseline topology. The changes made to r4 in support of static IGMP joins is displayed 
next; note the presence of a source address in the static join declaration for group 224.2.2.2:

[edit protocols igmp]

lab@r4# show

interface fe-0/0/0.0 {

    static {

        group 224.2.2.2 {

            source 10.0.5.200;

        }

    }

}

To confirm your static join configuration, view the PIM join at r4 and r5. You expect to see 
a ∗,G, and ultimately a S,G join at r5 for the 224.2.2.2 group, but you should see only a S,G 
join at r4 for the 224.2.2.2 group:

[edit protocols igmp]

lab@r4# run show pim join 224.2.2.2 detail

Instance: PIM.master Family: INET

Group: 224.2.2.2

    Source: 10.0.5.200

    Flags: sparse

    Upstream interface: fe-0/0/2.0

    Downstream interfaces:

        fe-0/0/0.0



490 Chapter 4 � Multicast

The S,G join is present at r4, as is the ∗,G entry at r5:

[edit]

lab@r5# run show pim join 224.1.1.1

Instance: PIM.master Family: INET

Group: 224.1.1.1

    Source: *

    RP: 10.0.3.4

    Flags: sparse,rptree,wildcard

    Upstream interface: so-0/1/0.0

With the static joins configured and confirmed, you need to configure MSDP peering at r3 
and r4 so that source active messages are received from T1 when MS1 is sending to group 
224.1.1.1. Note that you need to MSDP peer from r3 and r4 to T1, because either r3 or r4 can 
function as the RP for your multicast domain. You do not need to peer the two RPs with MSDP. 
Because you have not configured Any-Cast in this example, only one of the two RP candidates 
will be active for all groups in the 224/8 range at any given time. The changes made to r3 are 
displayed:

[edit]

lab@r3# show protocols msdp

group t1 {

    local-address 172.16.0.13;

    peer 172.16.0.14;

}

The MSDP configuration at r4 is similar to that shown for r3, excepting the use of loopback-
based peering addresses. The use of lo0 addressing is necessary at r4 in this case, because it does 
not have a route to the 172.16.0.12/30 peering subnet between r3 and the T1 router:

[edit]

lab@r4# show protocols msdp

group t1 {

    local-address 10.0.3.4;

    peer 130.130.0.1;

}

Proper MSDP session establishment is now verified at both r3 and r4, as is the receipt of 
source active messages for 130.130.16.2:

[edit]

lab@r3# run show msdp

Peer address    Local address   State       Last up/down Peer-Group

172.16.0.14     172.16.0.13     Established     00:00:25 t1

[edit]

lab@r3# run show msdp source-active



Case Study: Multicast 491

Group address   Source address  Peer address    Originator      Flags

224.1.1.1       130.130.16.2    172.16.0.14     130.130.0.1     Accept

The same commands are now issued at r4:

[edit]

lab@r4# run show msdp

Peer address    Local address   State       Last up/down Peer-Group

130.130.0.1     10.0.3.4        Established     00:00:05 t1

[edit]

lab@r4# run show msdp source-active

Group address   Source address  Peer address    Originator      Flags

224.1.1.1       130.130.16.2    130.130.0.1     130.130.0.1     Accept

224.2.2.2       10.0.5.200      local           10.0.3.4        Accept

With MSDP operational, and assuming that both multicast sources are actively sending, you 
expect to see S,G join state at r4 and r5, as well as indications that the multicast traffic is being 
forwarded out the correct interfaces.

[edit protocols igmp]

lab@r4# run show pim join 224.2.2.2 detail

Instance: PIM.master Family: INET

Group: 224.2.2.2

    Source: 10.0.5.200

    Flags: sparse

    Upstream interface: fe-0/0/2.0

    Downstream interfaces:

        fe-0/0/0.0

[edit protocols igmp]

lab@r4# run show multicast route source-prefix 10.0.5.200 extensive

Family: INET

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

224.2.2.2       10.0.5.200     /32 A   F  79    11323      1          360

    Upstream interface: fe-0/0/2.0

    Session name: Multimedia Conference Calls

    Forwarding rate: 5 kBps (16 pps)

[edit protocols igmp]

lab@r4# run show multicast next-hops 79

Family: INET

ID      Refcount  KRefcount Downstream interface

79             2          1 fe-0/0/0.0



492 Chapter 4 � Multicast

Family: INET6

[edit protocols igmp]

r4 has the expected S,G state, and the interface linking it to C1 is correctly listed as a down-
stream interface for the 224.2.2.2 group. Also of note is the 16-packet-per-second data rate and 
forwarding indication in the show multicast route display, because this provides good indi-
cation that traffic is correctly flowing from MS1 to C1. With forwarding confirmed at r4, the 
same commands are issued at r5 with attention focused on the 224.1.1.1 join and forwarding 
state:

[edit]

lab@r5# run show pim join 224.1.1.1 detail

Instance: PIM.master Family: INET

Group: 224.1.1.1

    Source: *

    RP: 10.0.3.4

    Flags: sparse,rptree,wildcard

    Upstream interface: so-0/1/0.0

    Downstream interfaces:

        fe-0/0/3.0

Group: 224.1.1.1

    Source: 130.130.16.2

    Flags: sparse,spt

    Upstream interface: at-0/2/1.0

    Downstream interfaces:

        fe-0/0/3.0

The join state shows both a shared tree and SPT join for the 224.1.1.1 group, as expected. 
Note that the S,G join list at-0/2/1 is the upstream interface, which is in keeping with its lying 
on the shortest path back to source MS2. At this time, r4 is the route of the shared tree, and this 
accounts for the ∗,G entry listing the so-0/1/0 interface as upstream.

[edit]

lab@r5# run show multicast route source-prefix 130.130.16.2 extensive

Family: INET

Group           Source prefix     Act Pru NHid  Packets    IfMismatch Timeout

224.1.1.1       130.130.16.2   /32 A   F  71    3191       1          360

    Upstream interface: at-0/2/1.0

    Session name: ST Multicast Groups

    Forwarding rate: 4 kBps (8 pps)



Case Study: Multicast 493

[edit]

lab@r5# run show multicast next-hops 71

Family: INET

ID      Refcount  KRefcount Downstream interface

71             2          1 fe-0/0/3.0

Family: INET6

The displays at r5 confirm that packets associated with the 224.1.1.1 group are being 
correctly forwarded to MR1 using r5’s fe-0/0/3 interface. With multicast forwarding confirmed, 
the last criterion to be addressed relates to your need to filter PIM join and MSDP SA messages:
� Filter all joins and SAs for the 224.8.8.8 group.

This task is designed to verify that you can control the source active and PIM joins that your 
RPs will accept. The following policy and configuration changes correctly configure r3 to block 
source active messages and PIM joins to the 224.8.8.8 group, regardless of their source:

[edit]

lab@r3# show policy-options policy-statement block-224.8.8.8

term 1 {

    from {

        route-filter 224.8.8.8/32 exact reject;

    }

}

[edit]

lab@r3# show protocols pim import

import block-224.8.8.8;

[edit]

lab@r3# show protocols msdp import

import block-224.8.8.8;

Note that the block-224.8.8.8 policy is applied globally to the MSDP instance in keeping 
with the requirement that all SA messages to 224.8.8.8 be blocked. It will be difficult to confirm 
the correct operation of MSDP unless you can access and configure the MS2 device so that it 
begins sending to the 224.8.8.8 group. To test local RP behavior, just add a static join to one 
of the routers:

[edit protocols igmp]

lab@r2# show

interface fe-0/0/0.0 {

    static {

        group 224.8.8.8;



494 Chapter 4 � Multicast

    }

}

[edit protocols igmp]

lab@r2# run show pim join 224.8.8.8 detail

Instance: PIM.master Family: INET

Group: 224.8.8.8

    Source: *

    RP: 10.0.3.4

    Flags: sparse,rptree,wildcard

    Upstream interface: fe-0/0/1.0

    Downstream interfaces:

        fe-0/0/0.0

Note that r2 has generated a ∗,G join toward the RP using its fe-0/0/1 interface. Correct join 
filtering is confirmed by the absence of a ∗,G join for the 224.8.8.8 group at the current RP, 
which is r4 in this case:

[edit]

lab@r4# run show pim join 224.8.8.8

Instance: PIM.master Family: INET

[edit]

lab@r4#

The lack of a ∗,G join at the RP provides a good indication that your block-224.8.8.8 
policy is correctly filtering joins. These results, combined with the previous confirmation steps, 
indicate that your network is operating within the confines of all case study criteria provided. 
Congratulations!

Multicast Case Study Configurations

The changes made to the OSPF baseline network topology to support the multicast case study 
are listed next for all routers in the multicast test bed with highlights added as needed to call out 
changes to existing configuration stanzas (see Listings 4.1 to 4.5).

Listing 4.1: Multicast Case Study Configuration for r1

[edit]

lab@r1# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {



Case Study: Multicast 495

    auto-rp discovery;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

Listing 4.2: Multicast Case Study Configuration for r2

[edit]

lab@r2# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    auto-rp discovery;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

}

Listing 4.3: Multicast Case Study Configuration for r3

[edit]

lab@r3# show routing-options

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

multicast {

    scope auto-rp-announce {



496 Chapter 4 � Multicast

        prefix 224.0.1.39/32;

        interface fe-0/0/2.0;

    }

    scope auto-rp-discover {

        prefix 224.0.1.40/32;

        interface fe-0/0/2.0;

    }

}

[edit]

lab@r3# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

import block-224.8.8.8;

rp {

    local {

        address 10.0.3.3;

        group-ranges {

            224.0.0.0/8;

        }

    }

    auto-rp announce;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

}

[edit]

lab@r3# show protocols msdp

group t1 {

    import block-224.8.8.8;

    local-address 172.16.0.13;

    peer 172.16.0.14;

}

[edit]



Case Study: Multicast 497

lab@r3# show policy-options policy-statement block-224.8.8.8

term 1 {

    from {

        route-filter 224.8.8.8/32 exact reject;

    }

}

Listing 4.4: Multicast Case Study Configuration for r4

[edit]

lab@r4# show routing-options

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

multicast {

    scope auto-rp-announce {

        prefix 224.0.1.39/32;

        interface fe-0/0/0.0;

    }

    scope auto-rp-discover {

        prefix 224.0.1.40/32;

        interface fe-0/0/0.0;

    }

    scope block-224.1.1.1 {

        prefix 224.1.1.1/32;

        interface fe-0/0/0.0;

    }

}

[edit]

lab@r4# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

import block-224.8.8.8;

rp {



498 Chapter 4 � Multicast

    local {

        address 10.0.3.4;

        group-ranges {

            224.0.0.0/8;

        }

    }

    auto-rp mapping;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

}

[edit]

lab@r4# show protocols msdp

group t1 {

    import block-224.8.8.8;

    local-address 10.0.3.4;

    peer 130.130.0.1;

}

[edit]

lab@r4# show protocols igmp

interface fe-0/0/0.0 {

    version 3;

    static {

        group 224.2.2.2 {

            source 10.0.5.200;

        }

    }

}

[edit]

lab@r4# show policy-options policy-statement block-224.8.8.8

term 1 {

    from {

        route-filter 224.8.8.8/32 exact reject;

    }

}



Case Study: Multicast 499

Listing 4.5: Multicast Case Study Configuration for r5

[edit]

lab@r5# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 172.16.30.2/24;

    }

}

[edit]

lab@r5# show protocols pim

dense-groups {

    224.0.1.39/32;

    224.0.1.40/32;

}

rp {

    auto-rp mapping;

}

interface all {

    mode sparse-dense;

    version 1;

}

interface fxp0.0 {

    disable;

}

[edit]

lab@r5# show protocols igmp

interface fe-0/0/3.0 {

    static {

        group 224.1.1.1;

    }

}

r6 was not part of the multicast test bed. No changes were made to its configuration as part 
of the chapter’s case study.

r7 was not part of the multicast test bed. No changes were made to its configuration as part 
of the chapter’s case study.



500 Chapter 4 � Multicast

Spot the Issues: Review Questions
1. Is this a valid configuration for r4 according to the case study requirements?

  [edit protocols]
 lab@r4# show pim

 dense-groups {

     224.0.1.39/32;

     224.0.1.40/32;

 }

 rp {

     local {

         address 10.0.3.4;

         group-ranges {

             224.0.0.0/3;

         }

     }

     auto-rp mapping;

 }

 interface all {

     mode sparse-dense;

     version 1;

 }

 interface fxp0.0 {

     disable;

 }

2. Interdomain multicast is not working in the case study topology. Can you locate the problem in 
r3’s configuration?

 [edit protocols pim]

 lab@r3# show

 dense-groups {

     224.0.1.39/32;

     224.0.1.40/32;

 }

 import block-224.8.8.8;

 rp {

     local {

         address 10.0.3.3;



Spot the Issues: Review Questions 501

         group-ranges {

             224.0.0.0/8;

         }

     }

     auto-rp announce;

 }

 interface fxp0.0 {

     disable;

 }

 interface fe-0/0/0.0 {

     mode sparse-dense;

     version 1;

 }

 interface fe-0/0/1.0 {

     mode sparse-dense;

     version 1;

 }

 interface so-0/2/0.100 {

     mode sparse-dense;

     version 1;

 }

 interface at-0/1/0.0 {

     mode sparse-dense;

     version 1;

 }

 interface lo0.0 {

     mode sparse-dense;

     version 1;

 }

3. Why is the bootstrap protocol not working between r2 and r4?

 [edit]

 lab@r2# show protocols pim

 interface all {

     mode sparse;

     version 1;

 }

 interface fxp0.0 {

     disable;

 }



502 Chapter 4 � Multicast

 [edit]

 lab@r4# show protocols pim

 rp {

     bootstrap-priority 10;

     local {

         address 10.0.3.4;

     }

 }

 interface all {

     mode sparse;

     version 1;

 }

 interface fxp0.0 {

     disable;

 }

4. r3 is filtering all SA messages with the case study–based MSDP configuration shown here. Can 
you spot the issue?

 [edit]

 lab@r3# show protocols msdp

 import block-224.8.8.8;

 group t1 {

     local-address 172.16.0.13;

     peer 172.16.0.14;

 }

 [edit]

 lab@r3# show policy-options policy-statement block-224.8.8.8

 term 1 {

     from {

         route-filter 224.8.8.8/32 exact;

     }

 }

 then reject;

5. DVMRP is not working correctly at r5 in the topology shown earlier in Figure 4.2. Can you spot 
the problem?

 [edit]

 lab@r5# show routing-options

 static {

     route 10.0.200.0/24 {



Spot the Issues: Review Questions 503

         next-hop 10.0.1.102;

         no-readvertise;

     }

 }

 rib-groups {

     dvmrp-rg {

         export-rib inet.2;

         import-rib inet.2;

     }

 }

 autonomous-system 65412;

 [edit]

 lab@r5# show protocols dvmrp

 rib-group dvmrp-rg;

 interface all {

     hold-time 40;

 }

 interface fxp0.0 {

     disable;

 }

6. With r4 shut down, r3 has been elected the RP in the topology shown earlier in Figure 4.6. How-
ever, r1 never shows a S,G join for source 10.0.5.200 and group 224.1.1.1, and the multicast 
traffic is not being delivered to MR1. Can you spot the problem based on this display?

 lab@r3> show interfaces terse

 Interface               Admin Link Proto Local                 Remote

 fe-0/0/0                up    up

 fe-0/0/0.0              up    up   inet  10.0.4.13/30

 fe-0/0/1                up    up

 fe-0/0/1.0              up    up   inet  10.0.4.1/30

 fe-0/0/2                up    up

 fe-0/0/2.0              up    up   inet  172.16.0.13/30

 fe-0/0/3                up    down

 fe-0/0/3.0              up    down inet  10.0.2.14/30

 at-0/1/0                up    up

 at-0/1/0.0              up    up   inet  10.0.2.2/30

 at-0/1/1                up    down

 so-0/2/0                up    up

 so-0/2/0.100            up    up   inet  10.0.2.5/30

 so-0/2/1                up    down



504 Chapter 4 � Multicast

 so-0/2/2                up    down

 so-0/2/3                up    down

 dsc                     up    up

 fxp0                    up    up

 fxp0.0                  up    up   inet  10.0.1.3/24

 fxp1                    up    up

 fxp1.0                  up    up   tnp   4

 gre                     up    up

 ipip                    up    up

 lo0                     up    up

 lo0.0                   up    up   inet  10.0.3.3            --> 0/0

 lsi                     up    up

 mtun                    up    up

 pimd                    up    up

 pime                    up    up

 tap                     up    up



Spot the Issues: Answers to Review Questions 505

Spot the Issues: Answers to Review 
Questions
1. No. The problem with r4’s configuration relates to the incorrect specification of the class D 

group range as 224/3 instead of 224/4. Although this configuration commits, other routers will not 
install r4 as an RP with this group range setting. Note that omitting the group-range statement 
results in a default of 224/4.

2. The problem relates to the lack of PIM support on r3’s fe-0/0/2 interface. Although r3 will 
receive MSDP SAs with this configuration, it will be unable to forward S,G joins to T1, and this 
prevents the flow of multicast from MS2.

3. The bootstrap protocol requires PIM version 2. Both r2 and r3 are set for version 1. Note that 
with this configuration, r4 elects itself the BSR and displays itself as a bootstrap-learned RP; the 
problem is that other routers in the test bed do not share r4’s view.

4. The issue with this configuration lies in the block-224.8.8.8 policy, and the fact that the 
reject action was not added as part of term 1. As written, the reject action is considered a 
final (unnamed) term that matches on all SA messages due to the lack of explicit match criteria 
in the final term. A corrected policy is shown here:

  [edit]
 lab@r3# show policy-options policy-statement block-224.8.8.8

 term 1 {

     from {

         route-filter 224.8.8.8/32 exact;

     }

     then reject;

 }

5. The problem in this example is a lack of interface RIB group definition under the routing-
options stanza, which prevents the installation of interface routes in the inet.2 table. 
The presence of interface routes is necessary in inet.2 to accommodate RPF checks, as 
shown next:

  [edit]
 lab@r5# run show multicast rpf 10.0.2.0/30

 Multicast RPF table: inet.2, 11 entries

 [edit]

 lab@r5#



506 Chapter 4 � Multicast

To correct the problem, create an interface RIB group as shown here:

  [edit]
 lab@r5# show routing-options

 interface-routes {

     rib-group inet interface-rib;

 }

 static {

     route 10.0.200.0/24 {

         next-hop 10.0.1.102;

         no-readvertise;

     }

 }

 rib-groups {

     interface-rib {

         import-rib [ inet.0 inet.2 ];

     }

     dvmrp-rg {

         export-rib inet.2;

         import-rib inet.2;

     }

 }

 autonomous-system 65412;

With interface routes in the inet.2 table, RPF checks will succeed.

  [edit]
 lab@r5# run show multicast rpf 10.0.2.0/30

 Multicast RPF table: inet.2, 21 entries

 10.0.2.0/30

     Protocol: Direct

     Interface: at-0/2/1.0

 10.0.2.1/32

     Protocol: Local



Spot the Issues: Answers to Review Questions 507

6. In this case, the problem is a lack of Tunnel Services PIC hardware at r3. Although r3 displays 
a pimd and pime interface, the lack of TS PIC hardware means that r3 cannot back up these 
virtual interfaces. Without the TS PIC, r3 cannot perform register message de-encapsulation, so r5 
never receives traffic on the shared tree, and therefore r5 never initiates a S,G join back to the 
source. After re-installing the TS PIC in r3, the presence of a PIM de-encapsulation interface 
is confirmed.  

  lab@r3> show interfaces terse
 Interface               Admin Link Proto Local            Remote

 fe-0/0/0                up    up

 . . .

 mt-0/3/0                up    up

 pd-0/3/0                up    up

 pd-0/3/0.32768          up    up   inet

 pe-0/3/0                up    up

 . . .

 tap                     up    up





 

Chapter

 

5

 

IPv6

 

JNCIE LAB SKILLS COVERED IN THIS 
CHAPTER:

�

 

IPv6 Addressing and Neighbor Discovery

�

 

IPv6 IGP support

�

 

RIPng, OSPF3, and IS-IS

�

 

IPv6 BGP Support

�

 

EBGP
�

 

IBGP

�

 

Tunneling IPv6



 

This chapter exposes the reader to a variety of JNCIE-level 
configuration scenarios designed to test the candidate’s under-
standing of IPv6 support in JUNOS software release 5.6. It is 

assumed that the reader already possesses a working knowledge of IPv6 protocols to the extent 
covered in the 

 

JNCIS Study Guide

 

 (Sybex, 2003).
Juniper Networks routing platforms running JUNOS software release 5.6 or later support a 

number of IPv6 protocols and standards, including automatic address configuration (as described 
in RFC 2462), neighbor discovery, Multicast Listener Discovery (MLD), Routing Information 
Protocol-Next Generation (RIPng), OSPF version 3 (OSPF3), native EBGP peering using 
Multiprotocol BGP (MBGP), and support for IPv6 over IPv4 tunnels. JUNOS software also 
supports the IS-IS extensions needed to accommodate IPv6 routing.

As with previous chapters, examples of key operational mode command output is provided 
to allow the comparison of your network’s operation to that of a known good example. Examples 
of baseline configuration modifications that are known to meet all case study requirements are 
provided at the end of the case study for all routers in the IPv6 test bed.

The configuration scenarios demonstrated in the chapter body are based on the OSPF baseline 
configuration as discovered in the body of Chapter 1, “Network Discovery and Verification.” 
If you are unsure as to the state of your test bed, you should take a few moments to load up and 
confirm the operation of the OSPF IGP discovery configuration before proceeding. Figure 5.1 
reviews the OSPF IGP baseline topology.

Note that some of the routers in the JNCIE test bed are not brought into play during the 
course of this chapter. In many cases, a JNCIE candidate is expected to configure a given 
functionality on a subset of routers in an effort to save time while the candidate still has to 
demonstrate the desired skill set.

 

IPv6 Addressing and Router 
Advertisements

 

One of the main motivations for deploying IPv6 is its expanded addressing capabilities (128 bits 
versus 32), which alleviates concerns about the diminishing IPv4 address space while also reducing 
the need for Network Address/Port Address Translation (NAT/PAT) devices. IPv6 supports 
unicast, multicast, and AnyCast addressing. AnyCast addresses allow a packet to be routed to 
the nearest member of an AnyCast group. AnyCast addresses can not be distinguished from 
conventional unicast addresses without explicit AnyCast group configuration; AnyCast group 
membership is not supported in JUNOS software as of release 5.6.



 

IPv6 Addressing and Router Advertisements

 

511

 

F I G U R E 5 . 1

 

Summary of OSPF IGP discovery

 

Unicast and multicast addresses support scoping, which limits the effective range of the 
corresponding address. For example, a unicast address can be considered to have a global, 
site-local, or link-local scope; the scope of an IPv6 address is determined by the coding of the 
Format Prefix (FP), which is the first 10 bits in the address. A global address has a worldwide 
scope while a link-local address can be used only on a particular link. A site-local address is 
analogous to the use of private addressing (RFC 1918), in that the address is significant only 
within a particular site. Note that multicast addresses support 16 scoping levels, and that broadcast 
is facilitated through multicast addressing.

JUNOS software automatically creates a link-local address for any interface that is enabled 
for IPv6 operation. One or more global or site-local addresses can also be assigned to each IPv6 
interface as needed. Note that explicitly assigning an IPv6 address does not negate the automatic 
generation of a link-local address. When assigning a unicast address, you can specify all 128 bits 
manually, or you can have the router automatically compute a 64-bit identifier portion using 
the IEEE’s Extended Unique Identifier (EUI-64) format. Note that RFC 2373, “IP Version 6 

Area 1: Stub,
default route

Area 0

IS-IS Level 1
Area 0002

r2 r4

r7

r6

Data
Center

r5

r3
r1

Area 2:
NSSA, no

default route,
corrected

M5M5

M5M5

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

Loopback addresses have not been assigned to specific areas (lo0 address advertised in Router LSA in all areas).

Passive OSPF interfaces on P1 and data center segments.

No authentication or route summarization in effect; summaries (LSA type 3) allowed in all areas.

Data center router running IS-IS, Level 1. r6 and r7 compatibly configured and adjacent.

Redistribution of 192.168.0/24 through 192.168.3/24 into OSPF from IS-IS by both r6 and r7.

Adjustment to IS-IS level 1 external preference to ensure r6 and r7 always prefer IS-IS level 1 externals over
OSPF externals.

All adjacencies up and full reachability confirmed.

Sub-optimal routing detected at the data center router for some locations. This is the result of random nexthop
choice for its default route. Considered to be working as designed; no action taken.

Redistribution of OSPF default route to data center from both r6 and r7 was broken. Fixed with default-metric
command on r3, r4, and r5.

Notes:

M5M5

M5M5

OSPF
Passive

OSPF
Passive

OSPF
Passive

OSPF
Passive



 

512

 

Chapter 5 �

 

IPv6

 

Addressing Architecture,” states that all IPv6 unicast addresses beginning with a Format Prefix 
of 001 through 111 are required to have a 64-bit interface identifier in EUI-64 format. This 
requirement explains why operators often configure their routers to automatically compute 
their 64-bit interface identifiers with the 

 

eui-64

 

 keyword, as demonstrated later in this chapter. 
You can not use EUI-64 on loopback interfaces because M-series and T-series routers require 
that a 128-bit prefix be assigned to the loopback interface.

The IPv6 loopback address is 0:0:0:0:0:0:0:1. The IPv6 loopback address functions identically 
to the 127.0.0.1 address used in IPv4 and is not always required. Note that the IPv6 loopback 
address can be represented as 

 

::1

 

 using standard IPv6 address notation.
The IPv6 neighbor discovery protocol provides IPv6 with the functionality associated with 

IPv4’s ARP, ICMP redirect, and router discovery protocols; the ability to detect duplicate addresses 
is important when considering that IPv6 devices often deploy some type of address auto-
configuration. Neighbor solicitation messages, which are used for IPv6 ARP and duplicate address 
detection, are enabled by default in the release 5.6 JUNOS software used to develop this book. You 
must specifically configure the router to generate router advertisement messages to communicate 
various parameters and timers to attached hosts when needed, however. Router advertisement mes-
sages are used to communicate parameters to attached hosts to assist them in auto-configuration.

You should verify the operation of the OSPF baseline network in accordance with the steps 
outlined in previous chapters, being sure that you confine your activities to the subset of routers 
that make up the IPv6 test bed. Because 

 

r6

 

, 

 

r7

 

, and the EBGP peers are currently not involved in 
the IPv6 test bed, you can expect to see a few active BGP sessions and some missing OSPF routes.

After confirmation of the OSPF baseline network as complete, your IPv6 configuration 
scenario begins with the following configuration requirements:
�

 

Configure IPv6 addressing according to Figure 5.2.
�

 

Configure 

 

r1

 

 and 

 

r2

 

 so that IPv6 hosts attached to the FEC0:0:5:0::/64 subnet can
auto-configure a site-local address.

 

F I G U R E 5 . 2

 

IPv6 topology and addressing

so
-0/

1/1

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

FE
C0

:0
:5

:0
::/

64

FE
C0

:0
:4

:4
::/

64

fe-0/0/3

fe-0/0/0
FEC0:0:4:12::/64

so
-0/

1/0

FE
C0:0

:2:
8::

/64

at-0/1/0
FEC0:0:2:0::/64

at-0/2/1

FEC0:0:4:8::/64

FEC0:0:4:16::/64

fe-
0/0

/1

fe-
0/0

/2 FE
C0

:0:
4:0

::/6
4

fe-0/0/2

r4

so-0/2/0
FEC0:0:2:4::/64 so-0/1/0

M5M5
r5

Loopbacks

r1 = FEC0:0:0:6::1/128
r2 = FEC0:0:0:6::2/128
r3 = FEC0:0:0:3::3/128
r4 = FEC0:0:0:3::4/128
r5 = FEC0:0:0:3::5/128



 

IPv6 Addressing and Router Advertisements

 

513

 

Figure 5.2 provides the additional details you need to complete the IPv6 addressing and 
neighbor discovery scenario. Note that the IPv6 addressing plan is designed to produce IPv6 
addresses that are “similar” to the existing IPv4 addressing in the test bed. The initial addressing 
plan does not involve IPv4-compatible IPv6 addressing, however.

 

Assigning IPv6 Addresses

 

You begin IPv6 address assignment at 

 

r5

 

 by configuring its loopback interface with support for 
the 

 

inet6

 

 family using the address shown in Figure 5.2:

 

[edit interfaces lo0 unit 0]

lab@r5# 

 

set family inet6 address fec0:0:0:3::5/128

 

IPv6 addressing is now added to 

 

r5

 

’s ATM and POS interfaces:

 

[edit interfaces]

lab@r5# 

 

edit so-0/1/0 unit 0

 

[edit interfaces so-0/1/0 unit 0]

lab@r5# 

 

set family inet6 address fec0:0:2:8::/64 eui-64

 

[edit interfaces so-0/1/0 unit 0]

lab@r5# 

 

up 2

 

[edit interfaces]

lab@r5# 

 

edit at-0/2/1 unit 0

 

[edit interfaces at-0/2/1 unit 0]

lab@r5# 

 

set family inet6 address fec0:0:2:0::/64 eui-64

 

The 

 

eui-64

 

 keyword instructs the router to automatically compute the 64-bit interface 
identifier portion for these interfaces. The requirements posed in this example do not mandate 
the use of EUI-64 addresses such that manual assignment of the full 128-bit address is also 
possible. One drawback to using EUI-64 addressing is that you need to know the interface’s 
48-bit identifier in order to know what address will be computed. In many cases, the operator 
displays the computed address (using an Out of Band management network in some cases) so 
that it can be copied into a capture buffer for subsequent use in ping and traceroute commands; 
a manually assigned address can adhere to a locally administered scheme that allows 

 

a priori

 

 
determination of what address is in effect on any given interface.

The configuration changes are displayed:

 

[edit]

lab@r5# 

 

show interfaces so-0/1/0

 

 

encapsulation ppp;

unit 0 {



 

514

 

Chapter 5 �

 

IPv6

 

    family inet {

        address 10.0.2.9/30;

    }

    family inet6 {

        address fec0:0:2:8::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r5# 

 

show interfaces at-0/2/1

 

atm-options {

    vpi 0 {

        maximum-vcs 64;

    }

}

unit 0 {

    point-to-point;

    vci 50;

    family inet {

        address 10.0.2.1/30;

    }

    family inet6 {

        address fec0:0:2:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r5# 

 

show interfaces lo0

 

unit 0 {

    family inet {

        address 10.0.3.5/32;

    }

    family inet6 {

        address fec0:0:0:3::5/128;

    }

}



 

IPv6 Addressing and Router Advertisements

 

515

 

Be sure that you assign the IPv6 addressing shown earlier in Figure 5.2 to the remaining 
routers in the IPv6 test bed before proceeding to the verification section. Do not forget to 
commit your changes!

 

Configuring Router Advertisements

 

Although IPv6 router advertisements are not difficult to configure in JUNOS software, 
the wording of your objective intentionally omits the words “router advertisement” to 
verify that the candidate is familiar with the functions performed by router advertisement 
messages as defined by RFC 2461, “Neighbor Discovery for IP Version 6 (IPv6).”
By default, router advertisement messages are disabled on M-series and T-series routers. 
Router advertisements are configured at the 

 

[edit

 

 

 

protocols

 

 

 

router-advertisement]

 

 
hierarchy.

To meet the behavior specified in this example, you need to configure 

 

r1

 

 and 

 

r2

 

 to generate 
messages that advertise the FEC0:0:5:0::/64 prefix as usable for stateless address configuration 
(based on EUI-64). Note that the router only advertises a prefix out a particular interface when 
it matches a subnet that is assigned to that interface. The following command configures 

 

r1

 

 for 
the required behavior:

 

[edit protocols router-advertisement]

lab@r1# 

 

set interface fe-0/0/0 prefix fec0:0:5:0::/64

 

By default, the autonomous-configuration and on-link flags are set as needed for auto-
configuration of an IPv6 address, as is required by this scenario. If desired, you can explicitly 
list the 

 

on-link

 

 and 

 

autonomous

 

 arguments, or their opposites (

 

no-on-link

 

, 

 

no-autonomous

 

), 
when you define a prefix for inclusion in router advertisement messages. The configuration 
changes are displayed at 

 

r1

 

:

 

[edit protocols router-advertisement]

lab@r1# 

 

show

 

interface fe-0/0/0.0 {

    prefix fec0:0:5:0::/64;

}

 

Note that a similar configuration is required at 

 

r2

 

. Make sure that you commit all changes 
before proceeding to the next section.

 

Verifying IPv6 Addressing

 

IPv6 address verification proceeds as with IPv4 addressing. You begin by displaying the assigned 
addresses to confirm the correct association of IPv6 address to physical interfaces and logical 
units. The following display confirms that 

 

r4

 

 has been correctly configured according to the 
information shown earlier in Figure 5.2:

 

[edit interfaces]

lab@r4# 

 

run show interfaces terse

 

 



 

516

 

Chapter 5 �

 

IPv6

 

Interface               Admin Link Proto Local                 Remote

fe-0/0/0                up    down

fe-0/0/0.0              up    down inet  172.16.0.5/30

fe-0/0/1                up    up

fe-0/0/1.0              up    up   inet  10.0.4.9/30     

                                   inet6 fe80::290:69ff:fe6b:3001/64

                                         fec0:0:4:8:290:69ff:fe6b:3001/64

fe-0/0/2                up    up

fe-0/0/2.0              up    up   inet  10.0.4.17/30

                                   inet6 fe80::290:69ff:fe6b:3002/64

                                         fec0:0:4:16:290:69ff:fe6b:3002/64

fe-0/0/3                up    down

fe-0/0/3.0              up    down inet  10.0.2.18/30

so-0/1/0                up    up

so-0/1/0.100            up    up   inet  10.0.2.6/30

                                   inet6 fe80::2a0:a5ff:fe28:d36/64

                                         fec0:0:2:4:2a0:a5ff:fe28:d36/64

so-0/1/1                up    up

so-0/1/1.0              up    up   inet  10.0.2.10/30

                                   inet6 fe80::2a0:a5ff:fe28:d36/64

                                         fec0:0:2:8:2a0:a5ff:fe28:d36/64

so-0/1/2                up    up

so-0/1/3                up    down

gr-0/3/0                up    up

. . .

dsc                     up    up

fxp0                    up    up

fxp0.0                  up    up   inet  10.0.1.4/24 

fxp1                    up    up

fxp1.0                  up    up   tnp   4

gre                     up    up

ipip                    up    up

lo0                     up    up

lo0.0                   up    up   inet  10.0.3.4            --> 0/0

                                   inet6 fe80::2a0:a5ff:fe28:d36

                                         fec0:0:0:3::4

lsi                     up    up

. . .

 

Note that link-local addresses have automatically been added to all interfaces enabled for 
IPv6. A link-local address is associated with a FP of 0xFE8 and the resulting address always 
begins with a fe80::/64 prefix. In the case of the link-local addressing, the 64-bit interface identifier 



 

IPv6 Addressing and Router Advertisements 517

is coded according to the EUI-64 specification. For point-to-point interfaces, the router 
“borrows” a 48-bit MAC address from its fxp0 interface, as shown next:

[edit interfaces]

lab@r4# run show interfaces fxp0 | match Hardware

  Current address: 00:a0:a5:28:0d:36, Hardware address: 00:a0:a5:28:0d:36

It is interesting to note that even though the same fxp0 derived 48-bit MAC address is used 
for all point-to-point interfaces on the router, the Universal/Local (U/L) bit is set to a 1 to 
indicate a global interface identifier. The net result is that r4 assigns identical link-local 
addresses to each of its point-to-point interfaces, which is not a problem due to their link-local 
nature:

[edit interfaces]

lab@r4# run show interfaces so-0/1/0 terse

Interface               Admin Link Proto Local                 Remote

so-0/1/0                up    up  

so-0/1/0.100            up    up   inet  10.0.2.6/30     

                                   inet6 fe80::2a0:a5ff:fe28:d36/64

                                         fec0:0:2:4:2a0:a5ff:fe28:d36/64

[edit interfaces]

lab@r4# run show interfaces so-0/1/1 terse

Interface               Admin Link Proto Local                 Remote

so-0/1/1                up    up  

so-0/1/1.0              up    up   inet  10.0.2.10/30    

                                   inet6 fe80::2a0:a5ff:fe28:d36/64

                                         fec0:0:2:8:2a0:a5ff:fe28:d36/64

After visually confirming the addressing at the remaining routers, you conduct IPv6 ping 
testing to ensure that no mistakes have been made, and to verify that each pair of routers share 
a common IPv6 subnet. Note that the lack of an IPv6-capable IGP limits your ping testing to the 
link-local and site-local addressing associated with directly connected neighbors. The use of 
EUI-64 based addressing means that you need to determine the remote interface’s IPv6 address 
before you can correctly target your pings.

In this example, the IPv6 addressing associated with r3’s ATM interface is displayed so that 
the desired address can be copied into the terminal emulation program’s capture buffer for easy 
recall when ping testing is subsequently performed at r5:

[edit interfaces]

lab@r3# run show interfaces at-0/1/0 terse

Interface               Admin Link Proto Local                 Remote

at-0/1/0                up    up  

at-0/1/0.0              up    up   inet  10.0.2.2/30     

                                   inet6 fe80::2a0:a5ff:fe3d:234/64

                                         fec0:0:2:0:2a0:a5ff:fe3d:234/64



518 Chapter 5 � IPv6

Once in the capture buffer, the desired address is easily recalled at r5 for ping testing of the 
ATM link:

[edit interfaces]

lab@r5# run ping fec0:0:2:0:2a0:a5ff:fe3d:234 count 2

PING6(56=40+8+8 bytes) fec0:0:2:0:2a0:a5ff:fe28:116e -->
   fec0:0:2:0:2a0:a5ff:fe3d:234

16 bytes from fec0:0:2:0:2a0:a5ff:fe3d:234, icmp_seq=0 hlim=64 time=1.293 ms

16 bytes from fec0:0:2:0:2a0:a5ff:fe3d:234, icmp_seq=1 hlim=64 time=1.644 ms

--- fec0:0:2:0:2a0:a5ff:fe3d:234 ping6 statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 1.293/1.468/1.644 ms

The ping test succeeds, and thereby confirms that r3 and r4 have been assigned compatible 
IPv6 addressing, at least as far as the ATM link is concerned. You must include the interface 
switch when attempting to ping the link-local address associated with the remote end of a point-
to-point link. This is because there is no Layer 3–to–Layer 2 address mapping functionality 
(ARP) on point-to-point links, which results in the need to identify the correct egress interface 
as shown next:

[edit]

lab@r5# run ping fe80::2a0:a5ff:fe3d:234 count 1

PING6(56=40+8+8 bytes) fe80::2a0:a5ff:fe28:116e --> fe80::2a0:a5ff:fe3d:234

--- fe80::2a0:a5ff:fe3d:234 ping6 statistics ---

1 packets transmitted, 0 packets received, 100% packet loss

The ping to r3’s link-local address (fe80::2a0:a5ff:fe3d:234) from r5 fails because r5 is not 
able to associate the target address with the correct egress interface. Using the interface switch 
resolves the issue:

[edit]

lab@r5# run ping fe80::2a0:a5ff:fe3d:234 count 1 interface at-0/2/1

PING6(56=40+8+8 bytes) fe80::2a0:a5ff:fe28:116e --> fe80::2a0:a5ff:fe3d:234

16 bytes from fe80::2a0:a5ff:fe3d:234, icmp_seq=0 hlim=64 time=1.399 ms

--- fe80::2a0:a5ff:fe3d:234 ping6 statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 1.399/1.399/1.399 ms

The address resolution function associated with broadcast interfaces negates the need for the 
interface switch when testing Ethernet interfaces. To confirm this behavior, you determine 
the link-local address associated with r1’s fe-0/0/1 interface:

[edit protocols router-advertisement]

lab@r1# run show interfaces fe-0/0/1 terse



IPv6 Addressing and Router Advertisements 519

Interface               Admin Link Proto Local                 Remote

fe-0/0/1                up    up  

fe-0/0/1.0              up    up   inet  10.0.4.14/30

                                   inet6 fe80::2a0:c9ff:fe6f:7b3e/64

                                         fec0:0:4:12:2a0:c9ff:fe6f:7b3e/64

Note that pings initiated at r3 that are targeted at the link-local address assigned to r1’s 
fe-0/0/1 interface succeed without use of the interface switch:

[edit]

lab@r3# run ping fe80::2a0:c9ff:fe6f:7b3e count 1

PING6(56=40+8+8 bytes) fe80::290:69ff:fe6d:9800 --> fe80::2a0:c9ff:fe6f:7b3e

16 bytes from fe80::2a0:c9ff:fe6f:7b3e, icmp_seq=0 hlim=64 time=0.569 ms

--- fe80::2a0:c9ff:fe6f:7b3e ping6 statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.569/0.569/0.569 ms

The IPv6 address resolution cache at r3 is found to contain an entry for the link-local address 
of r1’s fe-0/0/1 interface as a result of the IPv6 ping traffic:

[edit]

lab@r3# run show ipv6 neighbors

IPv6 Address                 Linklayer Address  State       Exp Rtr Interface

fe80::2a0:c9ff:fe6f:7b3e     00:a0:c9:6f:7b:3e  reachable   28  yes fe-0/0/0.0

After generating pings to the site-local address of r1’s fe-0/0/1 interface, the IPv6 neighbor 
cache is also found to contain an entry for r1’s site-local addressing:

[edit]

lab@r3# run ping fec0:0:4:12:2a0:c9ff:fe6f:7b3e count 1

PING6(56=40+8+8 bytes) fec0:0:4:12:290:69ff:fe6d:9800 -->
   fec0:0:4:12:2a0:c9ff:fe6f:7b3e

16 bytes from fec0:0:4:12:2a0:c9ff:fe6f:7b3e, icmp_seq=0 hlim=64 time=0.583 ms

--- fec0:0:4:12:2a0:c9ff:fe6f:7b3e ping6 statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.583/0.583/0.583 ms

[edit]

lab@r3# run show ipv6 neighbors

IPv6 Address                 Linklayer Address  State       Exp Rtr Interface

fe80::2a0:c9ff:fe6f:7b3e     00:a0:c9:6f:7b:3e  stale       0   yes fe-0/0/0.0  

fec0:0:4:12:2a0:c9ff:fe6f:7b3e

                             00:a0:c9:6f:7b:3e  reachable   29  yes fe-0/0/0.0



520 Chapter 5 � IPv6

Although not shown here, you can assume that all routers in the IPv6 test bed are confirmed 
as being able to ping the site-local address associated with all directly attached neighbors. Before 
moving to the next section, you decide to conduct IPv6 traceroute testing between r3 and r1:

[edit]

lab@r3# run traceroute fec0:0:4:0:2a0:c9ff:fe6f:7aff

traceroute6 to fec0:0:4:0:2a0:c9ff:fe6f:7aff (fec0:0:4:0:2a0:c9ff:fe6f:7aff)
   from fec0:0:4:0:290:69ff:fe6d:9801, 30 hops max, 12 byte packets

As expected, the traceroute succeeds and displays a single hop in the form of the target 
address. From the captures shown in this section, it should be clear that IPv6 connectivity is 
tested and confirmed in the same way, and with the same tools, as venerable IPv4 protocol. 
In fact, once they get over the shock of those cumbersome addresses, most operators quickly 
find that their IPv4 skills can be rapidly and effectively brought to bear on all kinds of IPv6 
configuration and troubleshooting tasks.

Because the IPv6 neighbor cache is, for all intents and purposes, an ARP cache, 
you should not expect to see entries for neighbors that are attached with point-
to-point links when you issue a show ipv6 neighbors command. This is because 
ARP is not used on these interface types.

Verifying IPv6 Router Advertisements

The verification of router advertisement functionality at r1 and r2 is rather straightforward. 
You begin by determining that r1 is sending router advertisement messages out its fe-0/0/0 
interface:

[edit]

lab@r1# run show ipv6 router-advertisement

Interface: fe-0/0/0.0

  Advertisements sent: 3, last sent 00:01:33 ago

  Solicits received: 0

  Advertisements received: 3

  Advertisement from fe80::2a0:c9ff:fe69:c1c0, heard 00:00:32 ago

    Managed: 0

    Other configuration: 0

    Reachable time: 0 ms

    Default lifetime: 1800 sec

    Retransmit timer: 0 ms

    Current hop limit: 64

The display confirms that r1 is sending and receiving router advertisements on its fe-0/0/0 
interface; this provides a good indication that r2 has been correctly configured to generate 
router advertisement messages. Though not shown here, you can assume that similar output 
is observed at r2. The output shown, combined with the knowledge that the FEC0:0:5:0::/64 



IPv6 Addressing and Router Advertisements 521

prefix has been correctly configured under the [edit protocols router-advertisement 
interface fe-0/0/0] portion of the configuration hierarchy, completes the verification steps 
for the IPv6 addressing and neighbor discovery configuration scenario. Tracing router adver-
tisement messages provides additional validation. By way of example, the tracing configuration 
shown next is added to r1:

[edit protocols router-advertisement]

lab@r1# show

traceoptions {

    file ra;

    flag all;

}

interface fe-0/0/0.0 {

    prefix fec0:0:5:0::/64;

}

This results in the following trace output:

[edit protocols router-advertisement]

lab@r1#

May  8 23:32:07 task_timer_dispatch: calling Router-Advertisement_timer, late
   by 0.008

May  8 23:32:07 task_job_create_foreground: create job timer for task Router-
   Advertisement

May  8 23:32:07 task_timer_dispatch: returned from Router-Advertisement_timer,
   rescheduled in 0

May  8 23:32:07 foreground dispatch running job timer for task Router-
   Advertisement

May  8 23:32:07 ipv6_ra_send_advertisement: sending advertisement for ifl 2 to
   ff02::1

May  8 23:32:07 (2002) sending advertisement for ifl 2

May  8 23:32:07         ifa 0x84d9b68 fec0:0:5:0:260:94ff:fe51:e932/64

May  8 23:32:07         --> sent 56 bytes

May  8 23:32:07 task_timer_uset: timer Router-Advertisement_timer <Touched
   SpawnJob> set to offset 16 jitter 20 at 23:32:21

May  8 23:32:07 foreground dispatch completed job timer for task Router-
   Advertisement

May  8 23:32:14 ipv6_ra_receive_advertisement: received advertisement from
   fe80::2a0:c9ff:fe69:c1c0

May  8 23:32:14 ipv6_ra_receive_advertisement: task Router-Advertisement src
   fe80::2a0:c9ff:fe69:c1c0 dst ff02::1 hdr 0x854c000 count 24 intf 0x8570000

The highlights in the output show that prefix advertisements are occurring for the 
FEC0:0:5:0::/64 prefix. The capture also shows that advertisement messages are being received 
from r2. The results shown in this section confirm that you have met the requirements posed 
for the IPv6 addressing and router advertisement section!



522 Chapter 5 � IPv6

IPv6 Addressing and Neighbor Discovery Summary

To be effective with IPv6 configuration and fault isolation, a JNCIE candidate must have a 
strong grasp of the concepts behind IPv6 addressing. This section demonstrated how link-local 
addresses are automatically created for each IPv6-enabled interface using a FP of 1111 1110 10 
and the EUI-64 format. The section also showed how site-local or global IPv6 addresses can be 
manually assigned to an interface, both with and without the use of automatically computed 
EUI-64 based interface identifiers. IPv6 testing and verification with common utilities such as 
ping and traceroute was also demonstrated in this section.

IPv6 uses neighbor discovery to replicate functionality that is provided by a number of IPv4 
protocols. This functionality includes ARP, duplicate address detection, redirection, router 
discovery, and mechanisms to convey auto-configuration parameters to IPv6 hosts. This section 
contained a typical router advertisement configuration task, and also showed operational 
mode commands and tracing output that confirmed the operation and configuration of router 
advertisement messages.

IPv6 and IGP Support
As of JUNOS software release 5.6, Juniper Networks M-series and T-series routers provide 
support for IPv6 routing using RIPng, OSPF version 3, IS-IS, and static routing.

The good news is that the steps needed to configure RIPng or OSPF3 are almost identical to 
those needed for their IPv4 counterparts. The even better news is that the JUNOS implementation 
of IS-IS “just works” for IPv6. In fact, IS-IS requires explicit configuration only when you 
do not want it to advertise IPv6 routes associated with the interfaces that it is configured to 
operate on.

This section demonstrates the use of RIPng and OSPF3, and the routing policy needed to 
redistribute IPv6 routes between the two protocols. IS-IS support of IPv6 is demonstrated in the 
chapter’s case study. Figure 5.3 details the specifics of your RIPng and OSPF3 configuration 
scenario.

Based on Figure 5.3, you can see that your IPv6 IGP task involves the definition of static IPv6 
routes at r1 and r2, the configuration of RIPng (and related policy) at r1 through r4, and the con-
figuration of OSPF3 (and related policy) on r3, r4, and r5. A JNCIE candidate should immediately 
recognize that, even though the primary goal is the deployment of IPv6 capable IGPs, this scenario 
also involves the complexities associated with any mutual route redistribution topology.

To complete this section, you must alter your configurations to meet these criteria:
� Configure RIPng on r1–r4.
� Define and redistribute the static routes associated with r1 and r2 into RIPng.
� Configure OSPF3 on routers r3–r5.
� Your network must have full IPv6 reachability (including loopback addresses) despite the 

failure of any interface or link.
� You may define only the static routes shown in Figure 5.3.



IPv6 and IGP Support 523

F I G U R E 5 . 3 IPv6 OSPF3 and RIPng

Configuring RIPng

Before jumping into your IPv6 IGP configuration, it behooves you to take a moment to think 
about your overall route redistribution plan. At this stage in your career, you should be keenly 
aware that mutual route distribution occurring at multiple points can easily lead to routing 
problems unless the appropriate precautions are taken. In this example, the default protocol 
preference settings for RIPng and OSPF3 internal routes result in “the right behavior” with 
no policy or route preference modification needed. Figure 5.4 shows the situation from the 
perspective of an OSPF3 internal route being redistributed by r3 into the RIPng domain.

At Step 1 in Figure 5.4, we see an internal OSPF3 route that originates at r5 arriving at r3; 
this route has a preference setting of 10. At Step 2, r3 redistributes this route into the RIPng 
domain, now with a protocol preference of 100 (although not shown in the figure, r4 also redis-
tributes the route into RIPng in the test bed). At Step 3, we see r2 advertising the route to r4 
(the route is not sent back to r3 due to split horizon). In this case, r4 does not consider the route 
as active because of its higher preference value when compared to the OSPF3 internal route. 
A similar situation occurs for routes that originate in the RIPng domain. In this case, such a 
route arrives at r3 and r4 with a preference setting of 100. When redistributed into OSPF3 by 
r3 and r4, the OSPF3 external route has a preference setting of 150. Once again, the default 

so
-0/

1/1

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

FE
C0

:0
:5

:0
::/

64

FE
C0

:0
:4

:4
::/

64

fe-0/0/3

fe-0/0/0
FEC0:0:4:12::/64

so
-0/

1/0

FE
C0:0

:2:
8::

/64

at-0/1/0
FEC0:0:2:0::/64

at-0/2/1

FEC0:0:4:8::/64

FEC0:0:4:16::/64

fe-
0/0

/1

fe-
0/0

/2 FE
C0

:0:
4:0

::/6
4

fe-0/0/2

r4

so-0/2/0
FEC0:0:2:4::/64

so-0/1/0
M5M5

r5

Loopbacks

r1 = FEC0:0:0:6::1/128
r2 = FEC0:0:0:6::2/128
r3 = FEC0:0:0:3::3/128
r4 = FEC0:0:0:3::4/128
r5 = FEC0:0:0:3::5/128

Static Routes

r1 = FEC0:0:0:10::/64
r2 = FEC0:0:0:20::/64

OSPF3
Area 0

RIPng



524 Chapter 5 � IPv6

behavior causes both r3 and r4 to “ignore” the OSPF3 version of the route in preference to the 
RIPng version.

F I G U R E 5 . 4 OSPF3 to RIPng redistribution

While the default preference settings seem to work fine for internal routes, problems will 
occur when an OSPF3 external route is redistributed into the RIPng domain, as illustrated in 
Figure 5.5.

At Step 1 in Figure 5.5, we see r3 redistributing a static route into the OSPF3 domain with 
a preference of 150. At Step 2, the OSPF3 external route is redistributed back into the RIPng 
domain by r4 with a preference of 100. At Step 3, the route RIPng version of the route is adver-
tised by r1 back to r3. At this point, r3 still has a local static route defined, so the “echoed” 
route causes no immediate problems:

[edit]

lab@r3# run show route fec0:0:0:30::/64

inet6.0: 30 destinations, 50 routes (30 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0:0:0:30::/64   *[Static/5] 00:00:55, metric 0

                      Reject

M5M5

M5M5

M5M5

M5M5

r1

r2

r3

r4

M5M5
r5

OSPF3
Area 0

RIPng

RIP Route
ignored at r4

due to preference

(1) OSPF3
Internal = 10(2) RIPng = 100

(3) RIPng = 100



IPv6 and IGP Support 525

                    [RIPng/100] 00:05:56, metric 3, tag 0

                      to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

                    > to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

F I G U R E 5 . 5 External route redistribution problems

The problems kick in when the static route is removed from r3’s configuration. Once the 
local static definition is removed, r3 installs the RIPng version as the active route. Sloppy RIPng 
to OSPF3 redistribution policy can result in the RIPng version of the route being redistributed 
by r3 into OSPF3 as an external route. Once this occurs, we find ourselves with a nonexistent 
route that does not die or age out:

[edit]

lab@r3# delete routing-options rib inet6.0 static route fec0:0:0:30::/64

[edit]

lab@r3# commit

commit complete

[edit]

lab@r3# run show route fec0:0:0:30::/64

inet6.0: 30 destinations, 49 routes (30 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

M5M5

M5M5

M5M5

M5M5

r1

r2

r3

r4

M5M5
r5

OSPF3
Area 0

RIPng

(1) OSPF3
External = 150

FEC0:0:0:50::/64

(2) RIPng = 100

(3) RIPng = 100



526 Chapter 5 � IPv6

fec0:0:0:30::/64   *[RIPng/100] 00:08:38, metric 3, tag 0

                      to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

                    > to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

To prevent problems such as these, you need to be selective in your RIPng and OSPF3 
redistribution policies, ensuring that routes are only redistributed in a single direction. While 
you could play it extra safe by carefully controlling route redistribution in both directions, this 
example makes use of a selective policy for redistribution in the direction of RIPng to OSPF3 
only being selective in one direction or the other, which is sufficient to prevent problems in this 
case. You start RIPng configuration at r1 by defining a RIPng group called r1-r4 that includes 
all of r1’s Fast Ethernet interfaces:

[edit protocols ripng]

lab@r1# set group r1-r4 neighbor fe-0/0/0

The previous command should be repeated as needed to list all of r1’s Fast Ethernet interfaces. 
Next, you associate the r1-r4 RIPng group with an export policy, which in this example 
is called ripng-export. Note that an export policy is almost always needed with the JUNOS 
software implementation of RIP and RIPng, even when the goal is to simply re-advertise routes 
learned through RIPng itself:

[edit protocols ripng]

lab@r1# set group r1-r4 export ripng-export

The resulting RIPng configuration stanza is shown next:

[edit protocols ripng]

lab@r1# show 

group r1-r4 {

    export ripng-export;

    neighbor fe-0/0/0.0;

    neighbor fe-0/0/1.0;

    neighbor fe-0/0/2.0;

    neighbor fe-0/0/3.0;

}

You now define the IPv6 static route that is owned by r1. This route points to reject in this 
example, but you could just as well point it to a discard next hop: 

[edit routing-options]

lab@r1# set rib inet6.0 static route fec0:0:0:10::/64 reject

The modified routing-option stanza is displayed for confirmation:

[edit routing-options]

lab@r1# show

rib inet6.0 {

    static {

        route fec0:0:0:10::/64 reject;

    }

}



IPv6 and IGP Support 527

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

The final configuration steps at r1 involve the definition of the ripng-export policy. In 
this case, the policy is written to re-advertise routes learned from RIPng, to redistribute the 
FEC0:0:0:10::/64 static route into RIPng, and to advertise the site-local addressing associated 
with direct routes:

[edit policy-options policy-statement ripng-export]

lab@r1# set term 1 from protocol ripng

[edit policy-options policy-statement ripng-export]

lab@r1# set term 1 then accept

[edit policy-options policy-statement ripng-export]

lab@r1# set term 2 from protocol static

[edit policy-options policy-statement ripng-export]

lab@r1# set term 2 from route-filter fec0:0:0:10::/64 exact

[edit policy-options policy-statement ripng-export]

lab@r1# set term 2 then accept

[edit policy-options policy-statement ripng-export]

lab@r1# set term 3 from protocol direct

[edit policy-options policy-statement ripng-export]

lab@r1# set term 3 from route-filter fec0::/16 orlonger

[edit policy-options policy-statement ripng-export]

lab@r1# set term 3 then accept

The completed ripng-export policy is displayed next:

[edit policy-options policy-statement ripng-export]

lab@r1# show



528 Chapter 5 � IPv6

term 1 {

    from protocol ripng;

    then accept;

}

term 2 {

    from {

        protocol static;

        route-filter fec0:0:0:10::/64 exact;

    }

    then accept;

}

term 3 {

    from {

        protocol direct;

        route-filter fec0::/16 orlonger;

    }

    then accept;

}

Term 3 in the ripng-export policy is necessary to effect the advertisement of the router’s 
direct (interface) routes, which includes its loopback address, into RIPng. Note that by default 
RIPng does not advertise any routes, even those associated with the interfaces that RIPng is 
configured to run on! The configuration for r2 is virtually identical to that of r1 and is therefore 
not shown here. The only real difference between their configurations relates to the fact that r2 
has a FEC0:0:0:20::/64 static route.

The changes made to r4 in support of RIPng, and the redistribution of its OSPF3 and direct 
routes into RIPng, are displayed:

[edit]

lab@r4# show protocols ripng

group r1-r4 {

    export ripng-export;

    neighbor fe-0/0/1.0;

    neighbor fe-0/0/2.0;

}

[edit]

lab@r4# show policy-options policy-statement ripng-export

term 1 {

    from protocol ripng;

    then accept;

}



IPv6 and IGP Support 529

term 2 {

    from protocol ospf;

    then accept;

}

term 3 {

    from {

        protocol direct;

        route-filter fec0::/16 orlonger;

    }

    then accept;

} 

The primary difference between the policy-related configurations of r1 and r4 is r4’s need 
to match on OSPF routes for redistribution into RIPng. The RIPng configuration of r3 is very 
similar to that of r4, and is therefore not shown here.

Verifying RIPng

The verification of RIPng is quite similar to the approach taken for RIP; you begin by confirming 
that RIPng is running on the correct interfaces and that you are receiving and sending the 
expected routes. Confirmation begins at r3 with the determination that RIPng is running on its 
fe-0/0/0 and fe-0/0/1 interfaces:

[edit]

lab@r3# run show ripng neighbor

                    Source                           Dest               In

Neighbor     State  Address                          Address  Send Recv Met

--------     -----  -------                          -------  ---- ---- ---

fe-0/0/1.0      Up  fe80::290:69ff:fe6d:9801         ff02::9  yes yes    1

fe-0/0/0.0      Up  fe80::290:69ff:fe6d:9800         ff02::9  yes yes    1

The output confirms that RIPng is configured to send and receive updates on the expected 
interfaces. If desired, you can view the RIPng routes being advertised out a particular interface 
with a show route advertising-protocol command. Note that you need to specify the local 
router’s link-local address for the “neighbor” component of the command:

[edit]

lab@r3# run show interfaces fe-0/0/0 terse

Interface               Admin Link Proto Local                 Remote

fe-0/0/0                up    up  

fe-0/0/0.0              up    up   inet  10.0.4.13/30 

                                   inet6 fe80::290:69ff:fe6d:9800/64

                                         fec0:0:4:12:290:69ff:fe6d:9800/64

r3’s link-local address is first displayed so that it can be copied into your terminal emulation 
program’s capture buffer for use in the show route advertising-protocol command:

[edit]

lab@r3# run show route advertising-protocol ripng fe80::290:69ff:fe6d:9800



530 Chapter 5 � IPv6

inet6.0: 25 destinations, 30 routes (25 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0:0:0:3::3/128  *[Direct/0] 03:49:34

                    > via lo0.0

fec0:0:0:6::2/128  *[RIPng/100] 01:25:12, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

fec0:0:0:20::/64   *[RIPng/100] 01:25:12, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

fec0:0:2::/64      *[Direct/0] 03:47:37

                    > via at-0/1/0.0

fec0:0:2:4::/64    *[Direct/0] 03:47:37

                    > via so-0/2/0.100

fec0:0:4::/64      *[Direct/0] 03:47:37

                    > via fe-0/0/1.0

                    [RIPng/100] 01:25:12, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

fec0:0:4:8::/64    *[RIPng/100] 01:25:12, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

fec0:0:4:12::/64   *[Direct/0] 03:47:37

                    > via fe-0/0/0.0

                    [RIPng/100] 01:14:19, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

The output confirms that the expected routes are being set from r3 to r1. You can use the 
receiving-protocol version of the command to determine the routes you receive from a given 
neighbor. In this case, you must specify the link-local address of the remote peer:

[edit policy-options policy-statement ripng-export]

lab@r1# run show interfaces fe-0/0/1 terse

Interface               Admin Link Proto Local                 Remote

fe-0/0/1                up    up  

fe-0/0/1                up    up   inet  10.0.4.14/30    

                                   inet6 fe80::2a0:c9ff:fe6f:7b3e/64

                                         fec0:0:4:12:2a0:c9ff:fe6f:7b3e/64 

Knowing that the link-local address for r1’s fe-0/0/1 interface is fe80::2a0:c9ff:fe6f:7b3e/64 
allows you to determine what RIPng routes r3 is receiving from r1:

[edit]

lab@r3# run show route receive-protocol ripng fe80::2a0:c9ff:fe6f:7b3e

inet.0: 25 destinations, 27 routes (25 active, 0 holddown, 0 hidden)



IPv6 and IGP Support 531

inet6.0: 24 destinations, 29 routes (24 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0:0:0:3::4/128  *[RIPng/100] 00:21:04, metric 3, tag 0

                      to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

                    > to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

fec0:0:0:6::1/128  *[RIPng/100] 01:16:29, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

fec0:0:0:10::/64   *[RIPng/100] 01:27:22, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

fec0:0:2:8::/64    *[RIPng/100] 00:21:04, metric 3, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

                      to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

fec0:0:4:4::/64    *[RIPng/100] 01:27:22, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

                      to fe80::2a0:c9ff:fe6f:7aff via fe-0/0/1.0

fec0:0:4:12::/64    [RIPng/100] 01:16:29, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

fec0:0:4:16::/64   *[RIPng/100] 01:16:29, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

fec0:0:5::/64      *[RIPng/100] 01:16:29, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe6f:7b3e via fe-0/0/0.0

The routes being advertised by RIPng confirm that your ripng-export policy correctly 
advertises RIPng and direct routes with IPv6 addresses beginning with FEC0::/16. As a 
final check on the operation of RIPng, you display the routes being learned from that
protocol:

[edit]

lab@r4# run show route protocol ripng

inet.0: 25 destinations, 27 routes (25 active, 0 holddown, 0 hidden)

inet6.0: 24 destinations, 29 routes (24 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0:0:0:3::3/128  *[RIPng/100] 00:24:06, metric 3, tag 0

                    > to fe80::2a0:c9ff:feb2:f8cb via fe-0/0/1.0

                      to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0

fec0:0:0:6::1/128  *[RIPng/100] 01:19:38, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0



532 Chapter 5 � IPv6

fec0:0:0:6::2/128  *[RIPng/100] 01:41:57, metric 2, tag 0

                    > to fe80::2a0:c9ff:feb2:f8cb via fe-0/0/1.0

fec0:0:0:10::/64   *[RIPng/100] 01:41:57, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0

fec0:0:0:20::/64   *[RIPng/100] 01:41:57, metric 2, tag 0

                    > to fe80::2a0:c9ff:feb2:f8cb via fe-0/0/1.0

fec0:0:2::/64      *[RIPng/100] 00:24:06, metric 3, tag 0

                      to fe80::2a0:c9ff:feb2:f8cb via fe-0/0/1.0

                    > to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0

fec0:0:4::/64      *[RIPng/100] 01:41:08, metric 2, tag 0

                    > to fe80::2a0:c9ff:feb2:f8cb via fe-0/0/1.0

fec0:0:4:4::/64    *[RIPng/100] 01:41:08, metric 2, tag 0

                    > to fe80::2a0:c9ff:feb2:f8cb via fe-0/0/1.0

                      to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0

fec0:0:4:8::/64     [RIPng/100] 01:41:08, metric 2, tag 0

                    > to fe80::2a0:c9ff:feb2:f8cb via fe-0/0/1.0

fec0:0:4:12::/64   *[RIPng/100] 01:19:38, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0

fec0:0:4:16::/64    [RIPng/100] 01:19:38, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0

fec0:0:5::/64      *[RIPng/100] 01:19:38, metric 2, tag 0

                    > to fe80::2a0:c9ff:fe69:a806 via fe-0/0/2.0

ff02::9/128        *[RIPng/100] 00:24:14, metric 1

                      MultiRecv

The output obtained from r3 and r4 indicates that the routers in the RIPng domain are 
properly configured and operational. If time permits, you can perform some additional spot 
checks, such as traceroutes to loopback addresses, to make sure that your forwarding paths 
are optimal:

[edit]

lab@r2# run traceroute fec0:0:0:6::1

traceroute6 to fec0:0:0:6::1 (fec0:0:0:6::1) from fec0:0:4:4:2a0:c9ff:fe6f:700d,
   30 hops max, 12 byte packets

 1  fec0:0:0:6::1 (fec0:0:0:6::1)  0.399 ms  0.204 ms  0.113 ms

[edit]

lab@r2# run traceroute fec0:0:0:3::3

traceroute6 to fec0:0:0:3::3 (fec0:0:0:3::3) from fec0:0:4:0:2a0:c9ff:fe6f:7aff,
   30 hops max, 12 byte packets

 1  fec0:0:0:3::3 (fec0:0:0:3::3)  1.006 ms  0.434 ms  0.369 ms

With RIPng route advertisement and optimal forwarding among r1 through r4 verified, the 
confirmation of the RIPng domain is complete.



IPv6 and IGP Support 533

Configuring OSPF3

You start OSPF3 configuration at r5 by defining an ospf3 stanza for area 0:

[edit protocols ospf3]

lab@r5# set area 0 interface so-0/1/0

[edit protocols ospf3]

lab@r5# set area 0 interface at-0/2/1.0

[edit protocols ospf3]

lab@r5# set area 0 interface lo0.0 passive

Note that unlike IPv4 and its OSPF version 2, you must run OSPF3 on the router’s lo0 
interface if you want the loopback address advertised into OSPF3. It is recommended that you 
enable the passive operation when running OSPF3 on a lo0 interface to reduce compute cycles. 
Note that export policy is not needed on r5 for this configuration scenario. The completed 
ospf3 stanza is displayed at r5:

[edit protocols ospf3]

lab@r5# show

area 0.0.0.0 {

    interface lo0.0 {

        passive;

    }

    interface at-0/2/1.0;

    interface so-0/1/0.0;

}    

The configuration of OSPF3 on r3 and r4 is very similar to that shown for r5; the primary 
difference is the need to include an export policy that redistributes RIPng and direct routes into 
OSPF3. r3’s OSPF3 configuration is shown next:

[edit]

lab@r3# show protocols ospf3

export ospf3-export;

area 0.0.0.0 {

    interface so-0/2/0.100;

    interface lo0.0 {

        passive;

    }

    interface at-0/1/0.0;

}

The highlight calls out the application of an ospf3-export policy, which is displayed next. 
Note that the policy makes use of route filter statements to match on, and subsequently accept, 
only those routes that have originated in the RIPng domain. This precaution prevents the 



534 Chapter 5 � IPv6

redistribution problems described at the beginning of this section:

[edit]

lab@r3# show policy-options policy-statement ospf3-export

term 1 {

    from {

        route-filter fec0:0:4::/46 orlonger;

        route-filter fec0:0:0:6::/64 orlonger;

    }

    then accept;

}

In this example, term 1 in the ospf3-export policy is written to match on the interface 
routes and loopback routes that exist within the RIPng domain, thereby serving to prevent the 
redistribution of routes that originate in the OSPF3 domain back into the OSPF3 domain. 
Although not shown, r4 has a similar OSPF3 configuration and an identical ospf3-export 
policy. Note that the differences between loopback and interface address assignments result in 
the need for the two route filter statements shown in this example.

Verifying OSPF3 and Route Redistribution

As with RIP vs. RIPng, the verification of OSPF3 proceeds in much the same way as the 
verification of OSPF. Specifically, you need to confirm adjacency status and the proper 
advertisement of routes. You begin at r5 by verifying its OSPF3 adjacency status:

[edit protocols ospf3]

lab@r5# run show ospf3 neighbor

ID               Interface              State     Pri   Dead

10.0.3.3         at-0/2/1.0             Full      128   34  

  Neighbor-address fe80::2a0:a5ff:fe3d:234

10.0.3.4         so-0/1/0.0             Full      128   34  

  Neighbor-address fe80::2a0:a5ff:fe28:d36

The display confirms that both of r5’s OSPF3 adjacencies are in the established state. Next, 
you confirm that OSPF3 is advertising the loopback addresses of all routers in the IPv6 test bed. 
This determination also helps to validate the operation of the ospf3-export policy at r3 and 
r4 because the loopback addresses of r1 and r2 begin as RIPng routes.

[edit]

lab@r5# run show route protocol ospf | match /128

fec0:0:0:3::3/128  *[OSPF/10] 00:17:57, metric 1

fec0:0:0:3::4/128  *[OSPF/10] 00:18:06, metric 1

fec0:0:0:3::5/128   [OSPF/10] 00:44:37, metric 0

fec0:0:0:6::1/128  *[OSPF/150] 00:04:55, metric 2, tag 0

fec0:0:0:6::2/128  *[OSPF/150] 00:04:55, metric 2, tag 0

ff02::5/128        *[OSPF/10] 02:27:34, metric 1

As hoped for, all five of the loopback addresses are present. Note that the internal route to 
r5’s own loopback address is not active due to the route also being present as a direct route. The 



IPv6 and IGP Support 535

overall status of OSPF3 routes is now displayed at r5. Note the use of CLI match functionality 
that eliminates the display of IPv4-based OSPF routes:

[edit]

lab@r5# run show route protocol ospf | match fec0

fec0:0:0:3::3/128  *[OSPF/10] 00:18:32, metric 1

fec0:0:0:3::4/128  *[OSPF/10] 00:18:41, metric 1

fec0:0:0:3::5/128   [OSPF/10] 00:45:12, metric 0

fec0:0:0:6::1/128  *[OSPF/150] 00:05:30, metric 2, tag 0

fec0:0:0:6::2/128  *[OSPF/150] 00:05:30, metric 2, tag 0

fec0:0:2::/64       [OSPF/10] 00:45:12, metric 1

fec0:0:2:4::/64    *[OSPF/10] 00:18:32, metric 2

fec0:0:2:8::/64     [OSPF/10] 00:45:12, metric 1

fec0:0:4::/64      *[OSPF/150] 00:18:32, metric 0, tag 0

fec0:0:4:4::/64    *[OSPF/150] 00:18:32, metric 2, tag 0

fec0:0:4:8::/64    *[OSPF/150] 00:18:41, metric 0, tag 0

fec0:0:4:12::/64   *[OSPF/150] 00:18:32, metric 0, tag 0

fec0:0:4:16::/64   *[OSPF/150] 00:18:41, metric 0, tag 0

fec0:0:5::/64      *[OSPF/150] 00:18:32, metric 2, tag 0

From the display, you can see that all of the expected routes are present, including the prefixes 
that originate within the RIPng domain. A show route command for the FEC0:0:5:0/64 
prefix indicates that load balancing, and consequently the required redundancy, is in effect:

lab@r5> show route fec0:0:5:0::/64

inet6.0: 21 destinations, 25 routes (21 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0:0:5::/64      *[OSPF/150] 00:18:51, metric 2, tag 0

                      via so-0/1/0.0

                    > via at-0/2/1.0

As with plain old OSPF, the OSPF3 database can be displayed, as shown next:

lab@r5> show ospf3 database

    OSPF3 link state database, area 0.0.0.0

 Type       ID               Adv Rtr           Seq         Age  Cksum  Len 

Router      0.0.0.0          10.0.3.3         0x8000001d   482  0xc1f0  56

Router      0.0.0.0          10.0.3.4         0x80000010   464  0xcfef  56

Router     *0.0.0.0          10.0.3.5         0x80000018    22  0x9324  56

IntraArPfx  0.0.0.1          10.0.3.3         0x80000015   482  0x7be1  76

IntraArPfx  0.0.0.1          10.0.3.4         0x8000000a   464  0x3627  76

IntraArPfx *0.0.0.1          10.0.3.5         0x8000000d   622  0xe07a  76

    OSPF3 AS SCOPE link state database



536 Chapter 5 � IPv6

 Type       ID               Adv Rtr          Seq          Age  Cksum  Len 

Extern      0.0.0.1          10.0.3.3         0x80000009   668  0x6f72  36

Extern      0.0.0.2          10.0.3.3         0x80000005   381  0x28ce  36

Extern      0.0.0.3          10.0.3.3         0x80000009   119  0xb235  36

Extern      0.0.0.4          10.0.3.3         0x80000009    68  0x608a  36

Extern      0.0.0.8          10.0.3.3         0x80000003  1255  0xce3   36

Extern      0.0.0.10         10.0.3.3         0x80000003  1255  0x7563  36

Extern      0.0.0.11         10.0.3.3         0x80000001   482  0xf9aa  44

Extern      0.0.0.12         10.0.3.3         0x80000001   482  0xa98   44

Extern      0.0.0.1          10.0.3.4         0x80000008   673  0xb635  36

Extern      0.0.0.2          10.0.3.4         0x80000008   383  0xa933  36

Extern      0.0.0.3          10.0.3.4         0x80000008   123  0x2ec0  36

Extern      0.0.0.4          10.0.3.4         0x80000008    73  0x5983  36

Extern      0.0.0.5          10.0.3.4         0x80000007  1262  0x5496  36

Extern      0.0.0.10         10.0.3.4         0x80000006  1262  0xdb0f  36

Extern      0.0.0.11         10.0.3.4         0x80000001   464  0xf3af  44

Extern      0.0.0.12         10.0.3.4         0x80000001   464  0x49d   44

Extern     *0.0.0.1          10.0.3.5         0x80000003   322  0x8f1c  36

    OSPF3 Link-Local link state database, interface at-0/2/1.0

 Type       ID               Adv Rtr           Seq         Age  Cksum  Len 

Link        0.0.0.2          10.0.3.3         0x80000007  1253  0x71e3  56

Link       *0.0.0.3          10.0.3.5         0x80000008  1222  0xf02c  56

    OSPF3 Link-Local link state database, interface so-0/1/0.0

 Type       ID               Adv Rtr           Seq         Age  Cksum  Len 

Link        0.0.0.3          10.0.3.4         0x80000006  1262  0x351   56

Link       *0.0.0.2          10.0.3.5         0x80000008   922  0x2ce9  56

Note that the OSPF3 database contains intra-area prefix LSAs, which are not present in OSPF 
version 2. These LSAs, which advertise internal prefixes, are needed because OSPF3 router and 
network LSAs do not carry any prefix information.

Moving along, you now display the routes associated with the OSPF3 domain at r2 to 
quickly confirm that OSPF3 to RIPng redistribution is working as expected:

[edit]

lab@r2# run show route fec0:0:2::/48

inet6.0: 27 destinations, 33 routes (26 active, 1 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0:0:2::/64      *[RIPng/100] 00:25:32, metric 2, tag 0

                      to fe80::290:69ff:fe6b:3001 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6d:9801 via fe-0/0/2.0



IPv6 and IGP Support 537

fec0:0:2:4::/64    *[RIPng/100] 00:25:32, metric 2, tag 0

                      to fe80::290:69ff:fe6b:3001 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6d:9801 via fe-0/0/2.0

fec0:0:2:8::/64    *[RIPng/100] 00:25:32, metric 2, tag 0

                      to fe80::290:69ff:fe6b:3001 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6d:9801 via fe-0/0/2.0

The output lists the link addresses associated with the OSPF3 domain, as expected, so 
attention shifts to the loopback addresses assigned to r3 through r5:

[edit]

lab@r2# run show route fec0:0:0:3::/64

inet6.0: 27 destinations, 33 routes (26 active, 1 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0:0:0:3::3/128  *[RIPng/100] 00:25:44, metric 2, tag 0

                      to fe80::290:69ff:fe6b:3001 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6d:9801 via fe-0/0/2.0

fec0:0:0:3::4/128  *[RIPng/100] 00:25:44, metric 2, tag 0

                      to fe80::290:69ff:fe6b:3001 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6d:9801 via fe-0/0/2.0

fec0:0:0:3::5/128  *[RIPng/100] 00:25:37, metric 2, tag 0

                      to fe80::290:69ff:fe6b:3001 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6d:9801 via fe-0/0/2.0

All loopback addresses associated with the OSPF3 domain are also confirmed. Traceroute 
testing is performed from r5 to destinations in the RIPng domain to provide final verification:

lab@r5> traceroute fec0:0:0:6::1

traceroute6 to fec0:0:0:6::1 (fec0:0:0:6::1) from fec0:0:2:0:2a0:a5ff:fe28:116e,
   30 hops max, 12 byte packets

 1  fec0:0:2:0:2a0:a5ff:fe3d:234 (fec0:0:2:0:2a0:a5ff:fe3d:234)  1.518 ms  
    1.189 ms  0.798 ms

 2  fec0:0:0:6::1 (fec0:0:0:6::1)  0.581 ms  0.704 ms  0.82 ms

lab@r5> traceroute fec0:0:0:6::2

traceroute6 to fec0:0:0:6::2 (fec0:0:0:6::2) from fec0:0:2:8:2a0:a5ff:fe28:116e,
   30 hops max, 12 byte packets

 1  fec0:0:2:8:2a0:a5ff:fe28:d36 (fec0:0:2:8:2a0:a5ff:fe28:d36)  0.763 ms  
    0.623 ms  0.561 ms

 2  fec0:0:0:6::2 (fec0:0:0:6::2)  0.479 ms  0.461 ms  0.431 ms

Before proceeding to the next section, you should verify that loopback connectivity is working 
between all routers in the IPv6 test bed, and that optimal forwarding paths are being used. The 
results shown in this section indicate that you have achieved the criteria specified for RIPng, 
OSPF3, and route redistribution.



538 Chapter 5 � IPv6

Troubleshooting an OSPF3 Problem

You can not get OSPF3 to form an adjacency between r3 and r5 as shown in the following 
graphic. The relevant configuration of r3 is shown here.

[edit]
lab@r3# show interfaces
at-0/1/0 {
    atm-options {
        vpi 0 {
            maximum-vcs 64;
        }
    }
    unit 0 {
        point-to-point;
        vci 50;
        family inet6 {
            address fec0:0:2:0::/64 {
                eui-64;
            }
        }
    }
}
lo0 {
    unit 0 {
        family inet6 {
            address fec0:0:0:3::3/128;
        }
    }
}

[edit]
lab@r3# show protocols ospf3
traceoptions {
    file ospf3;
    flag error detail;
    flag hello detail;
    flag packets detail;
}

M5M5 M5M5

Loopbacks

r3 = FEC0:0:0:3::3/128
r5 = FEC0:0:0:3::5/128

OSPF3
Area 0

at-0/1/0 at-0/2/1
FEC0:0:2:0::/64

r3 r5



IPv6 and IGP Support 539

area 0.0.0.0 {
    interface lo0.0 {
        passive;
    }
    interface at-0/1/0.0;
}

[edit]
lab@r3# show routing-options
static {
    route 10.0.200.0/24 {
        next-hop 10.0.1.102;
        no-readvertise;
    }
}
aggregate {
    route 10.0.0.0/16;
}
autonomous-system 65412;

Even though ping testing is successful between the routers, and r3 displays the correct interfaces 
as enabled for OSPF3, there is no adjacency to r5 and there are no local OSPF3 database entries.

[edit]
lab@r3# run show ospf3 interface
Interface              State     Area            DR-ID           BDR-ID       Nbrs
at-0/1/0.0             PtToPt   0.0.0.0         0.0.0.0         0.0.0.0         0
lo0.0                  DRother  0.0.0.0         0.0.0.0         0.0.0.0         0

[edit]
lab@r3# run show ospf3 neighbor

[edit]
lab@r3# run show ospf3 database

The general dearth of output generated by the OSPF3 tracing configuration leaves much to be 
desired.

[edit]
lab@r3# run restart routing
Routing protocol daemon started, pid 1275

[edit]
lab@r3#
May  8 20:02:20 trace_on: Tracing to "/var/log/ospf3" started

Based on this information, can you identify the problem? If you spotted the fact that r3 has 
no source for the 32-bit router ID (RID) required by both OSPF and OSPF3, then you are truly 
a spectacle of human engineering! Many JNCIE candidates are surprised to find that an IPv6 
routing protocol requires the presence of an IPv4-based RID for proper operation. To resolve 
this problem, you can assign an IPv4 address to one of the router’s interfaces, or you can 
manually assign the RID. The latter approach is demonstrated here:

[edit]

lab@r3# set routing-options router-id 10.0.3.3



540 Chapter 5 � IPv6

Summary of IPv6 IGP Support

An IGP is an IGP. This section demonstrated that an engineer familiar with the configuration 
of either RIP or OSPF should not experience a great deal of difficulty when working with their 
next-generation counterparts. Besides the need to explicitly define a 32-bit router ID, or have 
a suitable IPv4 address on the router’s lo0 interface, there is really no trick to configuring OSPF3 
and analyzing its operation. Note that for RIPng, you need to use the link-local address asso-
ciated with the remote or local router when issuing show route receive-protocol ripng or 
show route advertising-protocol ripng commands, respectively.

Both RIP and OSPF have special IPv6 versions that are configured separately from their 
IPv4 counterparts. IS-IS, on the other hand, uses TLVs (Type Length Values) to carry IP prefixes 
in an opaque fashion. As a result, the same IS-IS instance can handle IPv4, IPv6, or both IPv4 
and IPv6. As noted previously, specific configuration is only needed for IS-IS when you do 
not want it to advertise IPv6 routes associated with the interfaces that it has been configured to 
run on. IS-IS support of IPv6 routing is demonstrated in the case study but was not covered in 
this section.

BGP Support for IPv6
The 5.6 JUNOS software release used to develop this book offers BGP support for IPv6 in two 
ways: through native IPv6 peering, which supports IPv6 Network Layer Reachability Informa-
tion (NLRI) only, or through the advertisement of IPv6 NLRI over an IPv4-based peering session. 
The latter approach can support both IPv4 and IPv6 NLRI over the IPv4-based BGP peering 

[edit]
lab@r3# commit
commit complete

[edit]
lab@r3#
May  8 20:06:22 OSPF trigger router LSA build for area 0.0.0.0
May  8 20:06:22 OSPF trigger router intra-area-prefix LSA build
May  8 20:06:22 OSPF trigger router LSA build for area 0.0.0.0
May  8 20:06:22 OSPF trigger router intra-area-prefix LSA build
May  8 20:06:22 OSPF trigger link LSA build for intf at-0/1/0.0
May  8 20:06:22 OSPF sent Hello fe80::2a0:a5ff:fe3d:234 -> ff02::5 (at-0/1/0.0, IFL 9)
. . .

*** monitor and syslog output disabled, press ESC-Q to enable ***

[edit]
lab@r3# run show ospf3 neighbor
ID               Interface              State     Pri   Dead
10.0.1.5         at-0/1/0.0             Full      128   36  
  Neighbor-address fe80::2a0:a5ff:fe28:116e



BGP Support for IPv6 541

session, but an IPv4-compatible IPv6 address is required for resolution of the BGP next hops 
associated with the IPv6 NLRI. Figure 5.6 provides a graphical depiction of the options for 
BGP support of IPv6.

F I G U R E 5 . 6 IPv6 BGP support options

The top portion of Figure 5.6 shows a native IPv6 BGP peering session that supports IPv6 
NLRI only. In contrast, the lower portion of the figure shows an IPv4-based peering session that 
can support both IPv4 and IPv6 NLRI when so configured. Note that an IPv4-compatible IPv6 
address, which matches the IPv4 peering address, must be assigned to the peering interface to 
accommodate next hop resolution on the IPv6 routes. This requirement applies to interface and 
lo0-based peerings equally. An IPv4-compatible IPv6 address is written as ::w.x.y.z. This 
notation indicates that the first 96 bits of the 128-bit address are all zeros.

To complete this section, you must configure r3 according to these requirements:
� Configure a native IPv6 EBGP peering session between r3 and T1.
� Define and advertise aggregate routes for your AS’s IPv6 address space to the T1 peer.
� Ensure that all routers in the IPv6 test bed receive the IPv6 routes advertised by T1 through 

their IBGP session to r3.
� No additional static routes are permitted.
� You may have only one IBGP peering session between each pair of routers within your AS.
� Ensure that there is connectivity between the routers in your AS and the 2000:0:0:0::/64 

prefix advertised by the T1 peer.
� Your IPv6-related configuration can not adversely affect the IPv4 aspects of your network.
� You do not have access to the T1 peer.

Refer to Figure 5.7 for the addressing details needed to complete this scenario.
Figure 5.7 indicates that you need to define a native IPv6 EBGP peering session at r3 based 

on the IPv6 addressing shown for the T1 peer. The restriction that you have only one IBGP peering 
session among the routers in the IPv6 test bed requires that you reconfigure the IBGP session to 
permit the advertisement of IPv6 NLRI over the existing IPv4-based peering sessions.

M5M5 M5M5

Native IPv6 Peering

IPv6 NLRI only

20:0:0:1::/64

r1 r2

::1 ::2

M5M5 M5M5

IPv4 Peering

IPv4 and IPv6 NLRI

200.0.0.0/24

::200.0.0.1 ::200.0.0.2

r1 r2

.1 .2



542 Chapter 5 � IPv6

F I G U R E 5 . 7 BGP and IPv6

Configuring Native IPv6 EBGP Peering

You start your configuration at r3 by defining the native IPv6 EBGP peering session to T1:

[edit protocols bgp group ext-ipv6]

lab@r3# set type external

[edit protocols bgp group ext-ipv6]

lab@r3# set peer-as 65222

[edit protocols bgp group ext-ipv6]

lab@r3# set neighbor 2:10::14

Note that the neighbor address specified is the global IPv6 address shown for the T1 peer in 
Figure 5.7. The ext-ipv6 peering stanza is displayed next: 

[edit protocols bgp group ext-ipv6]

lab@r3# show 

type external;

so
-0/

1/1

M5M5

M5M5 M5M5

fe-0/0/1fe-0/0/0

r1

r2

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

FE
C0

:0
:5

:0
::/

64

FE
C0

:0
:4

:4
::/

64

fe-0/0/3

fe-0/0/0
FEC0:0:4:12::/64

so
-0/

1/0

FE
C0:0

:2:
8::

/64

at-0/1/0
FEC0:0:2:0::/64

at-0/2/1

FEC0:0:4:8::/64

FEC0:0:4:16::/64

fe-
0/0

/1

fe-
0/0

/2 FE
C0

:0:
4:0

::/6
4

fe-0/0/2

r4

so-0/2/0
FEC0:0:2:4::/64 so-0/1/0

M5M5
r5

Loopbacks

r1 = FEC0:0:0:6::1/128
r2 = FEC0:0:0:6::2/128
r3 = FEC0:0:0:3::3/128
r4 = FEC0:0:0:3::4/128
r5 = FEC0:0:0:3::5/128

r3

fe-0/0/2

AS 65222
130.130/16
2000::/64

T1

2:10::14/64

2:10::13/64

M5M5



BGP Support for IPv6 543

peer-as 65222;

neighbor 2:10::14;

To back up the BGP configuration, you need to enable IPv6 and assign the correct IPv6 
address (as shown in Figure 5.7) to the fe-0/0/2 interface on r3. Note that although EBGP peering 
to link-local addresses is supported by JUNOS software release 5.6, current best practice (and 
RFC 2545, section 2) discourages the use of link-local based EBGP peering because using link-
local addressing for EBGP peering mandates the use of a next hop self policy:

[edit interfaces fe-0/0/2]

lab@r3# set unit 0 family inet6 address 2:10::13/64

r3’s fe-0/0/2 interface configuration is displayed with the changes highlighted:

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        address 172.16.0.13/30;

    }

    family inet6 {

        address 2:10::13/64;

    }

}

Be sure to commit your changes when satisfied with your modifications.

Verifying Native IPv6 EBGP Peering

After committing the changes on r3, you begin confirmation of the native IPv6 EBGP peering 
session with execution of a show bgp summary command:

[edit]

lab@r3# run show bgp summary

Groups: 3 Peers: 8 Down peers: 2

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0                 2          2          0          0          0          0

inet6.0                1          1          0          0          0          0

Peer            AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
   Received/Damped...

172.16.0.14  65222     72      74     0      0       34:13 Establ

  inet.0: 2/2/0

2:10::14     65222     29      31     0      0       13:17 Establ

  inet6.0: 1/1/0

10.0.3.4     65412      1       4     0      0          26 Establ

  inet.0: 0/0/0

10.0.3.5     65412      1       4     0      0          22 Establ

  inet.0: 0/0/0



544 Chapter 5 � IPv6

10.0.6.1     65412      2       6     0      0          34 Establ

  inet.0: 0/0/0

10.0.6.2     65412      1       4     0      0          30 Establ

  inet.0: 0/0/0

10.0.9.6     65412      0       0     0      0          46 Active

10.0.9.7     65412      0       0     0      0          46 Active

The highlights in the display confirm that the EBGP session to 2:10::14 has been successfully 
established, and that a single prefix has been received over the peering session. Note that the 
received prefix has been installed into the inet6.0 routing table. Your next command displays 
the IPv6 NLRI advertised by the T1 peer:

[edit]

lab@r3# run show route receive-protocol bgp 2:10::14

inet.0: 28 destinations, 30 routes (28 active, 0 holddown, 0 hidden)

inet6.0: 31 destinations, 48 routes (31 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 2000::/64               2:10::14             0                  65222 I

The output verifies the receipt of a single IPv6 prefix in the form of 2000::/64. A quick ping 
test is conducted to verify that r3 has connectivity to host 1 on the 2000::/64 prefix advertised 
by T1:

[edit]

lab@r3# run ping 2000::1 count 2

PING6(56=40+8+8 bytes) 2:10::13 --> 2000::1

16 bytes from 2000::1, icmp_seq=0 hlim=64 time=0.567 ms

16 bytes from 2000::1, icmp_seq=1 hlim=64 time=0.451 ms

--- 2000::1 ping6 statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.451/0.509/0.567 ms

Excellent! The test passes with flying colors; things sure seem to be going well for you on the 
IPv6 front. Because all routers in your AS must ultimately have connectivity to the 2000::/64 
prefix, you decide to test reachability when the packet is sourced from an internal address, in 
this case the FEC0:0:0:3::3/128 address that is assigned to r3’s lo0 interface:

[edit]

lab@r3# run ping 2000::1 count 2 source fec0:0:0:3::3

PING6(56=40+8+8 bytes) fec0:0:0:3::3 --> 2000::1

--- 2000::1 ping6 statistics ---

2 packets transmitted, 0 packets received, 100% packet loss



BGP Support for IPv6 545

Noting the failure, you are reminded that you have not yet defined and advertised an 
aggregate route for your AS’s IPv6 addressing space to the T1 peer, which results in T1’s 
inability to route packets back to r3 when they are sourced from any FEC0::/16 prefix. 
You decide to define the aggregate route for your network’s IPv6 address space:

[edit routing-options rib inet6.0]

lab@r3# set aggregate route fec0::/16

And you also decide to move on to the routing policy required to effect the advertisement of 
the aggregate route to the T1 peer. The resulting ipv6-agg policy is shown next:

[edit]

lab@r3# show policy-options policy-statement ipv6-agg

term 1 {

    from {

        protocol aggregate;

        route-filter fec0::/16 exact;

    }

    then accept;

}

You apply the ipv6-agg policy to the ext-ipv6 peer group as export, and commit the 
changes:

[edit protocols bgp group ext-ipv6]

lab@r3# set protocols bgp group ext-ipv6 export ipv6-agg

[edit]

lab@r3# commit

commit complete

It is easy to confirm that the FEC0::/16 aggregate is being correctly advertised to the 
T1 peer:

[edit]

lab@r3# run show route advertising-protocol bgp 2:10::14 

inet6.0: 31 destinations, 48 routes (31 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 2000::/64               2:10::14                                65222 I

* fec0::/16               Self                                    I

The display confirms that the aggregate route is being sent to T1, which means that pings sourced 
from one of r3’s internal interfaces and targeted at the 2000::/64 prefix should now be possible:

[edit]

lab@r3# run ping 2000::1 count 2 source fec0:0:0:3::3 

PING6(56=40+8+8 bytes) fec0:0:0:3::3 --> 2000::1

16 bytes from 2000::1, icmp_seq=0 hlim=64 time=0.614 ms

16 bytes from 2000::1, icmp_seq=1 hlim=64 time=0.529 ms



546 Chapter 5 � IPv6

--- 2000::1 ping6 statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.529/0.571/0.614 ms

Excellent! The results confirm that you have configured a native IPv6 EBGP peering session 
that appears to be fully functional. Before proceeding to the next section, you decide to display 
the neighbor status for the T1 peer:

[edit]

lab@r3# run show bgp neighbor 2:10::14

Peer: 2:10::14+179    AS 65222 Local: 2:10::13+4410   AS 65412

  Type: External    State: Established    Flags: <>

  Last State: OpenConfirm   Last Event: RecvKeepAlive

  Last Error: None

  Export: [ ipv6-agg ] 

  Options: <Preference HoldTime AdvertiseInactive PeerAS Refresh>

  Holdtime: 90 Preference: 170

  Number of flaps: 0

  Peer ID: 130.130.0.1      Local ID: 10.0.3.3         Active Holdtime: 90

  Keepalive Interval: 30

  Local Interface: fe-0/0/2.0                       

  NLRI advertised by peer: inet6-unicast

  NLRI for this session: inet6-unicast

  Peer supports Refresh capability (2)

  Table inet6.0 Bit: 20001

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            1

    Received prefixes:          1

    Suppressed due to damping:  0

  Last traffic (seconds): Received 8    Sent 9    Checked 9   

  Input messages:  Total 59     Updates 4       Refreshes 0     Octets 1299

  Output messages: Total 61     Updates 4       Refreshes 0     Octets 1354

  Output Queue[1]: 0 

Of note in the resulting display is the indication that the native IPv6 peering session supports 
IPv6 NLRI only. Also worth noting is that the BGP protocol requires a 32-bit router ID (just like 
OSPF3). In this case, the router’s IPv4-based loopback address is used as the RID for the IPv6 
EBGP peering session. If no IPv4 addresses are available on the router, you need to manually 
assign a RID to enable proper BGP operation.

Configuring IBGP Peering to Support IPv6

With native IPv6 EBGP peering confirmed at r3, you move on to the modifications needed 
to support IPv6 NLRI over your existing IBGP peering sessions. Be aware that changing 



BGP Support for IPv6 547

the address families configured on a BGP peering session results in temporary disruption to the 
session while it is being torn down and reestablished. Because this is a non-production network, 
and because time is always tight in a lab-based examination, you opt for a somewhat heavy-
handed approach that configures the new address families at the BGP group level. In a production 
network, you might consider making this type of change at the neighbor level so that only one 
BGP session is affected at any given time. You begin on r3 by adding the IPv6 and IPv4 unicast 
address families to the existing int peer group:

[edit protocols bgp group int]

lab@r3# set family inet6 unicast

[edit protocols bgp group int]

lab@r3# set family inet4 unicast

Note that the default inet4 unicast family is disabled when another address family is 
explicitly configured. Because the restrictions posed in this example result in exam point loss if 
your IPv4 infrastructure is negatively affected by your IPv6-related configuration, the explicit 
listing of the inet4 unicast family is a significant aspect of a successful configuration. You 
display the IBGP peer group with highlights added to call out your modifications:

[edit protocols bgp group int]

lab@r3# show

type internal;

local-address 10.0.3.3;

family inet {

    unicast;

}

family inet6 {

    unicast;

}

export nhs;

neighbor 10.0.6.1;

neighbor 10.0.6.2;

neighbor 10.0.3.4;

neighbor 10.0.3.5;

neighbor 10.0.9.6;

neighbor 10.0.9.7;

The changes are committed at r3, and after a few moments the status of the IBGP peering 
session to r1 is displayed: 

[edit]

lab@r3# run show bgp neighbor 10.0.6.1

Peer: 10.0.6.1+179    AS 65412 Local: 10.0.3.3+4587   AS 65412

  Type: Internal    State: Established    Flags: <>

  Last State: OpenConfirm   Last Event: RecvKeepAlive

  Last Error: None



548 Chapter 5 � IPv6

  Export: [ nhs ] 

  Options: <Preference LocalAddress HoldTime AdvertiseInactive AddressFamily
     Refresh>

  Address families configured: inet-unicast inet6-unicast

  Local Address: 10.0.3.3 Holdtime: 90 Preference: 170

  Number of flaps: 0

  Peer ID: 10.0.6.1         Local ID: 10.0.3.3         Active Holdtime: 90

  Keepalive Interval: 30

  NLRI advertised by peer: inet-unicast

  NLRI for this session: inet-unicast

  Peer supports Refresh capability (2)

  Table inet.0 Bit: 10000

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            0

    Received prefixes:          0

    Suppressed due to damping:  0

  Last traffic (seconds): Received 14   Sent 21   Checked 21  

  Input messages:  Total 17     Updates 0       Refreshes 0     Octets 323

  Output messages: Total 26052  Updates 26044   Refreshes 0     Octets 2675071

  Output Queue[0]: 0

A key aspect of the resulting display is the indication that r3 has proposed both the
inet-unicast and inet6-unicast address families while r1 is proposing only the default inet-
unicast family. The result is a session with support for the IPv4 address family only. Moving 
to r1, you make similar changes before displaying its modified BGP stanza:

[edit protocols bgp group int]

lab@r1# show

type internal;

local-address 10.0.6.1;

family inet {

    unicast;

}

family inet6 {

    unicast;

}

neighbor 10.0.6.2;

neighbor 10.0.3.3;

neighbor 10.0.3.4;

neighbor 10.0.3.5;

neighbor 10.0.9.6;

neighbor 10.0.9.7;;



BGP Support for IPv6 549

After the IBGP session to r3 is reestablished, you confirm that both address families are now 
in effect:

[edit protocols bgp group int]

lab@r1# run show bgp neighbor 10.0.3.3

Peer: 10.0.3.3+179    AS 65412 Local: 10.0.6.1+3975   AS 65412

  Type: Internal    State: Established    Flags: <>

  Last State: OpenConfirm   Last Event: RecvKeepAlive

  Last Error: None

  Options: <Preference LocalAddress HoldTime AddressFamily Refresh>

  Address families configured: inet-unicast inet6-unicast

  Local Address: 10.0.6.1 Holdtime: 90 Preference: 170

  Number of flaps: 0

  Peer ID: 10.0.3.3         Local ID: 10.0.6.1         Active Holdtime: 90

  Keepalive Interval: 30

  NLRI advertised by peer: inet-unicast inet6-unicast

  NLRI for this session: inet-unicast inet6-unicast

  Peer supports Refresh capability (2)

  Table inet.0 Bit: 10001

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            2

    Received prefixes:          2

    Suppressed due to damping:  0

  Table inet6.0 Bit: 20001

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            1

    Received prefixes:          1

    Suppressed due to damping:  0

  Last traffic (seconds): Received 28   Sent 28   Checked 28  

  Input messages:  Total 4      Updates 3       Refreshes 0     Octets 226

  Output messages: Total 3      Updates 0       Refreshes 0     Octets 91

  Output Queue[0]: 0

  Output Queue[1]: 0

As required, the IBGP session now indicates the required support for both the IPv4 and IPv6 
address families. As you begin to catch yourself thinking “this IPv6 stuff is not so bad,” you 
remember that you have not yet demonstrated connectivity from r1 to external IPv6 destina-
tions. You display the 2000::/64 route to see where things stand from the perspective of r1:

[edit]

lab@r1# run show route 2000::/64

inet6.0: 28 destinations, 34 routes (27 active, 0 holddown, 1 hidden)



550 Chapter 5 � IPv6

Hmmm, nothing is returned, but you happen to catch the indication that there is a single hid-
den route. Feeling that further investigation is warranted, you display hidden routes at r1:

[edit]

lab@r1# run show route hidden detail

inet.0: 106047 destinations, 106047 routes (106047 active, 0 holddown, 0 hidden)

inet6.0: 28 destinations, 34 routes (27 active, 0 holddown, 1 hidden)

2000::/64 (1 entry, 0 announced)

         BGP    Preference: 170/-101

                Next hop type: Unusable

                State: <Hidden Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 25:57      Metric: 0 

                Task: BGP_65412.10.0.3.3+4140

                AS path: 65222 I

                Localpref: 100

                Router ID: 10.0.3.3

The display confirms that the 2000::/64 route has been advertised by r3 to r1, and that r1 
has hidden the route due to an unusable next hop. A show route resolution command is 
executed to glean additional details:

[edit]

lab@r1# run show route resolution unresolved detail

Table inet.0

Table inet6.0

2000::/64

        Protocol Nexthop: 2:10::14

        Indirect nexthop: 0 -

The highlight in the display calls out the initial problem: your existing next hop self policy 
on r3 has not altered the default BGP next hop on the 2000::/64 route. Because you are not 
running an IGP instance on r3’s fe-0/0/2 interface, other routers cannot resolve the current BGP 
next hop and so the route is hidden. A look at the nhs policy on r3 quickly exposes the problem:

[edit]

lab@r3# show policy-options policy-statement nhs

term 1 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

    }

    then {



BGP Support for IPv6 551

        next-hop self;

    }

}

In this case, term 1 of the policy is not matching on the IPv6 peering address associated with 
T1. The nhs policy is redisplayed after the necessary adjustments have been made:

[edit policy-options policy-statement nhs]

lab@r3# show

term 1 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

    }

    then {

        next-hop self;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 2:10::14;

    }

    then {

        next-hop self;

    }

}

After the changes are committed at r3, you again display the 2000::/64 route at r1:

[edit]

lab@r1# run show route 2000::/64

inet6.0: 28 destinations, 34 routes (27 active, 0 holddown, 1 hidden)

Oddly enough, the route seems to remain hidden:

[edit]

lab@r1# run show route hidden detail 

inet.0: 106069 destinations, 106069 routes (106069 active, 0 holddown, 0 hidden)

inet6.0: 28 destinations, 34 routes (27 active, 0 holddown, 1 hidden)

2000::/64 (1 entry, 0 announced)

         BGP    Preference: 170/-101

                Next hop type: Unusable



552 Chapter 5 � IPv6

                State: <Hidden Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 13         Metric: 0 

                Task: BGP_65412.10.0.3.3+4140

                AS path: 65222 I

                Localpref: 100

                Router ID: 10.0.3.3

You decide to again view the route resolution table on r1 to determine if the changes made 
to the nhs policy are taking effect:

[edit]

lab@r1# run show route resolution unresolved detail

Table inet.0

Table inet6.0

2000::/64

        Protocol Nexthop: ::10.0.3.3

        Indirect nexthop: 0 -

By comparing this display to the output shown previously, it becomes clear that the nhs 
policy at r3 is working as designed. After all, the next hop has changed from 2000::14 to 
::10.0.3.3. So what is the problem with the route? If you are wondering why the new next hop 
has a funky “::” at the front, then you are definitely getting warm! The ::10.0.3.3 prefix is an 
IPv4-compatible IPv6 address that is used for the BGP next hop of IPv6 routes that are exchanged 
over IPv4-based peering sessions. To unhide the 2000::/64 route, you must find a way to get a 
::10.0.3.3 route installed at r1 that points to r3. Because the rules of engagement in this example 
prohibit the use of additional static routes, you opt to assign the required IPv4-compatible IPv6 
address to r3’s lo0 interface:

[edit interfaces]

lab@r3# set lo0 unit 0 family inet6 address ::10.0.3.3

Because this scenario involves the unidirectional advertisement of IPv6 prefixes 
over an IPv4-based peering session (from r3 to all other internal peers), it is not 
strictly necessary that you assign, and then advertise, IPv4 compatible addresses 
to the other routers in the test bed. It is suggested that you preconfigure this 
functionality because it is likely that a subsequent scenario will involve the 
advertisement of IPv6 routes from other IBGP speakers.

The OSPF3 protocol, which is running on the lo0 interface of r3, automatically advertises 
the new lo0 address, where it will be picked up by r4 and redistributed into the RIPng domain 
to r1 and r2. The problem is that this behavior results in an additional hop to the ::10.0.3.3 
prefix from the perspective of r1, as shown here:

[edit]

lab@r1# run traceroute ::10.0.3.3



BGP Support for IPv6 553

traceroute6 to ::10.0.3.3 (::10.0.3.3) from fec0:0:0:6::1, 30 hops max, 12 byte
   packets

 1  fec0:0:4:16:290:69ff:fe6b:3002 (fec0:0:4:16:290:69ff:fe6b:3002)  0.433 ms 
    0.387 ms  0.288 ms

 2  ::10.0.3.3 (::10.0.3.3)  0.494 ms  0.489 ms  0.391 ms

To resolve this problem, the ripng-export policy at r3 is modified:

[edit policy-options policy-statement ripng-export]

lab@r3# set term 3 from route-filter ::10.0.3.3 exact

The initial policy modification is displayed next with added highlights:

[edit policy-options policy-statement ripng-export]

lab@r3# show

term 1 {

    from protocol ripng;

    then accept;

}

term 2 {

    from protocol ospf;

    then accept;

}

term 3 {

    from {

        protocol direct;

        route-filter fec0::/16 orlonger;

        route-filter ::10.0.3.3/128 exact;

    }

    then accept;

}

To prevent r3 from re-advertising the IPv4-compatible address owned by r4 into the RIPng 
domain (which could lead to extra hops), a new term is added to the ripng-export policy 
at r3:

[edit policy-options policy-statement ripng-export]

lab@r3# set term 1a from route-filter ::10.0.3.4 exact reject

It is critical that the new term 1a be evaluated before the term 2; the CLI insert function 
is used to correctly sequence the terms.

[edit policy-options policy-statement ripng-export]

lab@r3# insert term 1a after term 1

The modified policy is displayed next with changes highlighted:

[edit policy-options policy-statement ripng-export]

lab@r3# show

term 1 {



554 Chapter 5 � IPv6

    from protocol ripng;

    then accept;

}

term 1a {

    from {

        route-filter ::10.0.3.4/128 exact reject;

    }

}

term 2 {

    from protocol ospf;

    then accept;

}

term 3 {

    from {

        protocol direct;

        route-filter fec0::/16 orlonger;

        route-filter ::10.0.3.3/128 exact;

    }

    then accept;

}

The reject action associated with the ::10.0.3.4 route in term 1a prevents r3 from 
redistributing the IPv4-compatible IPv6 address of r4 into the RIPng domain when it is learned 
through OSPF3. Similar policy changes are needed at r4. The goal here is to ensure that r1 
and r2 do not receive equal-cost RIPng routes for the IPv4-compatible addresses that are 
assigned to the lo0 interfaces of r3 and r4. The following capture shows r1’s view of the ::10.0.3.3 
route before the suggested policy changes are committed at r4:

[edit]

lab@r1# run show route ::10.0.3.3

inet6.0: 29 destinations, 35 routes (29 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.3.3/128     *[RIPng/100] 00:23:22, metric 2, tag 0

                    > to fe80::290:69ff:fe6d:9800 via fe-0/0/1.0

                      to fe80::290:69ff:fe6b:3002 via fe-0/0/3.0

With r1 currently displaying two equal-cost RIPng routes to the ::10.0.3.3 prefix, the policy 
changes highlighted next are committed at r4:

[edit policy-options policy-statement ripng-export]

lab@r4# show

term 1 {



BGP Support for IPv6 555

    from protocol ripng;

    then accept;

}

term 1a {

    from {

        route-filter ::10.0.3.3/128 exact reject;

    }

}

term 2 {

    from protocol ospf;

    then accept;

}

term 3 {

    from {

        protocol direct;

        route-filter fec0::/16 orlonger;

        route-filter ::10.0.3.4/128 exact;

    }

    then accept;

}

After the changes are committed at r4, r1 displays optimal routing to the IPv4-compatible 
addresses associated with r3, r4, and r5:

[edit]

lab@r1# run show route ::10.0.3.3

inet6.0: 31 destinations, 37 routes (31 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.3.3/128     *[RIPng/100] 01:06:59, metric 2, tag 0

                    > to fe80::290:69ff:fe6d:9800 via fe-0/0/1.0

[edit]

lab@r1# run show route ::10.0.3.4

inet6.0: 31 destinations, 37 routes (31 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.3.4/128     *[RIPng/100] 00:26:06, metric 2, tag 0

                    > to fe80::290:69ff:fe6b:3002 via fe-0/0/3.0



556 Chapter 5 � IPv6

[edit]

lab@r1# run show route ::10.0.3.5

inet6.0: 31 destinations, 37 routes (31 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.3.5/128     *[RIPng/100] 00:01:30, metric 2, tag 0

                      to fe80::290:69ff:fe6d:9800 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6b:3002 via fe-0/0/3.0

The two equal-cost routes to the IPv4-compatible address at r5 are expected, and their 
presence helps to validate the redundancy aspects of your IPv6 network. Final verification of 
your changes comes in the form of successful traceroute testing from r1 to the 2000::/64 route:

[edit]

lab@r1# run traceroute 2000::1

traceroute6 to 2000::1 (2000::1) from fec0:0:0:6::1, 30 hops max, 12 byte
   packets

 1  fec0:0:4:12:290:69ff:fe6d:9800 (fec0:0:4:12:290:69ff:fe6d:9800)  0.429 ms 
    0.312 ms  0.27 ms

 2  2000::1 (2000::1)  0.21 ms  0.175 ms  0.158 ms

Before proceeding, you should assign IPv4-compatible addresses to the loopback interfaces 
of the remaining routers, and you must modify the int peer group on all IBGP speakers to 
support both IPv4 and IPv6 using the commands shown previously for r1 and r3. Note that the 
IPv4-compatible IPv6 addresses are not strictly necessary until such time that the IBGP speaker 
begins advertising IPv6 NLRI. It is suggested you assign the IPv4-compatible addresses now, 
however, in anticipation of such behavior in a later scenario. The changes made to r5 are shown 
here with added highlights:

[edit]

lab@r5# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.5/32;

    }

    family inet6 {

        address fec0:0:0:3::5/128;

        address ::10.0.3.5/128;

    }

}

[edit]

lab@r5# show protocols bgp group int

type internal;

local-address 10.0.3.5;



BGP Support for IPv6 557

family inet {

    unicast;

}

family inet6 {

    unicast;

}

neighbor 10.0.6.1;

neighbor 10.0.6.2;

neighbor 10.0.3.3;

neighbor 10.0.3.4;

neighbor 10.0.9.6;

neighbor 10.0.9.7;

Do not forget that policy modifications are needed at r1 and r2 to facilitate the advertisement 
of their IPv4-compatible loopback addresses into the RIPng domain, and from there, into the 
OSPF3 domain by r3 and r4, for ultimate use by r5. The following highlighted change to r1’s 
ripng-export policy should also be made at r2:

[edit]

lab@r1# show policy-options policy-statement ripng-export

term 1 {

    from protocol ripng;

    then accept;

}

term 2 {

    from {

        protocol static;

        route-filter FEC0:0:0:10::/64 exact;

    }

    then accept;

}

term 3 {

    from {

        protocol direct;

        route-filter fec0::/16 orlonger;

        route-filter ::10.0.6.1/128 exact;

    }

    then accept;

}

With r1 and r2 now advertising their IPv4-compatible loopback address into RIPng, 
the OSPF3 export policy on r3 and r4 must be modified to accept the IPv4-compatible 
addresses for redistribution into the OSPF3 domain. The highlighted change shown here 



558 Chapter 5 � IPv6

for r4 is needed on r3 also:

[edit policy-options policy-statement ospf3-export]

lab@r4# show

term 1 {

    from {

        route-filter fec0:0:4::/46 orlonger;

        route-filter fec0:0:0:6::/64 orlonger;

        route-filter ::10.0.6.0/122 orlonger;

    }

    then accept;

}

After the changes are committed, equal-cost routes to the IPv4-compatible addresses used by 
r1 and r2 are confirmed at r5:

[edit]

lab@r5# run show route ::10.0.6.2

inet6.0: 25 destinations, 30 routes (25 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.6.2/128     *[OSPF/150] 00:04:01, metric 2, tag 0

                      via so-0/1/0.0

                    > via at-0/2/1.0

[edit]

lab@r5# run show route ::10.0.6.1

inet6.0: 25 destinations, 30 routes (25 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.6.1/128     *[OSPF/150] 00:04:03, metric 2, tag 0

                      via so-0/1/0.0

                    > via at-0/2/1.0

Verifying IBGP Peering and IPv6 Support

You begin verification by confirming that all IBGP sessions are established and that no hidden 
routes are present:

lab@r4> show bgp summary

Groups: 2 Peers: 7 Down peers: 3

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            105921     105921          0          0          0          0

inet6.0                1          1          0          0          0          0



BGP Support for IPv6 559

Peer           AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
   Received/Damped...

172.16.0.6  65010      0       0     0      0     4:58:01 Idle

10.0.3.3    65412  21994     250     0      6     2:03:48 Establ

  inet.0: 105921/105921/0

  inet6.0: 1/1/0

10.0.3.5    65412     25      26     0      2       11:58 Establ

  inet.0: 0/0/0

  inet6.0: 0/0/0

10.0.6.1    65412    595     597     0      0     4:57:25 Establ

  inet.0: 0/0/0

  inet6.0: 0/0/0

10.0.6.2    65412     23      24     0      1       10:41 Establ

  inet.0: 0/0/0

  inet6.0: 0/0/0

10.0.9.6    65412      0       0     0      0     4:58:01 Active

10.0.9.7    65412      0       0     0      0     4:58:01 Active

lab@r4> show route hidden 

inet.0: 105946 destinations, 105948 routes (105946 active, 0 holddown, 0 hidden)

inet6.0: 32 destinations, 52 routes (32 active, 0 holddown, 0 hidden)

The active sessions in the previous display relate to peers that are not part of the current 
IPv6 test bed and are therefore of no concern. The lack of hidden routes is a very good sign, as 
is the presence of established IBGP sessions that make use of both the inet.0 and inet6.0 
routing tables, because this indicates that all IBGP sessions have been correctly configured for 
IPv4 and IPv6 support.

For final verification, traceroutes are performed to external and internal destinations. Make sure 
that you also test IPv4 connectivity to catch any possible mistakes before exam grading commences:

lab@r4> traceroute 2000::1

traceroute6 to 2000::1 (2000::1) from ::10.0.3.4, 30 hops max, 12 byte packets

 1  ::10.0.3.3 (::10.0.3.3)  1.035 ms  0.719 ms  0.694 ms

 2  * * *

 3  *^C

Hmm, the traceroute failure from r4 to the 2000::/64 prefix provides a less than auspicious 
start. The highlighted portion of the capture shows that the packet is being sourced from the 
IPv4-compatible address assigned to r4’s loopback address.

When present, IPv4-compatible addresses are preferred over IPv6 addresses 
for purposes of primary address determination on a given interface.



560 Chapter 5 � IPv6

You suspect that the problem relates to the aggregate route being advertised from r3 to T1. 
Specifically, you are concerned that the FEC0::/16 aggregate does not encompass the IPv4-
compatible address space now deployed in the IPv6 test bed. To test your theory, you source the 
packet from one of the site-local addresses owned by r4:

lab@r4> traceroute 2000::1 source fec0:0:0:3::4

traceroute6 to 2000::1 (2000::1) from fec0:0:0:3::4, 30 hops max, 12 byte
   packets

 1  fec0:0:2:4:2a0:a5ff:fe3d:234 (fec0:0:2:4:2a0:a5ff:fe3d:234)  0.768 ms  
    0.703 ms  0.563 ms

 2  2000::1 (2000::1)  0.496 ms  0.501 ms  0.447 ms

The traceroute succeeds when sourced from a FEC0::/16 prefix. Although not clearly 
mandated by the rules governing this configuration scenario, you make the highlighted 
changes on r3 to effect the advertisement of a ::10.0.0.0/112 aggregate route to T1:

[edit]

lab@r3# show routing-options rib inet6.0

aggregate {

    route fec0::/16;

    route ::10.0.0.0/112;

}

[edit]

lab@r3# show policy-options policy-statement ipv6-agg

term 1 {

    from {

        protocol aggregate;

        route-filter fec0::/16 exact;

        route-filter ::10.0.0.0/112 orlonger;

    }

    then accept;

}

After the changes are committed, traceroutes succeed with the default source address 
selection of the IPv4-compatible address at r4. Various traceroutes are performed to both 
IPv4 and IPv6 destinations:

lab@r4> traceroute 2000::1 

traceroute6 to 2000::1 (2000::1) from ::10.0.3.4, 30 hops max, 12 byte packets

 1  ::10.0.3.3 (::10.0.3.3)  0.963 ms  0.718 ms  0.696 ms

 2  2000::1 (2000::1)  0.489 ms  0.518 ms  0.452 ms

Verification proceeds by testing other IPv6 and IPv4 destinations:

lab@r4> traceroute 130.130.0.1

traceroute to 130.130.0.1 (130.130.0.1), 30 hops max, 40 byte packets



Tunneling IPv6 561

 1  10.0.2.5 (10.0.2.5)  0.757 ms  0.569 ms  0.502 ms

 2  130.130.0.1 (130.130.0.1)  0.467 ms  0.463 ms  0.428 ms

lab@r4> traceroute fec0:0:0:6::1

traceroute6 to fec0:0:0:6::1 (fec0:0:0:6::1) from
   fec0:0:4:16:290:69ff:fe6b:3002, 30 hops max, 12 byte packets

 1  fec0:0:0:6::1 (fec0:0:0:6::1)  1.009 ms  0.556 ms  0.411 ms

lab@r4> traceroute ::10.0.6.1

traceroute6 to ::10.0.6.1 (::10.0.6.1) from ::10.0.3.4, 30 hops max, 
   12 byte packets

 1  ::10.0.6.1 (::10.0.6.1)  0.633 ms  0.435 ms  0.41 ms

Traceroutes to internal IPv6, IPv4, and IPv4-compatible IPv6 destinations succeed. Although 
not shown here for the sake of brevity, you can assume that all internal destinations have 
been confirmed from all routers in the IPv6 test bed, which completes your IPv6 and BGP 
support configuration scenario.

Tunneling IPv6
This section demonstrates configuration and verification of IPv4 tunnels that support the 
transport of IPv6 datagrams. IPv6 tunneling is a significant feature because it is one of the prin-
cipal mechanisms that allow for graceful migration from IPv4 to IPv6; with tunnels, islands of 
IPv6 connectivity can be interconnected across IPv4-only infrastructure. As with PIM sparse 
mode rendezvous points and first hop routers, a Tunnel Services (TS) PIC is required in the 
routers that form your IP over IP (IP-IP) tunnel endpoints. You can assume that the TS PICs 
deployed in Chapter 4 are still present in r3 and r4. Figure 5.8 provides the topology details 
needed to complete this section.

Figure 5.8 clearly shows the challenge that confronts you; you must find a way to provide 
transit IPv6 routing services across a node (r5) that does not offer any IPv6 support. You 
will be deactivating the Frame Relay link between r3 and r4 to ensure that IPv6 traffic is 
forced to transit r5. You need not concern yourself with r1 and r2 in this configuration 
scenario.

To complete this section, you must configure your test bed according to these requirements:
� Reload the OSPF baseline configuration on r5.
� Deactivate the Frame Relay link between r3 and r4 and the internal facing Fast Ethernet 

links at r3 and r4.
� Establish an IP-IP tunnel between r3 and r4.
� Provide transit IPv6 routing services between T1 and C1 over an IP-IP tunnel; this traffic 

must transit r5.
� No static routes (IPv4 or IPv6) are permitted on r3 or r4.



562 Chapter 5 � IPv6

F I G U R E 5 . 8 IPv6 over IP-IP tunnels 

Preliminary Configuration

You begin with the preliminary configuration changes needed to comply with the scenario’s 
restrictions and to establish the native IPv6 peering session between r4 and C1. The first set of 
commands restores and commits the OSPF baseline configuration from Chapter 1 into r5:

[edit]

lab@r5# load override r5-baseline

load complete

AS 65010
200.200/16
2010::/64

C1

M5M5

M5M5

r5

so
-0/

1/1

10
.0.

2.8
/30

so
-0/

1/0

at-0/1/0

10.0.2.0/30
at-0/2/1

.1

.9

fe-0/0/2

fe-0/0/0

.10

.2

r4

AS 65222
130.130/16
2000::/64

T1

2:10::14/64

2:10::13/64

2:11::5/64

2:11::6/64

M5M5

Loopbacks

r3 = FEC0:0:0:3::3/128
::10.0.3.3/128

r4 = FEC0:0:0:3::4/128
::10.0.3.4/128

r5 = FEC0:0:0:3::5/128
::10.0.3.5/128

r3



Tunneling IPv6 563

After committing the changes on r5, you move on to deactivate the Frame Relay link between 
r3 and r4, and the internal-facing Fast Ethernet links at r3 and r4, in accordance with the 
requirements of this configuration example:

[edit]

lab@r3# deactivate interfaces so-0/2/0

[edit]

lab@r3# deactivate interfaces fe-0/0/0

[edit]

lab@r3# deactivate interfaces fe-0/0/1

Although not shown, similar deactivate commands should be entered at r4 also. Note that 
deactivating the POS-based Frame Relay link at either r3 or r4 is sufficient for the purposes of 
this example. The next sequence of commands configures the native IPv6 EBGP peering session 
between r4 and C1, beginning with the configuration of r4’s fe-0/0/0 interface:

[edit interfaces fe-0/0/0]

lab@r4# set unit 0 family inet6 address 2:11::5/64

And now the native IPv6 EBGP peering session is defined and committed at r4:

[edit protocols bgp group ext-v6]

lab@r4# set type external peer-as 65010

[edit protocols bgp group ext-v6]

lab@r4# set neighbor 2:11::6

[edit protocols bgp group ext-v6]

lab@r4# commit

commit complete

The IPv6 EBGP peering–related changes made to r4’s configuration are displayed next with 
highlights:

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 172.16.0.5/30;

    }

    family inet6 {

        address 2:11::5/64;

    }

}

[edit]

lab@r4# show protocols bgp group ext-v6



564 Chapter 5 � IPv6

type external;

export ipv6-agg;

peer-as 65010;

neighbor 2:11::6;

A few minutes after the commit, you confirm EBGP session status between r4 and C1:

[edit]

lab@r4# run show bgp neighbor 2:11::6

Peer: 2:11::6+1673    AS 65010 Local: 2:11::5+179     AS 65412

  Type: External    State: Established    Flags: <>

  Last State: OpenConfirm   Last Event: RecvKeepAlive

  Last Error: None

  Options: <Preference HoldTime AdvertiseInactive PeerAS Refresh>

  Holdtime: 90 Preference: 170

  Number of flaps: 0

  Peer ID: 200.200.0.1      Local ID: 10.0.3.4         Active Holdtime: 90

  Keepalive Interval: 30

  Local Interface: fe-0/0/0.0 

  NLRI advertised by peer: inet6-unicast

  NLRI for this session: inet6-unicast

  Peer supports Refresh capability (2)

  Table inet6.0 Bit: 20001

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            1

    Received prefixes:          1

    Suppressed due to damping:  0

  Last traffic (seconds): Received 16   Sent 15   Checked 15  

  Input messages:  Total 11     Updates 2       Refreshes 0     Octets 344

  Output messages: Total 12     Updates 2       Refreshes 0     Octets 356

  Output Queue[1]: 0

[edit]

lab@r4# run show route 2010::/64

inet6.0: 31 destinations, 37 routes (31 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

2010::/64          *[BGP/170] 00:02:00, MED 0, localpref 100

                      AS path: 65010 I

                    > to 2:11::6 via fe-0/0/0.0



Tunneling IPv6 565

The command’s output confirms that the IPv6 EBGP peering session has been established, 
and that r4 is receiving a 2010::/64 route from the C1 peer. Be aware that the 2010::/64 route, 
when received by r3, will be hidden due to its inability to resolve the route’s next hop. This 
condition will persist until the appropriate next hop self policy is added to r4:

[edit]

lab@r3# run show route 2010::/64 hidden detail

inet6.0: 33 destinations, 41 routes (32 active, 0 holddown, 1 hidden)

2010::/64 (1 entry, 0 announced)

         BGP    Preference: 170/-101

                Next hop type: Unusable

                State: <Hidden Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 4:20       Metric: 0 

                Task: BGP_65412.10.0.3.4+2567

                AS path: 65010 I

                Localpref: 100

                Router ID: 10.0.3.4

[edit]

lab@r3# run show route resolution unresolved

Table inet.0

Table inet6.0

2010::/64

        Protocol Nexthop: 2:11::6

        Indirect nexthop: 0 -

Note that the IPv4-compatible IPv6 address that was assigned to r4’s lo0 interface as part of 
the previous section is critical to the overall success of this scenario. With the IPv4-compatible 
address already present at r4, a simple next hop self policy (or a passive OSPF3 instance on the 
fe-0/0/0 interface) is all that is needed to make the 2010::/64 route active at r3. With prelimi-
nary configuration confirmed, you move to the next section, which details the actual tunnel 
configuration.

IP-IP Tunnel Configuration

IP-IP tunnels are normally established between loopback addresses for maximum reliability. 
The tunnel itself might or might not be numbered. A numbered tunnel is configured in this 
example because numbered interfaces make troubleshooting more straightforward. Figure 5.9 
illustrates your tunnel configuration plan.



566 Chapter 5 � IPv6

F I G U R E 5 . 9 IP-IP tunnel configuration

Before you configure the IP-IP tunnel, the TS PIC’s position is verified:

[edit]

lab@r3# run show chassis fpc pic-status

Slot 0 Online

  PIC 0    4x F/E, 100 BASE-TX

  PIC 1    2x OC-3 ATM, MM

  PIC 2    4x OC-3 SONET, MM

  PIC 3    1x Tunnel

AS 65010
200.200/16
2010::/64

C1

M5M5

M5M5

r3

r5

so
-0/

1/1

10
.0.

2.8
/30

so
-0/

1/0

at-0/1/0

10.0.2.0/30
at-0/2/1

.1

.9

IPv4
Only

fe-0/0/2

fe-0/0/0

.10

.2

r4

AS 65222
130.130/16
2000::/64

T1

2:10::14/64

2:10::13/64

2:11::5/64

2:11::6/64

M5M5

Loopbacks

r3 = FEC0:0:0:3::3/128
10.0.3.3

r4 = FEC0:0:0:3::3/128
10.0.3.4

r5 = FEC0:0:0:3::5/128

10.0.3.3
.1

.2
10.0.3.4

Tunnel
Endpoints

Tunnel
Address FEC0:0:200:0::/64



Tunneling IPv6 567

You can assume that r5 also has its TS PIC installed in slot 3. The following commands 
configure the IP-IP tunnel at r3. Note that port 0 must be specified when configuring a TS PIC 
due to its lack of physical ports:

[edit]

lab@r3# edit interfaces ip-0/3/0

[edit interfaces ip-0/3/0]

lab@r3# set unit 0 tunnel source 10.0.3.3

[edit interfaces ip-0/3/0]

lab@r3# set unit 0 tunnel destination 10.0.3.4

Next, you assign the IPv6 family to the tunnel to enable IPv6 support. Note that IPv6 
addressing is also assigned at this time:

[edit interfaces ip-0/3/0]

lab@r3# set unit 0 family inet6 address fec0:0:200::1/64

The configuration changes at r4 are similar to those made at r3:

[edit interfaces ip-0/3/0]

lab@r4# show

unit 0 {

    tunnel {

        source 10.0.3.4;

        destination 10.0.3.3;

    }

    family inet6 {

        address fec0:0:200::2/64;

    }

}

The IP-IP tunnel configuration shown in this example is unnumbered from the perspective of 
the IPv4 protocol.

Confirming IP-IP Tunnel Operation

After committing the changes, the IP-IP tunnel status is determined:

[edit interfaces ip-0/3/0]

lab@r4# run show interfaces ip-0/3/0

Physical interface: ip-0/3/0, Enabled, Physical link is Up

  Interface index: 23, SNMP ifIndex: 36

  Type: IPIP, Link-level type: IP-over-IP, MTU: Unlimited, Speed: 800mbps

  Device flags   : Present Running

  Interface flags: SNMP-Traps

  Input rate     : 0 bps (0 pps)

  Output rate    : 0 bps (0 pps)



568 Chapter 5 � IPv6

  Logical interface ip-0/3/0.0 (Index 11) (SNMP ifIndex 40)

    Flags: Point-To-Point SNMP-Traps IP-Header
       10.0.3.3:10.0.3.4:4:df:64:00000000

    Encapsulation: IPv4-NULL

  Input packets : 61 

  Output packets: 63

    Protocol inet6, MTU: 1480

      Flags: None

      Addresses, Flags: Is-Preferred

        Destination: fe80::/64, Local: fe80::2a0:a5ff:fe28:d36

      Addresses, Flags: Is-Preferred Is-Primary

        Destination: fec0:0:200::/64, Local: fec0:0:200::2

The display confirms that the IP-IP tunnel has been established between the loopback 
addresses of r3 and r4 and that the tunnel has been configured to support the IPv6 family with 
IPv6 addressing assigned according to Figure 5.9. A quick ping test is initiated at r4 while traffic 
is monitored at r3 on both the ip-0/3/0 and at-0/2/1 interfaces to confirm operation of the 
tunnel’s data plane:

[edit interfaces ip-0/3/0]

lab@r4# run ping fec0:0:200::1

PING6(56=40+8+8 bytes) fec0:0:200::2 --> fec0:0:200::1

16 bytes from fec0:0:200::1, icmp_seq=0 hlim=64 time=1.086 ms

16 bytes from fec0:0:200::1, icmp_seq=1 hlim=64 time=0.934 ms

. . . 

[edit]

lab@r3# run monitor traffic interface ip-0/3/0

verbose output suppressed, use <detail> or <extensive> for full protocol decode

Listening on ip-0/3/0, capture size 96 bytes

18:22:59.714406  In fec0:0:200::2 > fec0:0:200::1: icmp6: echo request

18:23:00.714834  In fec0:0:200::2 > fec0:0:200::1: icmp6: echo request

18:23:01.714769  In fec0:0:200::2 > fec0:0:200::1: icmp6: echo request

^C

3 packets received by filter

0 packets dropped by kernel

The output confirms the receipt of ICMPv6 echo request packets on r3’s ip-0/3/0 tunnel 
interface. You now monitor r3’s at-0/1/0 interface to confirm IP-IP encapsulation of IPv6 
datagrams:

[edit]

lab@r3# run monitor traffic interface at-0/1/0

verbose output suppressed, use <detail> or <extensive> for full protocol decode

Listening on at-0/1/0, capture size 96 bytes



Tunneling IPv6 569

18:24:05.196439 Out fe80::2a0:a5ff:fe3d:234 > ff02::5:  OSPFv3-hello 36: rtrid
   10.0.3.3 backbone [hlim 1]

. . .

18:24:05.714843 Out IP 10.0.3.3 > 10.0.3.4: fec0:0:200::1 > fec0:0:200::2:
   icmp6: echo reply (encap)

. . .

18:24:06.715321 Out IP 10.0.3.3 > 10.0.3.4: fec0:0:200::1 > fec0:0:200::2:
   icmp6: echo reply (encap)

The results confirm that the IPv6 numbered IP-IP tunnel is operational between r3 and r4.

Adjusting IBGP and EBGP Policy

With the native IPv6 EBGP peering sessions established between r4 and C1, and the establishment 
of bidirectional IP-IP tunnel functionality between r3 and r4 (bidirectional tunnel functionality 
is achieved with the configuration of two unidirectional IP-IP tunnels), you anticipate that a few 
modifications to r4’s IBGP and EBGP policies and the definition of some IPv6 aggregate routes 
are all that separate you from a successful completion of the IPv6-over-IPv4 tunneling task.

You start at r4 with the configuration needed to create, and then advertise, IPv6 aggregate 
routes for your AS to the C1 peer. This step is necessary to ensure that C1 can respond to ping 
and traceroute requests that originate within your AS. Note that this configuration is already in 
place at r3 from a previous section. The changes made to r4’s configuration are shown next 
with added highlights:

[edit]

lab@r4# show routing-options rib inet6.0

aggregate {

    route fec0::/16;

    route ::10.0.0.0/112;

}

[edit]

lab@r4# show policy-options policy-statement ipv6-agg

term 1 {

    from {

        protocol aggregate;

        route-filter ::10.0.0.0/112 exact;

        route-filter fec0::/16 exact;

    }

    then accept;

}

[edit]

lab@r4# show protocols bgp group ext-v6

type external;

export ipv6-agg;



570 Chapter 5 � IPv6

peer-as 65010;

neighbor 2:11::6;

The nhs policy is modified at r4 so that it also overwrites the BGP next hop on the 2010::/64 
route before it is advertised to IBGP peers. The changes made to r4’s nhs policy are called out 
here with highlights:

[edit policy-options policy-statement nhs]

lab@r4# show

term 1 {

    from {

        protocol bgp;

        neighbor 172.16.0.6;

    }

    then {

        next-hop self;

    }

}

term 2 {

    from neighbor 2:11::6;

    then {

        next-hop self;

    }

}

The results are confirmed at r3 by verifying that the 2010::/64 route is no longer hidden:

[edit]

lab@r3# run show route 2010::/64 detail

inet6.0: 17 destinations, 22 routes (17 active, 0 holddown, 0 hidden)

2010::/64 (1 entry, 1 announced)

        *BGP    Preference: 170/-101

                Source: 10.0.3.4

                Next hop type: Reject

                Protocol next hop: ::10.0.3.4 Indirect next hop: 85c30a8 124

                State: <Active Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 1:30       Metric: 0       Metric2: 0 

                Task: BGP_65412.10.0.3.4+179

                Announcement bits (3): 0-KRT 5-BGP.0.0.0.0+179 6-Resolve inet6.0 

                AS path: 65010 I

                Localpref: 100

                Router ID: 10.0.3.4



Tunneling IPv6 571

The good news is that the modifications you made to r4’s nhs policy have resulted in the 
2010::/64 route being made active at r3. The bad news relates to the route’s Reject next 
hop indication, which seems more than a little strange. Deciding to investigate further, you 
uncover a valuable clue when you direct pings to the ::10.0.3.4 BGP next hop associated with 
the 2010::/64 route:

[edit]

lab@r3# run ping ::10.0.3.4

PING6(56=40+8+8 bytes) ::10.0.3.3 --> ::10.0.3.4

ping: sendmsg: No route to host

ping6: wrote ::10.0.3.4 16 chars, ret=-1

ping: sendmsg: No route to host

ping6: wrote ::10.0.3.4 16 chars, ret=-1

^C

--- ::10.0.3.4 ping6 statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

Displaying the route to the BGP next hop sheds additional light on the problem:

[edit]

lab@r3# run show route ::10.0.3.4

inet6.0: 17 destinations, 22 routes (17 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.0.0/112     *[Aggregate/130] 03:34:37

                      Reject

The lack of an IPv6-capable IGP between r3 and r4 results in a black hole when the longest 
match for the ::10.0.3.4 route ends up being the locally defined ::10.0.0.0/112 aggregate. This 
situation could easily be remedied with a static route on r3 and r4 that points packets addressed 
to the remote BGP next hop to the IP-IP tunnel endpoint. However, the use of static routing is 
prohibited by the rules of engagement set forth for this example. The motivation for restricting 
static routes is to verify that the JNCIE candidate is comfortable enabling an IPv6 IGP over an 
IPv4 tunnel.

Many JNCIE candidates shy away from running an IGP across a tunnel because of previous 
experience with route recursion problems. Recursion problems surface in these cases when the 
IGP forms an adjacency over the tunnel and subsequently learns that the shortest path to 
the remote tunnel endpoint is the tunnel itself. Attempting to install the tunnel as the forwarding 
next hop for itself creates a route recursion problem that results in the teardown of the tunnel 
(and loss of the IGP adjacency that had formed over the tunnel). This behavior can be seen next 
in the context of an IPv4 tunnel that is enabled for OSPF routing:

[edit]

lab@r3# show interfaces ip-0/3/0

unit 0 {



572 Chapter 5 � IPv6

    tunnel {

        source 10.0.3.3;

        destination 10.0.3.4;

    }

    family inet {

        address 10.0.20.1/30;

    }

}

[edit]

lab@r3# show protocols ospf

traceoptions {

    file ospf;

}

area 0.0.0.0 {

    interface so-0/2/0.100;

    interface at-0/1/0.0;

    interface ip-0/3/0.0;

}

Once the configuration is committed, the effects of IGP flap can be see in the results of ping 
exchanges, and in the OSPF trace output (the tracing configuration has no flags enabled to 
minimize clutter):

[edit]

lab@r3# run ping 10.0.3.4

PING 10.0.3.4 (10.0.3.4): 56 data bytes

64 bytes from 10.0.3.4: icmp_seq=0 ttl=254 time=1.306 ms

ping: sendto: Network is down

ping: sendto: Network is down

ping: sendto: Network is down

ping: sendto: Network is down

64 bytes from 10.0.3.4: icmp_seq=5 ttl=254 time=1.321 ms

64 bytes from 10.0.3.4: icmp_seq=6 ttl=254 time=1.666 ms

64 bytes from 10.0.3.4: icmp_seq=7 ttl=254 time=1.654 ms

. . .

64 bytes from 10.0.3.4: icmp_seq=14 ttl=254 time=1.617 ms

64 bytes from 10.0.3.4: icmp_seq=15 ttl=254 time=1.053 ms

ping: sendto: Network is down

ping: sendto: Network is down

^C

--- 10.0.3.4 ping statistics ---

18 packets transmitted, 12 packets received, 33% packet loss

round-trip min/avg/max/stddev = 1.053/3.284/22.398/5.767 ms



Tunneling IPv6 573

[edit protocols ospf]

lab@r3# 

*** monitor and syslog output enabled, press ESC-Q to disable ***

May 12 20:11:07 RPD_OSPF_NBRUP: OSPF neighbor 10.0.20.2 (ip-0/3/0.0) state
   changed from Exchange to Full due to DBD exchange complete

May 12 20:11:08 RPD_OSPF_NBRDOWN: OSPF neighbor 10.0.20.2 (ip-0/3/0.0) state
   changed from Full to Down due to Kill all neighbors

May 12 20:11:18 RPD_OSPF_NBRUP: OSPF neighbor 10.0.20.2 (ip-0/3/0.0) state
   changed from Init to ExStart due to Two way communication established

May 12 20:11:23 RPD_OSPF_NBRUP: OSPF neighbor 10.0.20.2 (ip-0/3/0.0) state
   changed from Exchange to Full due to DBD exchange complete

May 12 20:11:23 RPD_OSPF_NBRDOWN: OSPF neighbor 10.0.20.2 (ip-0/3/0.0) state
   changed from Full to Down due to Kill all neighbors

. . .

You can, however, run an IPv6 IGP across an IPv4 tunnel without experiencing recursion 
problems. This is because the tunnel endpoints are IPv4 based, which means that the IPv6-based 
IGP does not attempt to install the tunnel as the next hop to itself because the IPv6 IGP never 
actually learns the tunnel endpoints over the tunnel itself. Keeping this in mind, you boldly 
enable the OSPF3 instance to run on the tunnel interface at r3 (a similar command is needed on 
r4 but is not shown here):

[edit]

lab@r3# set protocols ospf3 area 0 interface ip-0/3/0

After committing the changes, OSPF3 adjacency is confirmed:

[edit]

lab@r4# run show ospf3 neighbor

ID               Interface              State     Pri   Dead

10.0.3.3         ip-0/3/0.0             Full      128   35  

  Neighbor-address fe80::2a0:a5ff:fe3d:234

With the adjacency established, routing between the IPv4-compatible IPv6-based loopback 
addresses (which are used at the BGP next hops for routes learned from the T1 and C1 EBGP 
peerings) is possible:

[edit]

lab@r4# run show route ::10.0.3.3

inet6.0: 19 destinations, 23 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.3.3/128     *[OSPF/10] 00:04:39, metric 1

                    > via ip-0/3/0.0

[edit]

lab@r4# run ping ::10.0.3.3 source ::10.0.3.4



574 Chapter 5 � IPv6

PING6(56=40+8+8 bytes) ::10.0.3.4 --> ::10.0.3.3

16 bytes from ::10.0.3.3, icmp_seq=0 hlim=64 time=1.211 ms

16 bytes from ::10.0.3.3, icmp_seq=1 hlim=64 time=1.061 ms

16 bytes from ::10.0.3.3, icmp_seq=2 hlim=64 time=1.454 ms

16 bytes from ::10.0.3.3, icmp_seq=3 hlim=64 time=1.354 ms

16 bytes from ::10.0.3.3, icmp_seq=4 hlim=64 time=1.256 ms

^C

--- ::10.0.3.3 ping6 statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 1.061/1.267/1.454 ms

Confirming IPv6-over-IPv4 Tunnel Operation

The configuration steps that have brought you to this point involved the confirmation of 
various aspects of your IPv6-over-IPv4 tunnel configuration. The commands and output 
shown next demonstrate (and review) key operational checks. You begin by confirming the 
presence of the 2000::/64 and the 2010::/64 routes:

[edit]

lab@r4# run show route 2000::/64 detail

inet6.0: 19 destinations, 23 routes (19 active, 0 holddown, 0 hidden)

2000::/64 (1 entry, 1 announced)

        *BGP    Preference: 170/-101

                Source: 10.0.3.3

                Next hop: via ip-0/3/0.0, selected

                Protocol next hop: ::10.0.3.3 Indirect next hop: 85c8348 66

                State: <Active Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 17:20      Metric: 0       Metric2: 1 

                Task: BGP_65412.10.0.3.3+179

                Announcement bits (3): 0-KRT 4-BGP.0.0.0.0+179 5-Resolve inet6.0 

                AS path: 65222 I

                Localpref: 100

                Router ID: 10.0.3.3

[edit]

lab@r4# run show route 2010::/64 detail

inet6.0: 19 destinations, 23 routes (19 active, 0 holddown, 0 hidden)

2010::/64 (1 entry, 1 announced)



Tunneling IPv6 575

        *BGP    Preference: 170/-101

                Source: 2:11::6

                Next hop: 2:11::6 via fe-0/0/0.0, selected

                State: <Active Ext>

                Local AS: 65412 Peer AS: 65010

                Age: 2:00:03    Metric: 0 

                Task: BGP_65010.2:11::6+3681

                Announcement bits (3): 0-KRT 4-BGP.0.0.0.0+179 5-Resolve inet6.0 

                AS path: 65010 I

                Localpref: 100

                Router ID: 200.200.0.1

Both routes are present and considered active. Note that the 2000::/64 route identifies a BGP 
next hop of ::10.0.3.3 and a forwarding next hop in the form of the IP-IP tunnel. Reachability 
of the tunnel endpoints (as learned through the OSPF3 protocol), as well as the IPv6-related 
addressing is confirmed:

[edit]

lab@r4# run ping 10.0.3.3 count 2

PING 10.0.3.3 (10.0.3.3): 56 data bytes

64 bytes from 10.0.3.3: icmp_seq=0 ttl=254 time=1.664 ms

64 bytes from 10.0.3.3: icmp_seq=1 ttl=254 time=1.449 ms

--- 10.0.3.3 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 1.449/1.556/1.664/0.107 ms

[edit]

lab@r4# run ping fec0:0:20::1 count 2

PING6(56=40+8+8 bytes) ::10.0.3.4 --> fec0:0:20::1

ping: sendmsg: No route to host

ping6: wrote fec0:0:20::1 16 chars, ret=-1

ping: sendmsg: No route to host

ping6: wrote fec0:0:20::1 16 chars, ret=-1

--- fec0:0:20::1 ping6 statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

[edit]

lab@r4# run ping fec0:0:200::1 count 2

PING6(56=40+8+8 bytes) fec0:0:200::2 --> fec0:0:200::1



576 Chapter 5 � IPv6

16 bytes from fec0:0:200::1, icmp_seq=0 hlim=64 time=1.525 ms

16 bytes from fec0:0:200::1, icmp_seq=1 hlim=64 time=1.388 ms

--- fec0:0:200::1 ping6 statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 1.388/1.456/1.525 ms

The IP-IP tunnel is operational, and the IPv4-based endpoints and assigned IPv6 addresses 
are confirmed as reachable. You now check the tunnel’s OSPF3 adjacency status, and the ability 
to route through the tunnel to the IPv4-compatible IPv6 loopback addresses from the perspective 
of r3:

[edit]

lab@r3# run show ospf3 neighbor

ID               Interface              State     Pri   Dead

10.0.3.4         ip-0/3/0.0             Full      128   37  

  Neighbor-address fe80::2a0:a5ff:fe28:d36

[edit]

lab@r3# run show route ::10.0.3.4

inet6.0: 19 destinations, 25 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.3.4/128     *[OSPF/10] 00:18:00, metric 1

                    > via ip-0/3/0.0

[edit]

lab@r3# run traceroute ::10.0.3.4

traceroute6 to ::10.0.3.4 (::10.0.3.4) from ::10.0.3.3, 30 hops max, 12 byte
   packets

 1  ::10.0.3.4 (::10.0.3.4)  1.985 ms  0.897 ms  1.325 ms

All of the results shown thus far indicate that the IP-IP tunnel is operational for the transport 
of IPv6 packets. The final confirmation comes in the form of a successful traceroute from C1 
to the 2000::/64 route that is advertised by the T1 router. Note that care must be taken to source 
the traceroute from the 2010::1/128 address assigned to C1’s loopback address because the 
2:11::/64 EBGP peering address is not advertised within your AS, or to the T1 peer:

[edit]

lab@r4# run telnet 2010::1

Trying 2010::1...

Connected to 2010::1.

Escape character is '^]'.

c1 (ttyp0)



Summary 577

login: lab

Password:

Last login: Mon May 12 09:38:40 on ttyd0

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@c1> traceroute 2000::1 source 2010::1

traceroute6 to 2000::1 (2000::1) from 2010::1, 30 hops max, 12 byte packets

 1  2:11::5 (2:11::5)  0.461 ms  0.336 ms  0.33 ms

 2  ::10.0.3.3 (::10.0.3.3)  1.253 ms  0.691 ms  0.824 ms

Excellent! The successful traceroute between the IPv6 prefixes owned by the T1 and C1 
peers, combined with the output gleaned from previous verification steps, confirms that you 
have configured IPv6-over-IPv4 tunnels in accordance with the restrictions posed in this example. 
It bears mentioning that you will not be able to monitor transit traffic at r3 or r4 to verify that 
the IPv6 traffic is actually being tunneled inside of IP-IP. This is because traffic monitoring is 
possible only for traffic that originates or terminates at that router’s RE. You can further 
confirm that transit IPv6 traffic is “being tunneled” by monitoring packet counts on the IP-IP 
interface while generating lots of transit IPv6 traffic by adding the rapid switch to the pings 
initiated at T1 or C1.

IPv6 Tunneling Summary

The tunneling of IPv6 traffic over network elements that support IPv4 only is an important 
capability that is critical to the eventual migration of the public Internet from its existing IPv4 
infrastructure to one that is based on IPv6. Juniper Networks M-series and T-series routing 
platforms support IPv6-over-IPv4 tunnels when equipped with a TS PIC. This section demon-
strated the configuration of an IPv6 numbered IP-IP tunnel that originated and terminated 
on IPv4-based loopback addresses. While static routing is a possibility (depending on the 
restrictions posed in your particular scenario), this section demonstrated how an IPv6-capable 
IGP can be enabled over the IPv4-based IP-IP tunnel to facilitate the exchange of routes, including 
the remote router’s IPv4-compatible IPv6 address, which was needed for BGP next hop resolution 
in this example.

Summary
This chapter provided various examples of JNCIE-level IPv6 configuration scenarios. The chapter 
demonstrated manual and EUI-64 based IPv6 address assignment and described how link-local 
addresses are automatically created for IPv6-enabled interfaces. The chapter went on to 
demonstrate RIPng, OSPF3, and IPv6-related routing policy in the context of mutual IPv6 route 
redistribution; examples of operational mode commands that help to validate the operation of 
RIPng or OSPF3 were also shown and described. The BGP section detailed support for native 



578 Chapter 5 � IPv6

IPv6 peering, and the use of an IPv4-based BGP peering session that supported the advertisement 
of both IPv6 and IPv4 NLRI. In the latter case, the need for an IPv4-compatible IPv6 address 
that matches the IPv4 peering address for next hop resolution of the IPv6 NLRI was discussed 
and demonstrated.

The chapter body concluded with an IPv6-over-IPv4 tunnel example in which two islands of 
IPv6 connectivity were interconnected across an IPv4-only cloud using an IP-IP tunnel. In this 
case, the use of a next hop self policy and an IPv4-based IBGP peering session that supported 
IPv6 NLRI resulted in BGP next hops that were set to the advertising peer’s IPv4-compatible 
address. Resolution of the IPv4-compatible BGP next hops was made possible by running an 
IPv6 IGP across the IPv4-based IP-IP tunnel.

In the end, dealing with IPv6 is not really that difficult, at least not once you get over the initial 
pain of dealing with its lengthy addressing. Although not shown in the chapter body, IPv6-based 
firewall filters are also supported in JUNOS software. You configure an IPv6-based firewall 
filter using techniques and approaches that are very similar to those detailed in Chapter 3. While 
IPv6 currently plays a subordinate role to its older sibling, indications are that the future of the 
Internet belongs to IPv6. As IPv6 deployments continue to grow, the well-prepared JNCIE 
candidate will dedicate commensurately more time to mastering the subject to ensure that they 
are ready to deploy IPv6 when called upon to do so.

Case Study: IPv6
The chapter case study is designed to simulate a JNCIE-level IPv6 configuration scenario. 
To keep things interesting, you will be adding your IPv6 configuration to the IS-IS baseline 
configuration that was discovered and documented in the Chapter 1 case study. The IS-IS baseline 
topology is once again shown in Figure 5.10 so you can reacquaint yourself with it.

It is expected that a prepared JNCIE candidate will be able to complete this case study in 
approximately one hour, with the resulting network meeting the majority of the specified 
behaviors and operational characteristics.

Listings that identify the changes made to the baseline configurations of all five routers in the 
IPv6 test bed are provided at the end of the case study for comparison with your own configu-
rations. To accommodate differing configuration approaches, various operational mode 
commands are included in the case study analysis to permit the comparison of your network to 
that of a known good example.

To complete the case study, your network must be configured to meet these criteria:
� A single IPv6 static (or generated) route is permitted on both r3 and r4.
� Add your IPv6 configuration to the IS-IS baseline network.
� All links and all loopback address must be reachable.
� You must use IS-IS as your IPv6 IGP.
� Establish the IPv6 EBGP peering sessions shown and advertise IPv6 reachability for the 

IPv6 routes owned by your AS.



Case Study: IPv6 579

� EBGP links are limited to a single BGP session.
� You must use native IPv6 peering for IBGP sessions.
� IPv6 pings and traceroutes from external peers to internal IPv6 destinations must be 

supported.
� Ensure that you provide transit IPv6 services to the T1, P1, and C1 peers. Note that all 

routes advertised by the T1 peer are filtered from the P1 router at r1 and r2.
� Your IPv6-related configuration can not adversely impact your existing IPv4 infrastructure.
� No single link or router failure can isolate r1 and r2.

F I G U R E 5 . 1 0 IS-IS discovery findings

You can assume that the T1, C1, and P1 routers are correctly configured, and that you are 
not permitted to modify or view their configurations. You may telnet to these routers to per-
form connectivity testing as needed. Refer to Figure 5.11 for IPv6 addressing and topology 
specifics.

Notes:

Multi-level IS-IS, Areas 0001 and 0002 with ISO NET based on router number.

lo0 address of r3 and r4 not injected into Area 0001 to ensure optimal forwarding between 10.0.3.3 and 10.0.3.4.

Passive setting on r5's core interfaces for optimal Area 0002-to-core routing.

No authentication or route summarization. Routing policy at r5 to leak L1 externals (DC routes) to L2.

Suboptimal routing detected at the data center and at r1/r2 for some locations. This is the result of random nexthop
choice for data center's default, and the result of r1 and r2's preference for r3's RID over r4 with regard to the
10.0/16 route. This is considered normal behavior, so no corrective actions are taken.

Redistribution of static default route to data center from both r6 and r7. Redistribution of 192.168.0/24 through
192.168.3/24 routes from RIP into IS-IS by both r6 and r7.

All adjacencies are up, reachability problem discovered at r1 and r2 caused by local aggregate definition. Corrected
through IBGP policy to effect 10.0/16 route advertisement from r3 and r4 to r1 and r2; removed local aggregate
from r1 and r2.

Area 0001
L1

L2 Area 0002
L1

r2 r4
r7

r6

RIP v2

Data
Center

r5

r3r1

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

M5M5

M5M5

M5M5

M5M5

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

Data
Center



580 Chapter 5 � IPv6

F I G U R E 5 . 1 1 IPv6 case study

IPv6 Case Study Analysis

To save space, initial verification of the baseline network is not performed here. The IS-IS based 
baseline network is assumed to be operational at this point. Each configuration requirement for 
the case study is matched to one or more valid router configurations and, as appropriate, examples 
of operational mode commands and sample output that serve to confirm that the network’s 
operation adheres to the specified behavior.

The IPv6 case study analysis begins with these criteria because they serve to establish baseline 
IPv6 functionality within your network:
� A single IPv6 static (or generated) route is permitted on both r3 and r4.
� Add your IPv6 configuration to the IS-IS baseline network.
� All link and loopback addresses must be reachable.

AS 65010
200.200/16
3010::/64

C1

fe-0/0/0

r4

2:11::5/64

2:11::6/64

AS 65050
120.120/16
3050::/64

P1

so
-0/

1/1

M5M5

M5M5 M5M5

fe-0/0/1fe-0/0/0

r1

r2

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

FE
C0

:5
:0

::/
64

FE
C0

:4
:4

::/
64

fe-0/0/3

fe-0/0/0
FEC0:4:12::/64

so
-0/

1/0

FE
C0:2

:8:
:/6

4

at-0/1/0

FEC0:2:0::/64
at-0/2/1

FEC0:4:8::/64

FEC0:4:16::/64

fe-
0/0

/1

fe-
0/0

/2 FE
C0

:4:
0::

/64

fe-0/0/2

so-0/2/0
FEC0:2:4::/64

so-0/1/0

M5M5
r5

Loopbacks

r1 = FEC0:0:6::1/128
r2 = FEC0:0:6::2/128
r3 = FEC0:0:3::3/128
r4 = FEC0:0:3::4/128
r5 = FEC0:0:3::5/128

r3
fe-0/0/2

AS 65222
130.130/16
3000::/64

T1

2:10::14/64

2:10::13/64

M5M5



Case Study: IPv6 581

� You must use IS-IS as your IPv6 IGP.
� No single link or router failure can isolate r1 and r2.

Because the case study is performed on the IS-IS baseline network discovered in Chapter 1, 
and because the JUNOS software IS-IS implementation automatically advertises IPv6 prefixes 
that are associated with IS-IS interfaces, no explicit IS-IS configuration is necessary to support 
IPv6. However, you need to define and redistribute IPv6 static default routes into the Level 1 
area from the attached routers (r3 and r4) to meet the connectivity requirements posed. A static 
(or generated) IPv6 default route is necessary because the JUNOS software version deployed in 
the IPv6 test bed does not automatically install an IPv6 default route based on the setting of the 
attached bit. Your restrictions prevent the addition of static routes to r1 and r2, so you need 
to define the default route on r3 and r4 and use policy to inject the route into the Level 1 area. 
While static/generated route could be defined locally on r1 and r2, the case study restrictions 
do not permit this approach.

Your configuration begins with assignment of the IPv6 addressing shown earlier in Figure 5.11. 
In this example, EUI-64 addressing is configured, although manual assignment of the interface 
identifier portion is permissible, given the restrictions in place. The initial changes made to r3 
are shown next with highlights added:

[edit]

lab@r3# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.4.13/30;

    }

    family iso;

    family inet6 {

        address fec0:4:12:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r3# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.4.1/30;

    }

    family iso;

    family inet6 {

        address fec0:4:0:0::/64 {

            eui-64;



582 Chapter 5 � IPv6

        }

    }

}

[edit]

lab@r3# show interfaces at-0/1/0 

atm-options {

    vpi 0 {

        maximum-vcs 64;

    }

}

unit 0 {

    point-to-point;

    vci 50;

    family inet {

        address 10.0.2.2/30;

    }

    family iso;

    family inet6 {

        address fec0:2:0:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r3# show interfaces so-0/2/0

dce;

encapsulation frame-relay;

unit 100 {

    dlci 100;

    family inet {

        address 10.0.2.5/30;

    }

    family iso;

    family inet6 {

        address fec0:2:4:0::/64 {

            eui-64;

        }

    }

}



Case Study: IPv6 583

[edit]

lab@r3# show interfaces lo0 

unit 0 {

    family inet {

        address 10.0.3.3/32;

    }

    family iso {

        address 49.0001.3333.3333.3333.00;

    }

    family inet6 {

        address fec0:0:3::3/128;

    }

}

Note that no changes are required to the protocols stanza in the IS-IS baseline configuration 
to support IPv6 routing. In fact, explicit configuration of IS-IS is required only when you do not 
desire support for IPv4 and IPv6; in such cases you use the no-ipv6-routing or no-ipv4-routing 
keyword at the [edit protocols isis] hierarchy. The IPv6 addressing changes required in the 
remaining routers are similar to those shown for r3.

With IPv6 addressing now configured on the internal interfaces of all routers, you move on 
to the “full connectivity with optimal paths” requirement by configuring an IPv6 static default 
route on your L1/L2-attached routers. You also adjust/create the necessary IS-IS policy to 
ensure that the default route is advertised to Level 1 routers r1 and r2. Because r1 and r2 will 
see two equal-cost paths for the default route, there is a potential for inefficient forwarding out 
of the Level 1 area; this is the expected behavior and is therefore considered normal. The changes 
made at r4 to facilitate the creation and advertisement of the IPv6 default route are shown here 
with added highlights. Although not shown, similar changes are also made at r3:

[edit]

lab@r4# show routing-options rib inet6.0

static {

    route ::/0 reject;

}

[edit]

lab@r4# show policy-options policy-statement v6-default

term 1 {

    from {

        protocol static;

        route-filter ::0/0 exact;

    }

    to level 1;

    then accept;

}



584 Chapter 5 � IPv6

[edit]

lab@r4# show protocols isis export

export v6-default;

In this example, the to level 1 condition is added to the v6-default policy to avoid the 
redistribution of the IPv6 default route into the backbone (Level 2) area. Based on the specifics, 
this precaution is not strictly necessary, but this author considers it good form so it is included 
here. After the changes are committed on both r3 and r4, the default route, and the resulting 
connectivity to backbone destinations, is confirmed within the L1 area:

[edit]

lab@r1# run show route table inet6

inet6.0: 19 destinations, 22 routes (19 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::/0               *[IS-IS/160] 00:01:19, metric 10

                      to fe80::290:69ff:fe6d:9800 via fe-0/0/1.0

                    > to fe80::290:69ff:fe6b:3002 via fe-0/0/3.0

fe80::/64          *[Direct/0] 02:30:23

                    > via fe-0/0/3.0

                    [Direct/0] 02:30:23

                    > via fe-0/0/2.0

                    [Direct/0] 02:30:23

                    > via fe-0/0/1.0

                    [Direct/0] 02:30:23

                    > via fe-0/0/0.0

[edit]

lab@r1# run traceroute fec0:0:3::5

traceroute6 to fec0:0:3::5 (fec0:0:3::5) from fec0:4:16:0:2a0:c9ff:fe69:a806, 
   30 hops max, 12 byte packets

 1  fec0:4:16:0:290:69ff:fe6b:3002 (fec0:4:16:0:290:69ff:fe6b:3002)  13.215 ms 
    0.399 ms  0.289 ms

 2  fec0:0:3::5 (fec0:0:3::5)  0.527 ms  0.424 ms  0.384 ms

The presence of the two equal-cost next hops for the IPv6 default route indicates that r3 and r4 
are correctly configured to redistribute the default route into the Level 1 IS-IS area; having two 
next hops is necessary to meet the redundancy requirements posed for r1 and r2. The successful 
traceroute to the IPv6 loopback address of r5 confirms that the default route is working at r1. The 
following capture shows that r1’s choice of the next hops associated with the default route can 
produce an extra hop to some destinations (r3’s loopback address, in this case). This behavior 
is expected and is not considered an issue:

[edit]

lab@r1# run traceroute fec0:0:3::3

traceroute6 to fec0:0:3::3 (fec0:0:3::3) from fec0:4:16:0:2a0:c9ff:fe69:a806, 
   30 hops max, 12 byte packets



Case Study: IPv6 585

 1  fec0:4:16:0:290:69ff:fe6b:3002 (fec0:4:16:0:290:69ff:fe6b:3002)  0.428 ms 
    0.317 ms  0.276 ms

 2  fec0:0:3::3 (fec0:0:3::3)  0.528 ms  0.393 ms  0.372 ms

You now confirm that IS-IS is correctly advertising reachability for the loopback addresses 
of all routers in the IPv6 test bed into the backbone area:

[edit interfaces]

lab@r5# run show route protocol isis | match /128

fec0:0:3::3/128    *[IS-IS/18] 03:36:24, metric 10

fec0:0:3::4/128    *[IS-IS/18] 03:36:23, metric 10

fec0:0:6::1/128    *[IS-IS/18] 02:58:50, metric 20

fec0:0:6::2/128    *[IS-IS/18] 03:36:24, metric 20

Although not shown for the sake of brevity, you can assume that all internal IPv6 destinations 
have been confirmed as reachable by L1 and L1/L2 routers. With initial IPv6 connectivity 
confirmed operational, you move on to the EBGP peering–related case study requirements:
� Establish the IPv6 EBGP peering sessions shown and advertise IPv6 reachability for the 

routes owned by your AS.
� EBGP links are limited to a single BGP session.

The stipulation that you may have only one BGP session to each EBGP peer means that you 
need to reconfigure the existing EBGP sessions to enable support for IPv6 NLRI. The following 
highlights call out the changes made to r3’s configuration to support its EBGP peering session 
with the T1 peer:

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        address 172.16.0.13/30;

    }

    family inet6 {

        address ::172.16.0.13/126;

    }

}

[edit]

lab@r3# show protocols bgp group ext

import ebgp-in;

family inet {

    unicast;

}

family inet6 {

    unicast;



586 Chapter 5 � IPv6

}

export ebgp-out;

neighbor 172.16.0.14 {

    peer-as 65222;

}

Note that an IPv4-compatible IPv6 address that matches the IPv4 EBGP peering address has 
been assigned to r3’s fe-0/0/2 interface. This is a critical aspect of the configuration; without this 
address, the 3000::/64 route advertised by T1 will be discarded (not hidden) at r3 due to the 
EBGP peer being “unexpectedly remote.” A 126-bit mask has been configured on the IPv4-
compatible address to approximate the /30 IPv4 addressing. After committing the changes, the 
EBGP session to T1 and the receipt of the 3000::/64 route are confirmed at r3:

[edit]

lab@r3# run show bgp neighbor 172.16.0.14

Peer: 172.16.0.14+4938 AS 65222 Local: 172.16.0.13+179 AS 65412

  Type: External    State: Established    Flags: <>

  Last State: OpenConfirm   Last Event: RecvKeepAlive

  Last Error: None

  Export: [ ebgp-out ] Import: [ ebgp-in ]

  Options: <Preference HoldTime AdvertiseInactive AddressFamily PeerAS Refresh>

  Address families configured: inet-unicast inet6-unicast

  Holdtime: 90 Preference: 170

  Number of flaps: 4

  Error: 'Cease' Sent: 2 Recv: 2

  Peer ID: 130.130.0.1      Local ID: 10.0.3.3         Active Holdtime: 90

  Keepalive Interval: 30

  Local Interface: fe-0/0/2.0                       

  NLRI advertised by peer: inet-unicast inet6-unicast

  NLRI for this session: inet-unicast inet6-unicast

  Peer supports Refresh capability (2)

  Table inet.0 Bit: 10003

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            1

    Received prefixes:          1

    Suppressed due to damping:  0

  Table inet6.0 Bit: 20000

    RIB State: BGP restart is complete

    Send state: in sync

    Active prefixes:            1

    Received prefixes:          1

    Suppressed due to damping:  0

  Last traffic (seconds): Received 26   Sent 26   Checked 26  



Case Study: IPv6 587

  Input messages:  Total 17     Updates 3       Refreshes 0     Octets 481

  Output messages: Total 19     Updates 4       Refreshes 0     Octets 552

  Output Queue[0]: 0

  Output Queue[1]: 0

[edit]

lab@r3# run show route receive-protocol bgp 172.16.0.14

inet.0: 28 destinations, 28 routes (28 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 130.130.0.0/16          172.16.0.14          0                  65222 I

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

inet6.0: 27 destinations, 31 routes (27 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 3000::/64               ::172.16.0.14        0                  65222 I

Similar configuration changes are needed at r1 and r2 to support the EBGP session to P1, 
and at r4 for its EBGP session to C1. The modified configuration for r2 is shown here with the 
changes highlighted:

[edit]

lab@r2# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.5.2/24;

    }

    family iso;

    family inet6 {

        address fec0:5:0:0::/64 {

            eui-64;

        }

        address ::10.0.5.2/120;

    }

}

lab@r2# show protocols bgp group p1

type external;

family inet {

    unicast;

}

family inet6 {

    unicast;



588 Chapter 5 � IPv6

}

export ebgp-out;

neighbor 10.0.5.254 {

    peer-as 65050;

The IPv4-compatible address ::10.0.5.2 is associated with a 120-bit mask to best approximate 
the /24 addressing in effect on this subnet for the IPv4 protocol. The r2-to-P1 peering session 
and receipt of the 3050::/64 IPv6 route is confirmed at r2:

[edit]

lab@r2# run show bgp summary

Groups: 2 Peers: 7 Down peers: 2

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0                 7          5          0          0          0          0

inet6.0                1          1          0          0          0          0

Peer           AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
                                                             Received/Damped...

10.0.3.3    65412    648     636     0      3       17:10 Establ

  inet.0: 2/2/0

10.0.3.4    65412    721     720     0      0     5:58:37 Establ

  inet.0: 2/3/0

10.0.3.5    65412    717     720     0      0     5:58:33 Establ

  inet.0: 0/0/0

10.0.5.254  65050     10      10     0      0        1:37 Establ

  inet.0: 1/1/0

  inet6.0: 1/1/0

10.0.6.1    65412    717     720     0      1     4:20:17 Establ

  inet.0: 0/1/0

10.0.9.6    65412      0       0     0      0     6:00:01 Connect

10.0.9.7    65412      0       0     0      0     6:00:01 Connect

[edit]

lab@r2# run show route 3050::/64 detail 

inet6.0: 22 destinations, 25 routes (22 active, 0 holddown, 0 hidden)

3050::/64 (1 entry, 1 announced)

        *BGP    Preference: 170/-101

                Source: 10.0.5.254

                Next hop: ::10.0.5.254 via fe-0/0/0.0, selected

                State: <Active Ext>

                Local AS: 65412 Peer AS: 65050

                Age: 1:49       Metric: 0 

                Task: BGP_65050.10.0.5.254+179



Case Study: IPv6 589

                Announcement bits (2): 0-KRT 3-BGP.0.0.0.0+179 

                AS path: 65050 I

                Localpref: 100

                Router ID: 120.120.0.1

Before proceeding, similar changes are required at r1 and r4 to support IPv6 NLRI 
advertisements over their IPv4-based EBGP peering sessions. With EBGP peering configured 
and confirmed, you move on to the IBGP-related aspect of the case study:
� You must use native IPv6 peering for IBGP sessions.

This requirement’s wording indicates that you must establish native IPv6 IBGP peering 
sessions that mirror the existing IPv4-based IBGP topology. You must use care to ensure that 
your changes do not delete or disable the existing IPv4 IBGP sessions because the test bed’s IPv4 
operation can not be impacted by your IPv6 configuration changes. The changes shown next for 
r5 add the new IPv6 loopback address–based peering sessions; similar changes are needed on 
the remaining routers in the IPv6 test bed.

[edit]

lab@r5# show protocols bgp group int-v6

group int-v6 {

    type internal;

    local-address fec0:0:3:0::5;

    neighbor fec0:0:3:0::3;

    neighbor fec0:0:3:0::4;

    neighbor fec0:0:6:0::1;

    neighbor fec0:0:6:0::2;

}

Note that r6 and r7 are not reflected in the int-v6 peer group because they are not in play 
in the current IPv6 test bed. This author feels that the use of a text editor and load merge 
terminal operations are well suited to the task of adding this (more or less) common functionality 
to the remaining routers. When all routers in the test bed have been modified, the IBGP session 
status is confirmed at r4:

[edit]

lab@r4# run show bgp summary

Groups: 5 Peers: 11 Down peers: 2

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0            105855     105853          0          0          0          0

inet6.0                4          3          0          0          0          0

Peer            AS   InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/
                                                             Received/Damped...

172.16.0.6   65010   74141   73511     0      0       24:04 Establ

  inet.0: 2/3/0

  inet6.0: 1/1/0



590 Chapter 5 � IPv6

fec0:0:6::1  65412      19      21     0      0        8:31 Establ

  inet6.0: 1/1/0

fec0:0:3::5  65412      17      19     0      0        8:23 Establ

  inet6.0: 0/0/0

fec0:0:3::3  65412      18      19     0      0        8:26 Establ

  inet6.0: 1/1/0

fec0:0:6::2  65412      17      19     0      0        8:19 Establ

  inet6.0: 0/1/0

10.0.3.3     65412  121852     732     0      3     1:03:38 Establ

  inet.0: 105850/105850/0

10.0.3.5     65412     810     817     0      0     6:44:52 Establ

  inet.0: 0/0/0

10.0.6.1     65412     617     623     0      1     5:06:58 Establ

  inet.0: 1/1/0

10.0.6.2     65412     812     818     0      0     6:45:01 Establ

  inet.0: 0/1/0

10.0.9.6     65412       0       0     0      0     6:46:53 Active

10.0.9.7     65412       0       0     0      0     6:46:53 Active

As expected, all IBGP sessions are in the established state (excepting those relating to the 
absent r6 and r7). The highlights call out that there are now two IBGP sessions between r3 and 
r5—one that supports IPv4 and another for IPv6. Sensing a light at the end of this case study, 
you find yourself addressing the remaining stipulations:
� IPv6 pings and traceroutes from external peers to internal IPv6 destinations must be 

supported.
� Ensure that you provide transit IPv6 services to the T1, P1, and C1 peers. Note that all 

routes advertised by the T1 peer are filtered from the P1 router at r1 and r2.
� Your IPv6-related configuration can not adversely impact your existing IPv4 infrastructure.

The remaining stipulations are somewhat catchall in nature; they are designed to validate the 
overall operational aspects of your IPv6 configuration. To achieve the prescribed behavior, you 
must define IPv6 aggregate routes and adjust your BGP-related policies to correctly set the BGP 
next hop for routes learned from EBGP peers and to advertise your aggregate routes to your 
EBGP peers. For example, the current state of the network results in a black hole at r4 for the 
3000::/64 route, which stems from the lack of an appropriate next hop self policy at r3:

[edit]

lab@r4# run show route 3000::/64 detail

inet6.0: 30 destinations, 35 routes (30 active, 0 holddown, 0 hidden)

3000::/64 (1 entry, 1 announced)

        *BGP    Preference: 170/-101

                Source: fec0:0:3::3

                Next hop type: Reject



Case Study: IPv6 591

                Protocol next hop: ::172.16.0.14 Indirect next hop: 84d0bd0 80

                State: <Active Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 7:41       Metric: 0       Metric2: 0 

                Task: BGP_65412.fec0:0:3::3+179

                Announcement bits (3): 0-KRT 1-BGP.0.0.0.0+179 2-Resolve inet6.0 

                AS path: 65222 I

                Communities: 65412:420

                Localpref: 100

                Router ID: 10.0.3.3

[edit]

lab@r4# run show route ::172.16.0.14

inet6.0: 30 destinations, 35 routes (30 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::/0               *[Static/5] 02:28:08, metric 0

                      Reject

You do not need a next hop self policy at r1 and r2 due to the passive IS-IS instance they run 
on their fe-0/0/0 interfaces (as with their IPv4-based peering). The following highlights call out 
the changes made to r3’s configuration to correctly set the BGP next hop and to advertise IPv6 
aggregates for your AS to its EBGP peer, and to r1 and r2:

[edit]

lab@r3# show routing-options rib inet6.0

static {

    route ::0/0 reject;

}

aggregate {

    route fec0::/16;

    route ::10.0.0.0/112;

}

[edit]

lab@r3# show protocols bgp group int-v6

type internal;

local-address fec0:0:3:0::3;

export nhs;

neighbor fec0:0:3:0::5;

neighbor fec0:0:3:0::4;

neighbor fec0:0:6:0::1 {



592 Chapter 5 � IPv6

    export r1-v6;

}

neighbor fec0:0:6:0::2 {

    export r2-v6;

}

[edit]

lab@r3# show policy-options policy-statement r1-v6

term 1 {

    from {

        protocol aggregate;

        route-filter ::10.0.0.0/112 exact accept;

        route-filter fec0::/16 exact;

    }

    then {

        next-hop fec0:4:12:0:290:69ff:fe6d:9800;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

    }

    then {

        next-hop self;

    }

}

[edit]

lab@r3# show policy-options policy-statement r2-v6

term 1 {

    from {

        protocol aggregate;

        route-filter ::10.0.0.0/112 exact accept;

        route-filter fec0::/16 exact;

    }

    then {

        next-hop fec0:4::290:69ff:fe6d:9801;

        accept;



Case Study: IPv6 593

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

    }

    then {

        next-hop self;

    }

}

Note that the r1-v6 and r2-v6 export policies at r3 function to advertise the IPv6 aggregate 
routes to r1 and r2, so that they can in turn re-advertise the aggregate routes to the P1 router. 
It is worth focusing some attention on the way the BGP next hops are being set on the aggregate 
routes; the ::10.0.0.0/112 aggregate gets no special treatment, and therefore ends up with a BGP 
next hop of FEC0:0:3:0::3 at r1:

[edit]

lab@r1# run show route protocol bgp ::10.0.0.0/112 detail

inet6.0: 26 destinations, 30 routes (26 active, 0 holddown, 0 hidden)

::10.0.0.0/112 (1 entry, 1 announced)

        *BGP    Preference: 170/-101

                Source: fec0:0:3::3

                Next hop: fec0:4:12:0:290:69ff:fe6d:9800 via fe-0/0/1.0, selected

                Protocol next hop: fec0:0:3::3 Indirect next hop: b73f150 36

                State: <Active Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 9:35       Metric2: 0 

                Task: BGP_65412.fec0:0:3::3+2460

                Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet6.0 

                AS path: I Aggregator: 65412 10.0.3.3

                Localpref: 100

                Router ID: 10.0.3.3

While the default next hop self behavior (as applied to locally originated routes that are 
redistributed into BGP) works fine for the ::10.0.0.0/112 aggregate, setting the FEC0::/64 route 
to a next hop of FEC0:0:3:0::3 results in the route being hidden due to the recursion loop that 
forms when r1 tries to resolve the FEC0:0:3:0::3 next hop through its longest matching route, 
which, if not hidden, would be the FEC0::/64 route. And this is the very route that needs to resolve 
the BGP next hop in the first place! Put differently, JUNOS software does not allow a more 
specific route to resolve through a less specific route.



594 Chapter 5 � IPv6

The approach taken in this example is similar to the existing IPv4 BGP policy; namely, the 
FEC0::/16 aggregate has its next hop set to the site-local address assigned to r3’s fe-0/0/0 
interface. This next hop setting allows the route to be made active because r1 has no problem 
resolving this address within its Level 1 area. In contrast, the r2-v6 policy correctly sets the BGP 
next hop based on the site-local address assigned to r3’s fe-0/0/1 interface, as shown here:

[edit]

lab@r3# run show interfaces fe-0/0/1 terse

Interface               Admin Link Proto Local                 Remote

fe-0/0/1                up    up  

fe-0/0/1.0              up    up   inet  10.0.4.1/30     

                                   iso  

                                   inet6 fe80::290:69ff:fe6d:9801/64

                                         fec0:4::290:69ff:fe6d:9801/64

The nhs policy itself is unchanged from the IS-IS baseline configuration. The key point here 
is the reapplication of the nhs policy as an export policy to the new int-vg peer group. Similar 
changes are needed at r4 (not shown). The changes needed at r4 include the aggregate route 
definitions and the policy adjustments needed to make sure they are correctly advertised to r1, 
r2, and C1. Having the aggregate routes advertised to r1 and r2 from both r3 and r4 is 
necessary to meet the stated redundancy requirements. Do not forget to address any next hop 
self issues with the new IPv6 IBGP peer group also. No further modifications are needed at r1 
and r2 to comply with the remaining case study requirements.

Is the IS-IS Default Route Still Needed?

The changes recently made to the BGP policy on r3 and r4 result in the advertisement of IPv6 
aggregate routes with next hops that are resolvable within their IS-IS Level 1 area. This might 
cause you to feel that the redistribution of an IPv6 default route into their Level 1 area is no 
longer necessary. After all, at this stage you are seeing output that indicates the IS-IS based 
default route is no longer even being used:

[edit]
lab@r1# run show route fec0:0:3:0::3

inet6.0: 26 destinations, 32 routes (26 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

fec0::/16          *[BGP/170] 00:01:31, localpref 100, from fec0:0:3::3
                      AS path: I
                    > to fec0:4:12:0:290:69ff:fe6d:9800 via fe-0/0/1.0
                    [BGP/170] 00:00:31, localpref 100, from fec0:0:3::4
                      AS path: I
                    > to fec0:4:16:0:290:69ff:fe6b:3002 via fe-0/0/3.0



Case Study: IPv6 595

To verify the remaining case study requirements, a few spot checks are performed. You 
start at the P1 router, which should receive two BGP routes for your IPv6 aggregates and for the 
3010 route owned by C1:

lab@P1> show route protocol bgp ::10.0.0.0/112

inet6.0: 12 destinations, 17 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

::10.0.0.0/112     *[BGP/170] 01:19:48, localpref 100, from 10.0.5.1

                      AS path: 65412 I

                    > to ::10.0.5.1 via fe-0/0/0.0

                    [BGP/170] 01:17:25, localpref 100, from 10.0.5.2

                      AS path: 65412 I

                    > to ::10.0.5.2 via fe-0/0/0.0

lab@P1> show route protocol bgp fec0::/16

inet6.0: 12 destinations, 17 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

fec0::/16          *[BGP/170] 01:19:51, localpref 100, from 10.0.5.1

                      AS path: 65412 I

                    > to ::10.0.5.1 via fe-0/0/0.0

                    [BGP/170] 01:17:28, localpref 100, from 10.0.5.2

                      AS path: 65412 I

                    > to ::10.0.5.2 via fe-0/0/0.0

lab@P1> show route protocol bgp 3010::/64

Despite the output, the redistributed IPv6 default route is, in fact, still crucial to the operation 
of your IPv6 infrastructure. Even though the default route does not seem to be used once 
the aggregate routes are received through IBGP, there is somewhat of a “chicken and egg” 
situation at play. You see, without the IS-IS based default route, r1 and r2 can never estab-
lish their IBGP sessions to the loopback addresses of r3 and r4. Note that without these IBGP 
sessions, r1 and r2 never learn the FEC0::/16 aggregate route that ends up overshadowing 
the less specific 0::/0 IPv6 default route! The fancy BGP policy that strategically sets the next 
hop on the FEC0::/16 aggregate route so that it is resolvable within the Level 1 IS-IS area 
never comes into play if the IBGP session to which the policy is applied can never be 
established!



596 Chapter 5 � IPv6

inet6.0: 12 destinations, 17 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

3010::/64          *[BGP/170] 00:38:44, localpref 100, from 10.0.5.1

                      AS path: 65412 65010 I

                    > to ::10.0.5.1 via fe-0/0/0.0

                    [BGP/170] 00:38:52, localpref 100, from 10.0.5.2

                      AS path: 65412 65010 I

                    > to ::10.0.5.2 via fe-0/0/0.0

The output confirms that the expected routes are present at the P1 router, and the dual BGP 
advertisements serve to confirm that both r1 and r2 are advertising the routes to P1. Some 
quick connectivity tests are performed:

lab@P1> ping 10.0.3.5 count 1

PING 10.0.3.5 (10.0.3.5): 56 data bytes

64 bytes from 10.0.3.5: icmp_seq=0 ttl=253 time=0.831 ms

--- 10.0.3.5 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.831/0.831/0.831/0.000 ms

IPv4 internal destinations are reachable; what about IPv6?

lab@P1> ping fec0:0:3:0::5 count 1

PING6(56=40+8+8 bytes) ::10.0.5.254 --> fec0:0:3::5

16 bytes from fec0:0:3::5, icmp_seq=0 hlim=62 time=1.224 ms

--- fec0:0:3:0::5 ping6 statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 1.224/1.224/1.224 ms

Good, P1 can reach internal IPv6 destinations also. You next test connectivity to customer 
C1 IPv4 and IPv6 destinations:

lab@P1> ping 200.200.1.1 count 1

PING 200.200.1.1 (200.200.1.1): 56 data bytes

64 bytes from 200.200.1.1: icmp_seq=0 ttl=253 time=0.418 ms

--- 200.200.1.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.418/0.418/0.418/0.000 ms

lab@P1> ping 3010::1 count 1

PING6(56=40+8+8 bytes) ::10.0.5.254 --> 3010::1

16 bytes from 3010::1, icmp_seq=0 hlim=62 time=0.415 ms



Case Study: IPv6 597

--- 3010::1 ping6 statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.415/0.415/0.415 ms

Excellent! You have demonstrated IPv4 and IPv6 connectivity from the P1 router in accordance 
with the remaining case study objectives. Note that P1 does not receive T1’s routes, so connecti-
vity is not tested to transit peer locations. You can assume that traceroute testing from P1 to 
internal and external destinations also returns the expected results. To keep this book interesting, 
the output of traceroute tests performed at the T1 peer is shown next:

lab@T1> traceroute 10.0.3.4 source 130.130.0.1

traceroute to 10.0.3.4 (10.0.3.4) from 130.130.0.1, 30 hops max, 40 byte packets

 1  172.16.0.13 (172.16.0.13)  0.412 ms  0.287 ms  0.274 ms

 2  10.0.3.4 (10.0.3.4)  0.503 ms  0.429 ms  0.418 ms

lab@T1> traceroute 200.200.1.1 source 130.130.0.1

traceroute to 200.200.1.1 (200.200.1.1) from 130.130.0.1, 30 hops max, 
   40 byte packets

 1  172.16.0.13 (172.16.0.13)  0.412 ms  0.287 ms  0.274 ms

 2  10.0.2.6 (10.0.2.6)  0.337 ms  0.295 ms  0.291 ms

 3  200.200.1.1 (200.200.1.1)  0.265 ms  0.225 ms  0.222 ms

Internal and external IPv4 prefixes are reachable. You move on to test IPv6 connectivity and 
forwarding paths:

lab@T1> traceroute fec0:0:3:0::5 source 3000::1

traceroute6 to fec0:0:3:0::5 (fec0:0:3::5) from 3000::1, 30 hops max, 
   12 byte packets

 1  ::172.16.0.13 (::172.16.0.13)  0.478 ms  0.33 ms  0.324 ms

 2  fec0:0:3::5 (fec0:0:3::5)  0.985 ms  0.812 ms  0.846 ms

lab@T1> traceroute 3010::1 source 3000::1

traceroute6 to 3010::1 (3010::1) from 3000::1, 30 hops max, 12 byte packets

 1  ::172.16.0.13 (::172.16.0.13)  0.436 ms  0.331 ms  0.323 ms

 2  ::172.16.0.5 (::172.16.0.5)  0.615 ms  0.484 ms  0.484 ms

 3  3010::1 (3010::1)  0.29 ms  0.249 ms  0.236 ms

The results confirm IPv6 forwarding and connectivity from T1 to internal and customer 
locations.

Congratulations! The operational mode output and IPv6 connectivity demonstrated during 
the case study indicate that you have deployed an IPv6 configuration that meets all of the 
requirements and stipulations posed.

IPv6 Case Study Configurations

The changes made to the IS-IS baseline network topology to support the IPv6 case study are 
listed below in Listings 5.1 through 5.5 for all routers in the test bed with highlights added as 
needed to call out changes to existing configuration stanzas.



598 Chapter 5 � IPv6

Listing 5.1: IPv6 Case Study Configuration for r1

[edit]

lab@r1# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.5.1/24;

    }

    family iso;

    family inet6 {

        address fec0:5:0:0::/64 {

            eui-64;

        }

        address ::10.0.5.1/120;

    }

}

[edit]

lab@r1# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.4.14/30;

    }

    family iso;

    family inet6 {

        address fec0:4:12:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r1# show interfaces fe-0/0/2

unit 0 {

    family inet {

        address 10.0.4.5/30;

    }

    family iso;

    family inet6 {

        address fec0:4:4:0::/64 {

            eui-64;

        }



Case Study: IPv6 599

    }

}

[edit]

lab@r1# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 10.0.4.18/30;

    }

    family iso;

    family inet6 {

        address fec0:4:16:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r1# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.6.1/32;

    }

    family iso {

        address 49.0001.1111.1111.1111.00;

    }

    family inet6 {

        address fec0:0:6:0::1/128;

    }

}

[edit]

lab@r1# show protocols bgp

group int {

    type internal;

    local-address 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;



600 Chapter 5 � IPv6

}

group p1 {

    type external;

    family inet {

        unicast;

    }

    family inet6 {

        unicast;

    }

    export ebgp-out;

    neighbor 10.0.5.254 {

        peer-as 65050;

    }

}

group int-v6 {

    type internal;

    local-address fec0:0:6:0::1;

    neighbor fec0:0:3:0::5;

    neighbor fec0:0:3:0::4;

    neighbor fec0:0:3:0::3;

    neighbor fec0:0:6:0::2;

}

Listing 5.2: IPv6 Case Study Configuration for r2

[edit]

lab@r2# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.5.2/24;

    }

    family iso;

    family inet6 {

        address fec0:5:0:0::/64 {

            eui-64;

        }

        address ::10.0.5.2/120;

    }

}

[edit]

lab@r2# show interfaces fe-0/0/1



Case Study: IPv6 601

unit 0 {

    family inet {

        address 10.0.4.10/30;

    }

    family iso;

    family inet6 {

        address fec0:4:8:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r2# show interfaces fe-0/0/2

speed 100m;

unit 0 {

    family inet {

        address 10.0.4.2/30;

    }

    family iso;

    family inet6 {

        address fec0:4:0:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r2# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 10.0.4.6/30;

    }

    family iso;

    family inet6 {

        address fec0:4:4:0::/64 {

            eui-64;

        }

    }

}



602 Chapter 5 � IPv6

[edit]

lab@r2# show protocols bgp

group int {

    type internal;

    local-address 10.0.6.2;

    neighbor 10.0.6.1;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

group p1 {

    type external;

    family inet {

        unicast;

    }

    family inet6 {

        unicast;

    }

    export ebgp-out;

    neighbor 10.0.5.254 {

        peer-as 65050;

    }

}

group int-v6 {

    type internal;

    local-address fec0:0:6:0::2;

    neighbor fec0:0:3:0::5;

    neighbor fec0:0:3:0::4;

    neighbor fec0:0:3:0::3;

    neighbor fec0:0:6:0::1;

}

Listing 5.3: IPv6 Case Study Configuration for r3

[edit]

lab@r3# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.4.13/30;

    }

    family iso;



Case Study: IPv6 603

    family inet6 {

        address fec0:4:12:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r3# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.4.1/30;

    }

    family iso;

    family inet6 {

        address fec0:4:0:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        address 172.16.0.13/30;

    }

    family inet6 {

        address ::172.16.0.13/126;

    }

}

[edit]

lab@r3# show interfaces at-0/1/0

atm-options {

    vpi 0 {

        maximum-vcs 64;

    }

}

unit 0 {

    point-to-point;



604 Chapter 5 � IPv6

    vci 50;

    family inet {

        address 10.0.2.2/30;

    }

    family iso;

    family inet6 {

        address fec0:2:0:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r3# show interfaces so-0/2/0

dce;

encapsulation frame-relay;

unit 100 {

    dlci 100;

    family inet {

        address 10.0.2.5/30;

    }

    family iso;

    family inet6 {

        address fec0:2:4:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r3# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.3/32;

    }

    family iso {

        address 49.0001.3333.3333.3333.00;

    }

    family inet6 {

        address fec0:0:3::3/128;

    }

}



Case Study: IPv6 605

[edit]

lab@r3# show routing-options

rib inet6.0 {

    static {

        route ::0/0 reject;

    }

    aggregate {

        route fec0::/16;

        route ::10.0.0.0/112;

    }

}

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

[edit]

lab@r3# show protocols bgp

advertise-inactive;

group int {

    type internal;

    local-address 10.0.3.3;

    export nhs;

    neighbor 10.0.6.1 {

        export r1;

    }

    neighbor 10.0.6.2 {

        export r2;

    }

    neighbor 10.0.3.4;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}



606 Chapter 5 � IPv6

group ext {

    import ebgp-in;

    family inet {

        unicast;

    }

    family inet6 {

        unicast;

    }

    export ebgp-out;

    neighbor 172.16.0.14 {

        peer-as 65222;

    }

}

group int-v6 {

    type internal;

    local-address fec0:0:3:0::3;

    export nhs;

    neighbor fec0:0:3:0::5;

    neighbor fec0:0:3:0::4;

    neighbor fec0:0:6:0::1 {

        export r1-v6;

    }

    neighbor fec0:0:6:0::2 {

        export r2-v6;

    }

}

[edit]

lab@r3# show protocols isis export

export v6-default;

[edit]

lab@r3# show policy-options policy-statement ebgp-out

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then accept;

}

term 2 {



Case Study: IPv6 607

    from {

        protocol aggregate;

        route-filter fec0::/16 exact;

        route-filter ::10.0.0.0/112 exact;

    }

    then accept;

}

[edit]

lab@r3# show policy-options policy-statement v6-default

term 1 {

    from {

        protocol static;

        route-filter ::0/0 exact;

    }

    to level 1;

    then accept;

}

[edit]

lab@r3# show policy-options policy-statement r1-v6

term 1 {

    from {

        protocol aggregate;

        route-filter ::10.0.0.0/112 exact accept;

        route-filter fec0::/16 exact;

    }

    then {

        next-hop fec0:4:12:0:290:69ff:fe6d:9800;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

    }

    then {

        next-hop self;

    }

}



608 Chapter 5 � IPv6

[edit]

lab@r3# show policy-options policy-statement r2-v6

term 1 {

    from {

        protocol aggregate;

        route-filter ::10.0.0.0/112 exact accept;

        route-filter fec0::/16 exact;

    }

    then {

        next-hop fec0:4::290:69ff:fe6d:9801;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.14;

    }

    then {

        next-hop self;

    }

}

Listing 5.4: IPv6 Case Study Configuration for r4

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 172.16.0.5/30;

    }

    family inet6 {

        address ::172.16.0.5/126;

    }

}

[edit]

lab@r4# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.4.9/30;

    }



Case Study: IPv6 609

    family iso;

    family inet6 {

        address fec0:4:8:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r4# show interfaces fe-0/0/2

unit 0 {

    family inet {

        address 10.0.4.17/30;

    }

    family iso;

    family inet6 {

        address fec0:4:16:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r4# show interfaces so-0/1/0

encapsulation frame-relay;

unit 100 {

    dlci 100;

    family inet {

        address 10.0.2.6/30;

    }

    family iso;

    family inet6 {

        address fec0:2:4:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r4# show interfaces so-0/1/1



610 Chapter 5 � IPv6

encapsulation ppp;

unit 0 {

    family inet {

        address 10.0.2.10/30;

    }

    family iso;

    family inet6 {

        address fec0:2:8:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r4# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.4/32;

    }

    family iso {

        address 49.0001.4444.4444.4444.00;

    }

    family inet6 {

        address fec0:0:3::4/128;

    }

}

[edit]

lab@r4# show routing-options

rib inet6.0 {

    static {

        route ::/0 reject;

    }

    aggregate {

        route ::10.0.0.0/112;

        route fec0::/16;

    }

}

static {

    route 10.0.200.0/24 {



Case Study: IPv6 611

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

autonomous-system 65412;

[edit]

lab@r4# show protocols bgp

advertise-inactive;

group int {

    type internal;

    local-address 10.0.3.4;

    export nhs;

    neighbor 10.0.6.1 {

        export r1;

    }

    neighbor 10.0.6.2 {

        export r2;

    }

    neighbor 10.0.3.3;

    neighbor 10.0.3.5;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

group c1 {

    type external;

    family inet {

        unicast;

    }

    family inet6 {

        unicast;

    }

    export ebgp-out;

    neighbor 172.16.0.6 {

        peer-as 65010;

    }

}



612 Chapter 5 � IPv6

group int-v6 {

    type internal;

    local-address fec0:0:3:0::4;

    export nhs;

    neighbor fec0:0:3:0::5;

    neighbor fec0:0:6:0::2 {

        export r2-v6;

    }

    neighbor fec0:0:3:0::3;

    neighbor fec0:0:6:0::1 {

        export r1-v6;

    }

}

[edit]

lab@r4# show protocols isis export

export v6-default;

[edit]

lab@r4# show policy-options policy-statement ebgp-out

term 1 {

    from {

        protocol aggregate;

        route-filter 10.0.0.0/16 exact;

    }

    then accept;

}

term 2 {

    from {

        protocol aggregate;

        route-filter fec0::/16 exact;

        route-filter ::10.0.0.0/112 exact;

    }

    then accept;

}

[edit]

lab@r4# show policy-options policy-statement v6-default

term 1 {

    from {

        protocol static;

        route-filter ::0/0 exact;



Case Study: IPv6 613

    }

    to level 1;

    then accept;

}

[edit]

lab@r4# show policy-options policy-statement r1-v6

term 1 {

    from {

        protocol aggregate;

        route-filter ::10.0.0.0/112 exact accept;

        route-filter fec0::/16 exact;

    }

    then {

        next-hop fec0:4:16:0:290:69ff:fe6b:3002;

        accept;

    }

}

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.6;

    }

    then {

        next-hop self;

    }

}

[edit]

lab@r4# show policy-options policy-statement r2-v6

term 1 {

    from {

        protocol aggregate;

        route-filter ::10.0.0.0/112 exact accept;

        route-filter fec0::/16 exact;

    }

    then {

        next-hop fec0:4:8:0:290:69ff:fe6b:3001;

        accept;

    }

}



614 Chapter 5 � IPv6

term 2 {

    from {

        protocol bgp;

        neighbor 172.16.0.6;

    }

    then {

        next-hop self;

    }

}

Listing 5.5: IPv6 Case Study Configuration for r5

[edit]

lab@r5# show interfaces at-0/2/1

atm-options {

    vpi 0 {

        maximum-vcs 64;

    }

}

unit 0 {

    point-to-point;

    vci 50;

    family inet {

        address 10.0.2.1/30;

    }

    family iso;

    family inet6 {

        address fec0:2:0:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r5# show interfaces so-0/1/0

encapsulation ppp;

unit 0 {

    family inet {

        address 10.0.2.9/30;

    }

    family iso;

    family inet6 {

        address fec0:2:8:0::/64 {

            eui-64;



Case Study: IPv6 615

        }

    }

}

[edit]

lab@r5# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.5/32;

    }

    family iso {

        address 49.0002.5555.5555.5555.00;

    }

    family inet6 {

        address fec0:0:3::5/128;

    }

}

[edit]

lab@r5# show protocols bgp

group int {

    type internal;

    local-address 10.0.3.5;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4;

    neighbor 10.0.9.6;

    neighbor 10.0.9.7;

}

group int-v6 {

    type internal;

    local-address fec0:0:3:0::5;

    neighbor fec0:0:3:0::3;

    neighbor fec0:0:3:0::4;

    neighbor fec0:0:6:0::1;

    neighbor fec0:0:6:0::2;

}

r6 was not part of the IPv6 test bed. No changes were made to its configuration as part of 
this chapter’s case study.

r7 was not part of the IPv6 test bed. No changes were made to its configuration as part 
of this chapter’s case study.



616 Chapter 5 � IPv6

Spot the Issues: Review Questions
1. Does this EBGP configuration for r3 meet the requirement posed in this chapter’s case study?

[edit protocols bgp group ext]

lab@r3# show

import ebgp-in;

family inet6 {

    unicast;

}

export ebgp-out;

neighbor 172.16.0.14 {

    peer-as 65222;

}

2. Why does this case study configuration from r4 make it seem that no routes are ever advertised 
by the C1 peer?

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 172.16.0.5/30;

    }

    family inet6;

}

[edit]

lab@r4# show protocols bgp group c1

type external;

family inet {

    unicast;

}

family inet6 {

    unicast;

}

export ebgp-out;

neighbor 172.16.0.6 {

    peer-as 65010;

}



Spot the Issues: Review Questions 617

3. Why is this router advertisement configuration not advertising the configured prefix?

[edit]

lab@r1# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.5.1/24;

    }

    family inet6 {

        address fec0:5:0::/64 {

            eui-64;

        }

    }

}

[edit]

lab@r1# show protocols router-advertisement

interface fe-0/0/0.0 {

    prefix fec0:0:5:0::/64;

}

4. Can you explain the commit error stemming from this configuration?

[edit routing-options]

lab@r4# show rib inet6

static {

    route ::/0 reject;

}

aggregate {

    route ::10.0.0.0/112;

    route fec0::/16;

}

[edit routing-options]

lab@r4# commit check

[edit routing-options rib inet6]

  rib inet6

  RT: invalid rib inet6

error: configuration check-out failed



618 Chapter 5 � IPv6

Spot the Issues: Answers to Review 
Questions
1. No. This configuration does not explicitly list the inet unicast family, so the resulting EBGP 

session will not support IPv4 NLRI. You must explicitly configure the inet family when any 
other address families are also explicitly configured.

2. You must configure an IPv4-compatible IPv6 address that matches the IPv4 peering address when 
supporting IPv6 NLRI over an IPv4-based BGP session. The lack of a ::172.16.0.5 address 
assignment on r4’s fe-0/0/0 interface causes r4 to discard (not hide) the IPv6 routes it receives 
from the C1 peer.

3. A router advertisement advertises a configured prefix only when that prefix is assigned to the 
advertising interface. In this case, a typo has resulted in the configured prefix not matching any 
prefixes assigned to r1’s fe-0/0/0 interface.

4. The correct RIB for IPv6 routes is inet6.0, not inet6. Although the CLI allows you to specify 
user-defined RIBs, the presence of IPv6 route entries forces you to use a standard name for 
the IPv6 RIB. 



 

Chapter

 

6

 

Class of Service

 

JNCIE LAB SKILLS COVERED IN THIS 
CHAPTER:

�

 

Packet Classification and Forwarding Classes

�

 

Behavior Aggregate and Multifield

�

 

Rewrite and Packet Marking

�

 

Loss Priority

�

 

Schedulers

�

 

RED Profiles



 

This chapter exposes the reader to several JNCIE-level Class of 
Service (CoS) configuration tasks that validate the JNCIE candi-
date’s practical understanding of the CoS capabilities and features 

associated with JUNOS software release 5.6. It is assumed that the reader already possesses a 
working knowledge of general CoS/QoS concepts as well as IP Differential Services (DiffServ) 
code points and per-hop behaviors (PHBs) to the extent covered in the 

 

JNCIS Study Guide

 

 
(Sybex, 2003).

Juniper Networks M-series and T-series routing platforms support a rich set of features that 
facilitate the deployment of IP networks that support specialized traffic handling. In general, 
you deploy CoS when the default (Best Effort (BE)) packet handling behavior fails to provide 
a specific application with the required level of performance in the face of limited resources, 
or when service level agreements (SLAs) dictate that premium services classes are to be afforded 
a level of treatment above and beyond lesser-service classes. When properly designed and 
deployed, a JUNOS software–based CoS solution permits integrated service support over IP-
based networks, which in turn allows network operators to converge their networks around 
the well-understood and ubiquitous IP technology. Replacing multiple overlay networks 
(ATM, X.25, Frame Relay, leased line, POTS) with a single backbone technology offers many 
economic and operational advantages; in the end, one network is simply less expensive to own 
and operate.

Note that the syntax for JUNOS software CoS configuration changed dramatically starting 
with release 4.4. In keeping with the 5.6R2.4 JUNOS software release used to develop this 
book, only the “new-style” configuration syntax is documented and demonstrated. Also of note 
are the functional and operational differences between the original and “Enhanced” Flexible 
PIC Concentrators (FPCs), which became available for M-series routing platforms circa the 
4.4 JUNOS software release. Enhanced FPCs are associated with M-series routing platforms 
only; T-series FPCs have always offered CoS-related functionality that is generally equal to 
(or better than) the capabilities of the E-FPC. E-FPCs make use of the third-generation I/O 
manager ASIC (the B-chip) to offer additional capabilities and enhanced operational mode 
output that greatly simplifies the task of monitoring the effects of a CoS configuration. The reader 
is encouraged to consult the JUNOS software documentation set for complete details on the 
capabilities and differences between the FPC, E-FPC, and the M-series and T-series platforms. 
Because E-FPCs are now standard issue on all M-series platforms, the configuration and oper-
ational mode command examples in this chapter are based on E-FPC capabilities. Use the 

 

show

 

 

 

chassis

 

 

 

hardware

 

 command to determine if your M-series router is equipped with 
an E-FPC:

 

[edit]

lab@r5# 

 

run show chassis hardware



 

Class of Service

 

621

 

Hardware inventory:

Item             Version  Part number  Serial number     Description

Chassis                                50525             M5

Midplane         REV 03   710-002650   HF1636

Power Supply A   Rev 04   740-002497   LL14364           AC

Power Supply B   Rev 04   740-002497   LL14375           AC

Display          REV 04   710-001995   AL2316

Routing Engine                         6d0000078e2d5401  RE-2.0

FEB              REV 06   710-003311   HK9932            E-FEB

FPC 0

  PIC 0          REV 04   750-002992   HB2103            4x F/E, 100 BASE-TX

  PIC 1          REV 03   750-002971   HD2855            4x OC-3 SONET, MM

  PIC 2          REV 03   750-002977   HC3250            2x OC-3 ATM, MM

 

The presence of an Enhanced FPC is identified by the 

 

E-FEB

 

 designation evident in the sample 
output, which was taken from an M5 platform.

The configuration scenarios demonstrated in the chapter body and case study are based on 
the OSPF baseline configuration as discovered in the case study of Chapter 1. If you are unsure 
as to the state of your test bed, you should take a few moments to load up and confirm the 
operation of the OSPF discovery configuration. Note that some of the routers in the JNCIE test 
bed are not brought into play during the course of this chapter. In many cases, a candidate 
is expected to configure functionality on a subset of routers in an effort to save time while still 
validating the candidate’s practical skill set.

Operational mode command output examples are provided throughout the chapter so that 
you can compare your network’s operation to that of a known good example. Baseline con-
figuration changes that are known to meet all case study requirements are provided at the end 
of the case study for all routers in the CoS test bed.

Unlike other topics in this book series, which readily accommodated a piece-by-piece approach 
whereby subsets of functionality could be individually addressed and verified, with CoS, it is 
often an “all or nothing” proposition. This is to say that a functional CoS configuration often 
involves numerous changes in numerous places before there can be any hope of a “working” 
CoS solution. To best accommodate these unique characteristics, while still presenting informa-
tion in a modular and logical sequence, the approach taken in this chapter deviates from previous 
chapters in the following ways:
�

 

An overall description of the CoS goals detailed in the chapter body is provided to afford 
the reader with a big-picture view of where the chapter is going, and what needs to be done.

�

 

The chapter body focuses on a simplex CoS solution, which is to say that the configuration 
and confirmation examples are performed with a strict focus on traffic flowing in a single 
direction.

�

 

The chapter case study has the candidate complete the CoS solution by configuring matching 
CoS functionality in the return direction.

Figure 6.1 details the CoS test bed, which currently comprises 

 

r3

 

 through 

 

r5

 

 and EBGP peers 
T1 and C1.



 

622

 

Chapter 6 �

 

Class of Service

 

F I G U R E 6 . 1

 

CoS topology

 

As you progress through this chapter, it helps to keep in mind that your overall goal is to 
configure the CoS test bed to support an integrated services offering for transit traffic com-
prising Voice over IP (VoIP) and conventional Internet traffic. To minimize the chapter’s 
complexity (and size), the chapter body concentrates on CoS configuration and confirmation in 
the T1-to-C1 direction 

 

only

 

. It is easy to get confused with CoS; keeping the big picture in your 
mind will generally help to keep you, and your configurations, on track.

A complete listing of the CoS configuration scenario’s configuration criteria and restrictions 
is provided here to give the reader an overview of what needs to be configured and tested.

The application specifics and configuration requirements for the CoS scenario are listed here 
in their entirety:
�

 

SIP signaling (VoIP) uses TCP/UDP, port 5060.

AS 65010
200.200/16

C1

fe-0/0/0
172.16.0.4/30

fe-0/0/2

AS 65222
130.130/16

T1

172.16.0.12/30

.13

M5M5

M5M5

M5M5

r3

r5
10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1

so-0/1/0

at-0/2/1

at-0/1/0

.9

.1

.5

.6

.5

.10

.2

r4

Loopbacks

r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5

so-0/2/0
so-0/1/0

Case study concern is CoS
configuration and testing in
the C1–T1 direction.

Chapter body concern is CoS
configuration and testing in
the T1–C1 direction only.



 

Packet Classification and Forwarding Classes

 

623

�

 

RTP media channels use UDP with port assignments in the range of 16,384–32,767.
�

 

Classify all VoIP traffic as EF.
�

 

Ensure that network control traffic continues to be classified as NC.
�

 

Classify all remaining traffic with IP precedence 0 as BE.
�

 

Police BE traffic to 1Mbps with excess data marked for discard.
�

 

Your classification design must tolerate the failure of any single core interface or link.
�

 

Configure 

 

r3

 

 so that traffic received from the T1 peer is classified according to a DSCP-
based BA at 

 

r4

 

 and 

 

r5

 

.
�

 

Ensure that traffic received from the T1 peer is consistently classified by all network 
elements.

�

 

Ensure that 

 

r4

 

 and 

 

r5

 

 are able to differentiate BE traffic received from the T1 peer based 
on its compliance with the configured policer.

�

 

You must use DSCP-based classification at 

 

r4

 

 and 

 

r5

 

.
�

 

Configure schedulers in the CoS test bed according to these criteria:
�

 

BE traffic limited to 10 percent of interface bandwidth.
�

 

Ensure that BE traffic never exceeds the configured rate, even when other queues 
are empty.

�

 

Configure the EF class to get 30 percent of interface bandwidth.
�

 

Configure the EF class for a maximum queuing delay of 100 milliseconds.
�

 

Ensure that the EF class has precedence over all other classes, regardless of the EF queue’s 
current bandwidth credit.

�

 

Make sure your scheduler configuration does not adversely affect the operation of your 
routing protocols.

�

 

Drop 1 percent of the BE traffic with a low loss priority at 70 percent buffer fill.
�

 

Drop 10 percent of the BE traffic with a high loss priority at 50 percent buffer fill.
�

 

Do not alter the default RED profiles in effect for the EF and NC forwarding classes.
�

 

Ensure that RED only acts on TCP-based BE traffic.

Again note that the above requirements are to be configured and tested in the direction of T1 
to C1 only!

 

Packet Classification and 
Forwarding Classes

 

Packets supporting special services and applications must be recognized and mapped to a 
corresponding forwarding class at ingress so the desired per-hop behavior (PHB) can be brought 
to bear on that packet. Currently M-series and T-series routing platforms offer support for four 



 

624

 

Chapter 6 �

 

Class of Service

 

independent forwarding classes (FCs). These include Expedited Forwarding (EF), Assured For-
warding (AF), Best Effort (BE), and Network Control (NC). Support for additional forwarding 
classes is achieved by aggregating other classes into one of these four FCs. It is sometimes helpful 
to recall that forwarding classes used to be called “output queues” in previous JUNOS software 
CoS terminology; in effect, the end result of classification is the identification of an output 
queue for a particular packet.

Devices that sit at the edge of a network usually classify packets according to codings that 
are located in multiple packet header fields. Multifield classification is normally performed 
at the network’s edge due to the general lack of DiffServ Code Point (DSCP) or IP precedence 
support in end-user applications; common codings of the IP precedence or the DiffServ fields 
makes classification based on the traffic’s behavior aggregate (BA) unavailable for ingress 
traffic. Multifield classification is performed in JUNOS software using firewall filters and their 
associated match conditions (see Chapter 3 for coverage of JUNOS software firewall filters).

BA classification, on the other hand, is based on IP precedence, IEEE 802.1P, DiffServ DSCPs, 
or MPLS EXP bit settings. Because the fixed-length nature of BA-based classification is com-
putationally more efficient than a multifield classification approach, core devices are normally 
configured to perform BA classification due to the higher traffic volumes they are expected 
to handle. In most cases, you need to rewrite a given marker (IP precedence, DiffServ DSCP, 
IEEE 802.1P, or MPLS EXP settings) at the ingress node to accommodate BA classification 
actions by core and egress devices. Rewrite actions are needed when the ingress traffic is not 
already coded with BA settings that are compatible with the configuration of core devices, 
which typically is the case given that most TCP/IP applications use default settings for the 
BA-related fields in the packets (and frames) they generate.

In addition to MF- and BA-based packet classification, JUNOS software also supports ingress 
interface and destination address–based classification mechanisms.

In addition to associating packets to forwarding classes, classification is also used to identify 
a packet’s loss priority (PLP). The PLP indication is used by schedulers in conjunction with the 
RED algorithm to control packet discard during periods of congestion.

 

Multifield Classification

 

It is assumed that the OSPF baseline network is operational, at least as it would regard 

 

r3

 

, 

 

r4

 

, 

 

r5

 

, and the EBGP peers T1 and C1.You begin the CoS configuration scenario at 

 

r3

 

 by config-
uring it to perform multifield classification on packets received from the T1 peer according to 
the criteria listed next.
�

 

SIP signaling (VoIP) uses TCP/UDP, port 5060.
�

 

RTP media channels use UDP with port assignments in the range of 16,384–32,767.
�

 

Classify all VoIP traffic as EF.
�

 

Ensure that network control traffic continues to be classified as NC.
�

 

Classify all remaining traffic with IP precedence 0 as BE.
�

 

Police BE traffic to 1Mbps with excess data marked for discard.



 

Packet Classification and Forwarding Classes

 

625

 

Configuring Multifield Classification

 

You begin configuration at 

 

r3

 

 by defining a firewall filter called 

 

classify

 

 that is written to 
match on the transport protocol and ports identified in the packets received from T1 with the 
intent of classifying the traffic into the forwarding classes specified by your criteria. The first 
term, which is called sip in this case, classifies SIP signaling messages:

[edit]

lab@r3# edit firewall filter classify

[edit firewall filter classify]

lab@r3# set term sip from protocol udp

[edit firewall filter classify]

lab@r3# set term sip from protocol tcp

[edit firewall filter classify]

lab@r3# set term sip from port 5060

[edit firewall filter classify]

lab@r3# set term sip then forwarding-class expedited-forwarding

Firewall Filters and Address Families

The JUNOS software release 5.6 offers support for firewall filters based on the IPv6 and MPLS 
families. The syntax shown in this section and in Chapter 4 is based on the historical support 
for IPv4 firewall filters only. To offer support for additional address families, the firewall filter 
syntax is changing to include the protocol family. While the older syntax is still supported in 
the 5.6 release, you should become accustomed to the new syntax at some point. A sample 
of the newer firewall filter syntax is shown here:

[edit firewall]
lab@r2# show 
family inet {
    filter new-syntax {
        term sip {
            from {
                protocol [ udp tcp ];
                port 5060;
            }
            then forwarding-class expedited-forwarding;
        }
    }
}



626 Chapter 6 � Class of Service

Note that port directionality is avoided by using the port keyword, which causes a match 
when either the source port (replies), the destination port (requests), or both are coded to 5060, 
and that the forwarding-class action modified negates the need for an explicit accept 
action. The second term in the classify firewall filter deals with the VoIP media channels that 
use UDP-based transport:

[edit firewall filter classify]

lab@r3# set term rtp from protocol udp

[edit firewall filter classify]

lab@r3# set term rtp from port 16384-32767

[edit firewall filter classify]

lab@r3# set term rtp then forwarding-class expedited-forwarding

The final term in the classify filter ensures that all remaining traffic is classified as BE and 
policed in accordance with your restrictions:

[edit firewall filter classify]

lab@r3# set term be then policer be-policer

With the filter complete, the be-policer is defined:

[edit firewall]

lab@r3# set policer be-policer if-exceeding bandwidth-limit 1m

[edit firewall]

lab@r3# set policer be-policer if-exceeding burst-size-limit 15000

[edit firewall]

lab@r3# set policer be-policer then loss-priority high

Given that an explicit burst size value was not specified, the policer’s burst tolerance is set to 
the recommended value for a low-speed interface, which is ten times the interface’s MTU. For 
a high-speed interface, such as an OC-192, the recommended burst size is the transmit rate of 
the interface times 3–5 milliseconds. The completed classify filter is displayed:

[edit firewall]

lab@r3# show filter classify

term sip {

    from {

        protocol [ udp tcp ];

        port 5060;

    }

    then {

        forwarding-class expedited-forwarding;

        accept;

    }

}



Packet Classification and Forwarding Classes 627

term rtp {

    from {

        protocol udp;

        port 16384-32767;

    }

    then {

        forwarding-class expedited-forwarding;

        accept;

    }

}

term be {

    then policer be-policer;

}

The related be-policer is also displayed for visual confirmation:

[edit firewall]

lab@r3# show policer be-policer

if-exceeding {

    bandwidth-limit 1m;

    burst-size-limit 15k;

}

then loss-priority high;

The fact that the be term does not include a forwarding-class action modifier, and that no 
explicit treatment of network control (NC) traffic is provided in the classify filter, warrants 
some additional attention here. Although you could add explicit support for the classification of 
network control traffic, and all remaining IP traffic, the default IP precedence classifier correctly 
classifies the remaining traffic with no added typing! To confirm this theory, you display the 
default classifiers currently in effect for r3’s fe-0/0/2 interface:

lab@r3# run show class-of-service interface fe-0/0/2

Physical interface: fe-0/0/2, Index: 14

  Scheduler map: <default>, Index: 1

  Logical interface: fe-0/0/2.0, Index: 7

    Object         Name                   Type                       Index

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

The display confirms that the ipprec-compatibility classifier is in effect by default. 
You use the show class-of-service classifier name command to view the classifier’s 
mappings:

[edit]

lab@r3# run show class-of-service classifier name ipprec-compatibility



628 Chapter 6 � Class of Service

Classifier: ipprec-compatibility, Code point type: inet-precedence, Index: 5

  Code point         Forwarding class                    Loss priority

  000                best-effort                         low

  001                best-effort                         high

  010                best-effort                         low

  011                best-effort                         high

  100                best-effort                         low

  101                best-effort                         high

  110                network-control                     low

  111                network-control                     high

The highlighted entries confirm that traffic with IP precedence setting of 0 is correctly 
classified as BE while NC traffic, with precedence values of 6 or 7, is properly classified as NC. 
Satisfied with the syntax and structure of the classify filter and be-policer, you apply the 
filter as an input on r3’s fe-0/0/2 interface:

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        filter {

            input classify;

        }

        address 172.16.0.13/30;

    }

}

JUNOS software permits the classification of a given packet using both a BA and multifield 
classifier. The use of the multifield classifier filter combined with the presence of the default 
IP precedence classifier means that just such a situation will be in effect when you commit 
the changes. In these situations, the BA classifier is processed first, followed in turn by the 
multifield classifier. This ordering is significant because it means that a multifield classifier can 
overwrite the classification made by a BA classifier when both techniques have been brought 
to bear on the same packet.

Confirming Multifield Classification

To confirm that your multifield classifier is working correctly, you need to monitor the queue 
counters at r3 for the egress interface used when forwarding traffic received from the T1 peer. 
Note that displaying the queue counters for the fe-0/0/2 interface will tell you nothing about 
your ingress classification at r3, because queuing occurs only at egress on M-series and T-series 
routers. You begin with a traceroute that confirms traffic from T1 to C1 currently egresses r3 
via its so-0/2/0.100 interface:

[edit]

lab@T1-P1# run traceroute 200.200.0.1 source 130.130.0.1



Packet Classification and Forwarding Classes 629

traceroute to 200.200.0.1 (200.200.0.1) from 130.130.0.1, 30 hops max, 40 byte 
packets

 1  172.16.0.13 (172.16.0.13)  0.432 ms  0.284 ms  0.272 ms

 2  10.0.2.6 (10.0.2.6)  0.362 ms  0.302 ms  0.292 ms

 3  200.200.0.1 (200.200.0.1)  0.248 ms  0.223 ms  0.217 ms

With the egress interface identified, you clear its associated queue counters:

[edit]

lab@r3# run clear interfaces statistics so-0/2/0

Before looking at the actual queue counts, you decide to confirm the default forwarding class 
to queue number assignment so that you can adequately predict which queues should be used 
by the VoIP, NC, and other traffic:

[edit]

lab@r3# run show class-of-service forwarding-class

Forwarding class                    Queue       Fabric priority

  best-effort                           0       low

  expedited-forwarding                  1       low

  assured-forwarding                    2       low

  network-control                       3       low

The output displays the default forwarding class to queue mappings; if desired, you can 
rename the forwarding class name associated with the queues supported on your hardware (all 
M-series and T-series platforms support at least four output queues). Note that assigning a new 
class name to a system queue does not alter the default classification or scheduling that is appli-
cable to that queue. CoS configurations are complicated enough, so unless it is required by 
the specifics of your scenario it is suggested that you not alter the default class names or queue 
number associations.

The default forwarding class-to-queue mappings shown indicate that VoIP traffic, which is 
classified as EF by the classify filter, should be placed into queue 2. Keeping all this in mind, 
you display the queue counts on the so-0/2/0 interface:

[edit]

lab@r3# run show interfaces so-0/2/0 detail | find "Queue counters"

  Queue counters:       Queued packets  Transmitted packets      Dropped packets

    0 best-effort                    1                    1                    0

    1 expedited-fo                   0                    0                    0

    2 assured-forw                   0                    0                    0

    3 network-cont                 115                  115                    0

  SONET alarms   : None

  SONET defects  : None

. . .

Noting that the counter for the EF queue (queue number 1) is currently zeroed out, you 
generate test traffic from the T1 router. Verifying the UDP aspects of the classify filter 



630 Chapter 6 � Class of Service

is complicated by your inability to generate UDP traffic with arbitrary port values. Therefore, 
you limit confirmation testing to conventional Internet traffic and the TCP-based VoIP 
signaling:

[edit]

lab@T1-P1# run ping 200.200.0.1 count 5 source 130.130.0.1

PING 200.200.0.1 (200.200.0.1): 56 data bytes

64 bytes from 200.200.0.1: icmp_seq=0 ttl=253 time=0.366 ms

64 bytes from 200.200.0.1: icmp_seq=1 ttl=253 time=0.249 ms

64 bytes from 200.200.0.1: icmp_seq=2 ttl=253 time=0.239 ms

64 bytes from 200.200.0.1: icmp_seq=3 ttl=253 time=0.241 ms

64 bytes from 200.200.0.1: icmp_seq=4 ttl=253 time=0.245 ms

--- 200.200.0.1 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.239/0.268/0.366/0.049 ms

[edit]

lab@T1-P1# run telnet 200.200.0.1 source 130.130.0.1 port 5060

Trying 200.200.0.1...

telnet: connect to address 200.200.0.1: Connection refused

telnet: Unable to connect to remote host

These commands should have generated five non-VoIP packets and a single TCP segment 
that was sent to port 5060. Proper classification is now confirmed by once again displaying r3’s 
so-0/2/0 interface queue counters:

[edit]

lab@r3# run show interfaces so-0/2/0 detail | find "Queue counters"

  Queue counters:       Queued packets  Transmitted packets      Dropped packets

    0 best-effort                    6                    6                    0

    1 expedited-fo                   1                    1                    0

    2 assured-forw                   0                    0                    0

    3 network-cont                 117                  117                    0

  SONET alarms   : None

  SONET defects  : None

. . .

Both the best-effort and expedited-fo queue counters have been incremented as expected, 
considering the traffic that was generated at T1. To confirm operation of the be-policer, flood 
pings are generated from the T1 peer while the policer’s out-of-profile counter is displayed at 
r3; you clear the firewall counter at r3 before commencing the test (not shown):

[edit]

lab@T1-P1# run ping 200.200.0.1 size 1200 rapid count 100 source 130.130.0.1



Packet Classification and Forwarding Classes 631

PING 200.200.0.1 (200.200.0.1): 1200 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!

--- 200.200.0.1 ping statistics ---

100 packets transmitted, 100 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.755/0.761/0.914/0.016 ms

[edit]

lab@r3# run show firewall

Filter: classify

Policers:

Name                                              Packets

be-policer-be                                          77

The non-zero packet count associated with the be-policer confirms that 77 of the 100 packets 
exceeded the policer’s parameters, and were therefore marked with a high discard probability. 
The 100 percent success rate for the ping traffic indicates that the policer is properly configured 
to pass traffic that is outside of the policing profile.

Although the UDP-related VoIP classification was not tested, knowing that your multifield 
classification filter operates correctly for the VoIP-related TCP traffic and for the non-VoIP 
traffic, combined with visual inspection of the UDP match criteria in the classify filter, 
provides sufficient confirmation that your multifield classification filter complies with all 
specified criteria.

BA Classification

With multifield classification in place at r3, your attention shifts to the need for BA-based 
classification at transit and egress routers r5 and r4, respectively. Note that successful BA clas-
sification at r4 and r5 ultimately relies on DSCP rewrite marker functionality, which has not 
yet been put into place at r3. The BA classification criteria are as follows:
� Configure DSCP-based classification at r4 and r5.
� Ensure that traffic received from the T1 peer is consistently classified by all network elements.
� Your classification design must tolerate the failure of any single core interface or link.

Configuring BA Classification

The criteria indicate a need for DSCP-based classification at r4 and r5 that will yield a consistent 
classification of traffic across your network. Your configuration must also take into account 
the need to operate around the failure of any single core interface or link. You begin at r4 by 
displaying the default DSCP classification map:

[edit class-of-service]

lab@r4# run show classifier name dscp-default

Classifier: dscp-default, Code point type: dscp, Index: 1



632 Chapter 6 � Class of Service

  Code point         Forwarding class                    Loss priority

  000000             best-effort                         low

  000001             best-effort                         low

  000010             best-effort                         low

  000011             best-effort                         low

  000100             best-effort                         low

  000101             best-effort                         low

  000110             best-effort                         low

  000111             best-effort                         low

  001000             best-effort                         low

  001001             best-effort                         low

  001010             assured-forwarding                  low

  001011             best-effort                         low

  001100             assured-forwarding                  high

  001101             best-effort                         low

  001110             assured-forwarding                  high

  001111             best-effort                         low

  010000             best-effort                         low

  010001             best-effort                         low

  010010             best-effort                         low

  010011             best-effort                         low

  010100             best-effort                         low

  010101             best-effort                         low

  010110             best-effort                         low

  010111             best-effort                         low

  011000             best-effort                         low

  011001             best-effort                         low

  011010             best-effort                         low

  011011             best-effort                         low

  011100             best-effort                         low

  011101             best-effort                         low

  011110             best-effort                         low

  011111             best-effort                         low

  100000             best-effort                         low

  100001             best-effort                         low

  100010             best-effort                         low

  100011             best-effort                         low

  100100             best-effort                         low

  100101             best-effort                         low

  100110             best-effort                         low

  100111             best-effort                         low



Packet Classification and Forwarding Classes 633

  101000             best-effort                         low

  101001             best-effort                         low

  101010             best-effort                         low

  101011             best-effort                         low

  101100             best-effort                         low

  101101             best-effort                         low

  101110             expedited-forwarding                low

  101111             best-effort                         low

  110000             network-control                     low

  110001             best-effort                         low

  110010             best-effort                         low

  110011             best-effort                         low

  110100             best-effort                         low

  110101             best-effort                         low

  110110             best-effort                         low

  110111             best-effort                         low

  111000             network-control                     low

  111001             best-effort                         low

  111010             best-effort                         low

  111011             best-effort                         low

  111100             best-effort                         low

  111101             best-effort                         low

  111110             best-effort                         low

  111111             best-effort                         low

The dscp-default classifier maps all 64 possible DSCPs to one of the four supported traffic 
classes. You note that none of the criteria specified thus far warrants a deviation from the default 
DSCP classifications that are shown earlier. Assuming for the moment that r3 will be configured 
with a compatible set of DSCP rewrite markers, the only action needed to meet the requirements 
of this section is to associate the dscp-default BA classifier with the r3-facing interfaces at 
r4 and r5. The default DSCP classifier is now associated with r4’s core-facing interfaces:

[edit class-of-service interfaces so-0/1/0]

lab@r4# set unit 100 classifiers dscp default

[edit class-of-service interfaces so-0/1/1]

lab@r4# set unit 0 classifiers dscp default

The resulting configuration is shown:

[edit class-of-service]

lab@r4# show

interfaces {

    so-0/1/0 {

        unit 100 {



634 Chapter 6 � Class of Service

            classifiers {

                dscp default;

            }

        }

    }

    so-0/1/1 {

        unit 0 {

            classifiers {

                dscp default;

            }

        }

    }

}

Note that the default DSCP classifier is referenced with the keyword default as opposed to 
its fully qualified dscp-default name; specifying the full name returns a commit error. Also of 
note is the need for DSCP-based classification on packets arriving on both of r4’s core-facing 
interfaces, which addresses the case of packets being routed through r5 in the event of a link 
failure between r3 and r4. The default DSCP classifier must also be configured on r5. The 
class-of-service stanza is displayed on r5 after the modification is put into place:

[edit class-of-service interfaces at-0/2/1]

lab@r5# show

at-0/2/1 {

    unit 0 {

        classifiers {

            dscp default;

        }

    }

}

Be sure that you commit your changes on r4 and r5 before proceeding to the confirmation 
section.

Confirming BA Classification

At this stage, the confirmation of the BA classifier must be confined to the simple act of verifying 
that the correct classifier is in effect on the core-facing interfaces of r4 and r5. This is because 
you can not expect the default DSCP classifier to correctly classify packets until you have con-
figured r3 to rewrite the DSCP markers on the traffic received from T1 based on its multifield 
classification. A show class-of-service interface name command is issued at r4 to verify 
that DSCP classification is in effect on its so-0/1/0.100 interface:

[edit]

lab@r4# run show class-of-service interface so-0/1/0

Physical interface: so-0/1/0, Index: 16

  Scheduler map: <default>, Index: 1



Rewrite Markers 635

  Logical interface: so-0/1/0.100, Index: 9

    Object         Name                   Type                       Index

    Rewrite        exp-default            exp                            2

    Classifier     dscp-default           dscp                           1

[edit class-of-service]

lab@r4# run show class-of-service interface so-0/1/1

Physical interface: so-0/1/1, Index: 17

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/1/1.0, Index: 10

    Object         Name                   Type                       Index

    Rewrite        exp-default            exp                            2

    Classifier     dscp-default           dscp                           1

Although not shown, you may assume that r5 displays similar information for its at-0/2/1.0 
interface. Once rewrite marker configuration is added to r3, you will be able to revisit your 
DSCP-based BA classification for final verification.

Classification Summary

Packets that require specialized handling must be identified as they ingress the network. In most 
cases, you will use a firewall filter to perform multifield-based classifications at the network’s 
edge while using the more direct BA-based classification within the network’s core. This section 
demonstrated how a firewall filter, in conjunction with the default IP precedence classifier, can 
be used to perform multifield classification to identify traffic as belonging to the BE, EF, or NC 
classes. The section also demonstrated how a classifier, in this case the default DSCP classifier, 
is applied to an interface. Note that while the E-FPC supports as many as eight classifiers per 
FPC, you may specify only one classifier per logical interface.

Each of the four traffic classes supported by JUNOS software is mapped to a corresponding 
output queue. You display the class-to-queue mappings with the show class-of-service 
forwarding-class command. You use the show class-of-service classifier command 
to display the user-defined and default classifiers.

It is important to note that successful BA-based classification normally requires some sort 
of marker rewrite action at the network’s edge. This is because the majority of traffic that is 
generated by end-user applications makes use of default IP precedence/DSCP values that, if left 
unmodified, interferes with successful BA-based classification in the core.

Rewrite Markers
As previously mentioned, successful use of BA classification by core devices normally requires 
some form of marker rewrite at the network edge to accommodate the fact that most applica-
tions populate the IP precedence/DSCP field with a default setting, in other words, all zeros. 



636 Chapter 6 � Class of Service

JUNOS software combined with E-FPC functionality supports the rewriting of IP precedence, 
DSCP, MPLS EXP, and IEEE 802.1p markers.

Marker rewrite relates to packet loss priority (PLP) and RED related discards because for IP 
traffic the PLP bit is conveyed between routers using the LSB of the IP precedence field or spec-
ified DiffServ code points. For labeled packets, the PLP status is always coded in bit 22 (the LSB 
of the MPLS EXP field) of the 32-bit shim label when using the original M-series FPC. With 
Enhanced FPCs or a T-series FPC, you can define an EXP classifier (and rewrite table) that support 
MPLS PLP status using any bit in the EXP field. Note that for 802.1P-based classification, bit 0 
is always used to code the packet’s PLP status. In this example, bit 0 of the MPLS EXP field will 
be used to code PLP status.

In this example, you will be rewriting the DSCP settings of the traffic received from the T1 
peer at r3 according to these requirements:
� Configure r3 so that traffic received from the T1 peer is classified according to a DSCP-based 

BA at r4 and r5.
� Ensure that traffic received from the T1 peer is consistently classified by all network elements.

The astute reader will recognize that the last criterion has been duplicated from the previous 
section. This is because consistent traffic classification relies on the successful interplay between 
the configuration steps that relate to classification (as detailed in the previous section) and 
marker rewrite (as covered in this section).

Configuring DSCP Rewrite

The requirements specified indicate a need to configure r3 so that egress traffic at r3 (as received 
from the T1 peer) will be compatible with the DSCP-based BA classification that is now in 
effect at r4 and r5. Care must be taken to ensure that your configuration yields a consistent 
classification between the BA and multifield approaches that are both at play in the CoS test 
bed. You start at r3 by displaying the default DSCP rewrite table:

[edit]

lab@r3# run show class-of-service rewrite-rule type dscp

Rewrite rule: dscp-default, Code point type: dscp, Index: 1

  Forwarding class                    Loss priority       Code point

  best-effort                         low                 000000

  best-effort                         high                000000

  expedited-forwarding                low                 101110

  expedited-forwarding                high                101110

  assured-forwarding                  low                 001010

  assured-forwarding                  high                001100

  network-control                     low                 110000

  network-control                     high                111000

The dscp-default rewrite table maps each supported traffic class and loss priority setting 
to a particular DSCP value. By comparing the DSCPs shown for the BE, NC, and EF classes to 



Rewrite Markers 637

the default DSCP classification table, as displayed in the previous section, you can readily con-
firm that the default DSCP rewrite and classifications tables are compatible. By way of example, 
consider a packet that has been classified as EF upon ingress via the multifield classifier at r3. 
When the default DSCP rewrite table is applied to r3’s egress interfaces, these packets will have 
their DSCP coded with the value 101110, which is good, because the default DSCP classifier 
interprets this pattern as expedited forwarding with low loss priority. The key point here is 
that the default DSCP rewrite table and the default DSCP classification table are inherently 
consistent, which is important, because a successful CoS design relies on the consistent (and 
predictable) classification of a given packet across all devices in the network.

To complete the configuration aspects of this section, you need to correctly associate the 
default DSCP rewrite table to the core-facing interfaces on r3. Before making any configuration 
changes, you decide to confirm the default rewrite behavior so you can better gauge the effects 
of your impending changes. You begin by clearing the interface counters at r4 (not shown), 
which is followed up with the generation of a TCP segment destined to port 5060 at the T1 peer:

[edit]

lab@T1-P1# run telnet 200.200.0.1 source 130.130.0.1 port 5060

Trying 200.200.0.1...

telnet: connect to address 200.200.0.1: Connection refused

telnet: Unable to connect to remote host

Noting that this traffic is classified as EF by the multifield classifier in place at r3, you display 
the queue counts for the egress interface at r4:

[edit]

lab@r4# run show interfaces fe-0/0/0 detail | find "Queue counters"

  Queue counters:       Queued packets  Transmitted packets      Dropped packets

    0 best-effort                    7                    7                    0

    1 expedited-fo                   0                    0                    0

    2 assured-forw                   0                    0                    0

    3 network-cont                   6                    6                    0

  Active alarms  : None

  Active defects : None

  . . .

The highlighted entry indicates that r4 has failed to correctly classify the traffic as belonging 
to the EF class. Considering that the only rewrite table that is in effect by default is for MPLS 
EXP bits, this behavior is to be expected. Rewrite functionality can also be confirmed with traffic 
monitoring. In this case, you modify the target address of the Telnet command at the T1 router 
while monitoring traffic on the ingress interface at r4 with the detail switch. The target 
address must be changed to reflect a local address at the monitoring node because transit traffic 
can not be monitored:

[edit]

lab@T1-P1# run telnet 10.0.3.4 source 130.130.0.1 port 5060



638 Chapter 6 � Class of Service

Trying 10.0.3.4...

telnet: connect to address 10.0.3.4: Connection refused

telnet: Unable to connect to remote host

[edit]

lab@r4# run monitor traffic interface so-0/1/0 detail

Listening on so-0/1/0, capture size 96 bytes

20:56:02.125705 Out IP (tos 0xc0, ttl 1, id 598, len 68) 10.0.2.6 > 224.0.0.5:

   OSPFv2-hello 48: rtrid 10.0.3.4 backbone E mask 255.255.255.252 int 10

   pri 128 dead 40 nbrs 10.0.3.3

20:56:04.852978  In IP (tos 0x10, ttl 63, id 62037, len 60) 130.130.0.1.3465 >

   10.0.3.4.5060: S 1914879600:1914879600(0) win 16384 <mss 1460,nop,wscale 0,

   nop,nop,timestamp 558487 0> (DF)

20:56:04.853052 Out IP (tos 0x0, ttl 64, id 601, len 40) 10.0.3.4.5060 > 

   130.130.0.1.3465: R 0:0(0) ack 1914879601 win 0

20:56:05.412963  In IP (tos 0xc0, ttl 1, id 21661, len 68) 10.0.2.5 > 224.0.0.5:

   OSPFv2-hello 48: rtrid 10.0.3.3 backbone E mask 255.255.255.252 int 10

   pri 128 dead 40 nbrs 10.0.3.4

^C

4 packets received by filter

0 packets dropped by kernel

The highlighted portion of the capture shows that the TCP segment sent to port 5060 by the 
T1 peer is arriving at r4’s core-facing interface with a Type of Service (ToS) setting of 0x10. 
When broken down into binary, this yields a 000 100 00 pattern (the added spacing helps to call 
out that the first three bits in ToS field code a precedence setting of 0). The next three bits code 
the Delay, Throughput, and Reliability indicators, which in this case are coded to indicate 
that delay is the optimal metric for this traffic (telnet, being interactive and character based, 
is a delay-sensitive application) The last two bits of the precedence/ToS file are reserved and set 
to zero. The traffic monitoring results also confirm that at this stage the DiffServ code points 
for VoIP-related TCP traffic, as sent by the T1 peer, are not being correctly written by r3. Note 
that for backward compatibility all DiffServ code points in the form of xxx000 are interpreted 
as IP ToS settings.

The output shown here provides definitive proof that, until you add the appropriate DSCP 
rewrite configuration to r3, your DSCP-based classification settings at r4 and r5 will not have 
the desired effect. Failing to achieve consistent traffic classification will result in exam point loss 
given the restrictions in effect for this example.

To rectify the situation, you associate the default DSCP rewrite table to the core-facing inter-
faces at r3:

[edit class-of-service interfaces at-0/1/0]

lab@r3# set unit 0 rewrite-rules dscp default



Rewrite Markers 639

In the current CoS test bed, the ATM link between r3 and r5 supports a single 
VC that is configured for UBR operation with no ATM traffic shaping. When 
your goal is to provide CoS on a per-VC basis, you should configure VC-level 
traffic parameters and shaping, as opposed to using I/O manager (B-chip) 
based CoS. This is because I/O manager CoS does not understand individual 
VCs, and therefore can not provide the level of granularity needed for a VC-
level CoS solution. The CoS solution demonstrated here is workable because a 
single ATM VC is defined, and only one of the two ports on the ATM PIC are in 
use (ATM-1 PICs share a single stream among all physical ports, unlike a PoS 
PIC, which uses one stream per port). Newer “Q-chip” based PICs, such as the 
ATM-2, can support as many as 4,096 queues per PIC. The presence of a single 
Frame Relay DLCI on the PoS link between r3 and r4 also means that there will 
be no issues with head-of-line blocking, as might occur if multiple DLCIs (or 
VLANs) are defined on a non Q-CHIP PIC.

A similar configuration is also needed for r3’s so-0/2/0.100 interface (not shown). The com-
pleted class-of-service stanza is displayed at r3 and the changes are committed:

[edit class-of-service]

lab@r3# show

interfaces {

    so-0/2/0 {

        unit 100 {

            rewrite-rules {

                dscp default;

            }

        }

    }

    at-0/1/0 {

        unit 0 {

            rewrite-rules {

                dscp default;

            }

        }

    }

}

[edit class-of-service]

lab@r3# commit

commit complete

Confirming DSCP Rewrite

Confirming that r3 is correctly rewriting the DiffServ code points for traffic received 
from the T1 peer is rather straightforward. You start by displaying the rewrite rules that 



640 Chapter 6 � Class of Service

are currently in effect for r3’s core interfaces:

[edit class-of-service]

lab@r3# run show class-of-service interface at-0/1/0

Physical interface: at-0/1/0, Index: 16

  Scheduler map: <default>, Index: 1

  Logical interface: at-0/1/0.0, Index: 9

    Object         Name                   Type                       Index

    Rewrite        dscp-default           dscp                           1

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

[edit class-of-service]

lab@r3# run show class-of-service interface so-0/2/0

Physical interface: so-0/2/0, Index: 18

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/2/0.100, Index: 10

    Object         Name                   Type                       Index

    Rewrite        dscp-default           dscp                           1

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

The highlights call out the correct application of the dscp-default rewrite table to both of 
r3’s core-facing interfaces. Note that the only rewrite table present by default, the exp-default 
table, remains in effect for MPLS traffic despite the addition of a DiffServ rewrite table. The ulti-
mate proof of your DiffServ rewrite “pudding” comes in the form of an incrementing EF queue 
counter at r4 when TCP traffic is generated to port 5060. Once again you begin confirmation 
testing by clearing all counters at r4 (not shown here) to make sure you have clean test results. 
After clearing the counters at r4, test traffic is again generated from the T1 peer:

[edit]

lab@T1-P1# run telnet 200.200.0.1 source 130.130.0.1 port 5060

Trying 200.200.0.1...

telnet: connect to address 200.200.0.1: Connection refused

telnet: Unable to connect to remote host

[edit]

lab@T1-P1# run ping 200.200.0.1 count 5 source 130.130.0.1

PING 200.200.0.1 (200.200.0.1): 56 data bytes

64 bytes from 200.200.0.1: icmp_seq=0 ttl=253 time=0.328 ms

64 bytes from 200.200.0.1: icmp_seq=1 ttl=253 time=0.247 ms



Rewrite Markers 641

64 bytes from 200.200.0.1: icmp_seq=2 ttl=253 time=0.239 ms

64 bytes from 200.200.0.1: icmp_seq=3 ttl=253 time=0.240 ms

64 bytes from 200.200.0.1: icmp_seq=4 ttl=253 time=0.248 ms

--- 200.200.0.1 ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.239/0.260/0.328/0.034 ms

Once the test traffic has been dispatched, the egress queue counters are again displayed at r4:

[edit]

lab@r4# run show interfaces fe-0/0/0 detail | find "Queue counters"

  Queue counters:       Queued packets  Transmitted packets      Dropped packets

    0 best-effort                    5                    5                    0

    1 expedited-fo                   1                    1                    0

    2 assured-forw                   0                    0                    0

    3 network-cont                   0                    0                    0

  Active alarms  : None

  Active defects : None

  . . .

The queue counts correspond nicely with your expectations, considering the type and volume 
of traffic you generated at T1. Although the correct DSCP rewrite functionality has been 
confirmed, you decide to conduct traffic monitoring at r4 (once again changing the telnet target 
to r4’s lo0 address) for additional proof that all is well:

[edit]

lab@r4# run monitor traffic interface so-0/1/0 detail

Listening on so-0/1/0, capture size 96 bytes

21:27:39.633747 Out Call Ref: 75, MSG Type: 95 LOCK-SHIFT-5

                IE: 01 Len: 1, LINK VERIFY

                IE: 03 Len: 2, TX Seq: 237, RX Seq: 206

. . .

21:27:49.843860  In IP (tos 0xb8, ttl 63, id 62701, len 60) 130.130.0.1.4547 > 

   10.0.3.4.5060: S 1402932182:1402932182(0) win 16384 <mss 1460,nop,wscale 0,

   nop,nop,timestamp 748985 0> (DF)

21:27:49.843923 Out IP (tos 0x0, ttl 64, id 1542, len 40) 10.0.3.4.5060 > 

   130.130.0.1.4547: R 0:0(0) ack 1402932183 win 0

21:27:50.173959 Out IP (tos 0xc0, ttl 1, id 1543, len 68) 10.0.2.6 > 224.0.0.5:

   OSPFv2-hello 48: rtrid 10.0.3.4 backbone E mask 255.255.255.252 int 10

   pri 128 dead 40 nbrs 10.0.3.3

. . .



642 Chapter 6 � Class of Service

^C

14 packets received by filter

0 packets dropped by kernel

The highlighted entry provides an interesting contrast to the previous traffic monitoring 
capture. The IP ToS field is now coded to 0xB8, which breaks down as a binary 10111000; 
according to RFC 2598, “An Expedited Forwarding PHB,” this pattern is used to identify 
the EF forwarding class. Although not shown, it is suggested that you also confirm correct 
classification and egress queuing behavior at r5 by temporarily downing the Frame Relay link 
between r3 and r4 so that you can test the queue counters associated with r5’s so-0/1/0 interface.

Loss Priority

JUNOS software supports the tagging of packets with a loss priority indicator that functions in 
a manner similar to Frame Relay’s Discard Eligibility (DE) bit, or ATM’s Cell Loss Priority 
(CLP) bit. The trick to understanding the PLP bit lies in the understanding that it manifests itself 
differently internally versus externally. Internally, the PLP bit is indicated with proprietary data 
structures that can not be viewed directly; externally, a packet’s PLP status is conveyed using 
specific settings in the IP precedence, MPLS EXP, or DSCP fields (oftentimes, PLP indication 
in downstream nodes requires marker rewrite tables in the local node), in combination with 
the downstream node’s classification table. The last point bears additional focus because the 
default DSCP and IP precedence rewrite and classification tables do not support external 
communication of PLP status for the BE and EF traffic classes. This default behavior is in 
keeping with IETF DiffServ specifications, which leaves such matters to the control of each 
autonomous DiffServ domain. In contrast, the default MPLS EXP rewrite and classification 
tables do offer PLP support for all traffic classes with the default configuration (note that the 
default EXP classification table is not in effect by default, but the default MPLS EXP classifi-
cation table supports PLP status recognition in all four forwarding classes).

Keep in mind that loss priority processing relates to both classification and marker rewrite 
operations, both of which have been covered in the material that has brought you to this stage. 
Although PLP handling does not warrant a complete section unto itself, a loss priority scenario 
is included to help reinforce the operation and configuration of BA classifiers and marker 
rewrites in the context of a DiffServ application that requires the differentiation of loss priority 
for the BE traffic class. To complete this section, you must reconfigure the routers in the CoS 
test bed to meet these additional requirements:
� Ensure that r4 and r5 are able to differentiate BE traffic received from the T1 peer based 

on its compliance with the configured policer.
� You must continue to use DSCP-based classification at r4 and r5.

Configuring Loss Priority

To meet the required behavior, you have to modify the DSCP rewrite configuration at r3 and the 
DSCP classification maps in place at r4 and r5. Figure 6.2 helps you to understand what needs 
to be done by documenting the current handling of BE traffic being received from the T1 peer.



Rewrite Markers 643

F I G U R E 6 . 2 Default DSCP classification and rewrite functionality

Figure 6.2 shows how non-VoIP traffic (classified as BE by the default IP precedence classi-
fier) outside of the policer’s profile is locally tagged with a PLP status of 1. The figure also shows 
that the default DSCP rewrite table at r3 results in both in-profile and out-of-profile packets 
being sent to downstream routers with a DSCP setting of 0000000. The figure goes on to show 
how the default DSCP classifier in r4 considers DSCPs 000000 and 000001 as equal, in that 
they both map to BE traffic with a low loss priority.

The solution demonstrated in this section modifies the DSCP rewrite at r3 to use 000000 for 
in-profile traffic and 000001 for traffic in excess of the policer’s profile. The changes at r3 are 
only one-half of the story, however; you also need to adjust the DSCP classification at r4 and 
r5 to correctly interpret the 000000 and 000001 DSCP settings. You start at r3 with the defi-
nition of a new DSCP rewrite table that is called dscp-plp:

[edit class-of-service]

lab@r3# edit rewrite-rules dscp dscp-plp

[edit class-of-service rewrite-rules dscp dscp-plp]

lab@r3# set import default

[edit class-of-service rewrite-rules dscp dscp-plp]

lab@r3# set forwarding-class best-effort loss-priority low code-point 000000

[edit class-of-service rewrite-rules dscp dscp-plp]

lab@r3# set forwarding-class best-effort loss-priority high code-point 000001

r3

M5M5

r4

M5M5
Ingress Traffic

(classified as BE by
default IP Precedence

Classifier)

r4 receives the same
DSCP regardless of the
PLP status at r3 with
default DSCP rewrite and
classification.

[edit]
lab@r3# run show class-of-service rewrite-rule type dscp
Rewrite rule: dscp-default, Code point type: dscp, Index: 1
  Forwarding class           Loss priority    Code point
  best-effort                low              000000
  best-effort                high             000000
  . . .

[edit]
lab@r4# run show class-of-service classifier type dscp
Classifier: dscp-default, Code point type: dscp, Index: 1
  Code point      Forwarding class           Loss priority
  000000          best-effort                low
  000001          best-effort                low
. . .

In-Profile
PLP = 0

! In-Profile
PLP = 1

Policer



644 Chapter 6 � Class of Service

[edit class-of-service rewrite-rules dscp dscp-plp]

lab@r3# show

import default;

forwarding-class best-effort {

    loss-priority low code-point 000000;

    loss-priority high code-point 000001;

}

The import statement allows you to pre-populate a given rewrite table with the values 
present in another table; here the default DSCP rewrite table is used to pre-populate the new 
dscp-plp table. The remaining statements specify the desired code points for traffic that is 
classified as Best Effort, based on the local PLP indication of the traffic’s status. The dscp-plp 
rewrite table is now applied to both of r3’s core-facing interfaces:

[edit class-of-service interfaces]

lab@r3# set at-0/1/0 unit 0 rewrite-rules dscp dscp-plp

[edit class-of-service interfaces]

lab@r3# set so-0/2/0 unit 100 rewrite-rules dscp dscp-plp

The configuration is displayed for visual confirmation of the changes:

[edit class-of-service interfaces]

lab@r3# show

so-0/2/0 {

    unit 100 {

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}

at-0/1/0 {

    unit 0 {

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}

Satisfied with the changes on r3, you commit the candidate configuration and direct your 
attention to r5. Here, a new DSCP-based classifier is created, which, in this example, also 
happens to be called dscp-plp:

[edit class-of-service classifiers dscp dscp-plp]

lab@r5# set import default



Rewrite Markers 645

[edit class-of-service classifiers dscp dscp-plp]

lab@r5# set forwarding-class best-effort loss-priority low code-points 000000

[edit class-of-service classifiers dscp dscp-plp]

lab@r5# set forwarding-class best-effort loss-priority high code-points 000001

The newly defined dscp-plp classifier is displayed:

[edit class-of-service classifiers dscp dscp-plp]

lab@r5# show

import default;

forwarding-class best-effort {

    loss-priority low code-points 000000;

    loss-priority high code-points 000001;

}

The dscp-plp classifier is correctly applied to the r3-facing interface at r5:

[edit class-of-service]

lab@r5# set interfaces at-0/2/1 unit 0 classifiers dscp dscp-plp

[edit class-of-service]

lab@r5# show interfaces at-0/2/1

at-0/2/1 {

    unit 0 {

        classifiers {

            dscp dscp-plp;

        }

    }

}

Because a default CoS configuration does not contain any DSCP rewrite functionality, the 
DSCP marking at r3 should not be overwritten (or returned to a default value) as the traffic 
transits downstream routers. You could play it “safe” by creating a DSCP rewrite table at 
r5 that matches the dscp-plp table defined at r3 (for application to its so-0/1/0 interface). 
Such steps are not taken here because the default behavior makes such precautionary steps 
unnecessary.

Before proceeding to the next section, make sure that you have made similar adjustments to 
the DSCP classification settings at r4. Do not forget that the new classifier has to be added 
to both of r4’s core-facing interfaces to ensure proper operation in the event of link failure 
between r3 and r4. The changes made to r4 are displayed for completeness’ sake, with high-
lights added to call out recent changes:

[edit class-of-service]

lab@r4# show

classifiers {

    dscp dscp-plp {



646 Chapter 6 � Class of Service

        import default;

        forwarding-class best-effort {

            loss-priority low code-points 000000;

            loss-priority high code-points 000001;

        }

    }

}

interfaces {

    so-0/1/0 {

        unit 100 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

    so-0/1/1 {

        unit 0 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

}

Verifying Loss Priority

The ability to convey PLP status between routers using DSCP-based classification is confirmed 
in a number of ways. You start by displaying the new dscp-plp rewrite table at r3, while also 
confirming that it has been correctly applied to r3’s output interfaces:

[edit]

lab@r3# run show class-of-service rewrite-rule name dscp-plp

Rewrite rule: dscp-plp, Code point type: dscp, Index: 23375

  Forwarding class                    Loss priority       Code point

  best-effort                         low                 000000

  best-effort                         high                000001

  expedited-forwarding                low                 101110

  expedited-forwarding                high                101110

  assured-forwarding                  low                 001010

  assured-forwarding                  high                001100

  network-control                     low                 110000

  network-control                     high                111000



Rewrite Markers 647

[edit]

lab@r3# run show class-of-service interface at-0/1/0

Physical interface: at-0/1/0, Index: 16

  Scheduler map: <default>, Index: 1

  Logical interface: at-0/1/0.0, Index: 9

    Object         Name                   Type                       Index

    Rewrite        dscp-plp               dscp                       23375

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

[edit]

lab@r3# run show class-of-service interface so-0/2/0

Physical interface: so-0/2/0, Index: 18

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/2/0.100, Index: 10

    Object         Name                   Type                       Index

    Rewrite        dscp-plp               dscp                       23375

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

The displays indicate that the dscp-plp rewrite table contains the expected entries, and also 
shows the correct application of the rewrite table to both of r3’s egress interfaces. The added 
highlights call out the portions of the rewrite table that were changed in support of your loss pri-
ority configuration. In the same vein, the contents of the dscp-plp classifier, and its correct 
application to ingress interfaces, are verified at r4:

[edit]

lab@r4# run show class-of-service classifier name dscp-plp

Classifier: dscp-plp, Code point type: dscp, Index: 23375

  Code point         Forwarding class                    Loss priority

  000000             best-effort                         low

  000001             best-effort                         high

  000010             best-effort                         low

  000011             best-effort                         low

  . . .

  111110             best-effort                         low

  111111             best-effort                         low

[edit]

lab@r4# run show class-of-service interface so-0/1/0



648 Chapter 6 � Class of Service

Physical interface: so-0/1/0, Index: 16

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/1/0.100, Index: 9

    Object         Name                   Type                       Index

    Rewrite        exp-default            exp                            2

    Classifier     dscp-plp               dscp                       23375

[edit]

lab@r4# run show class-of-service interface so-0/1/1

Physical interface: so-0/1/1, Index: 17

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/1/1.0, Index: 10

    Object         Name                   Type                       Index

    Rewrite        exp-default            exp                            2

    Classifier     dscp-plp               dscp                       23375

The captures taken from r4 confirm that consistent DiffServ code points have been configured 
for packet classification, and that the new classifier has been correctly applied to both of 
r4’s ingress interfaces. In most cases, the confirmation steps shown thus far provide sufficient 
proof that DSCP marker rewrite and classification has been correctly configured. For those 
who have to “see to believe,” there are a few confirmation options that remain. You could use 
traffic monitoring (or external test equipment) to capture traffic that egresses r3 in an attempt 
to spot packets with DSCPs coded to both 000000 and 000001. You could also configure 
an aggressive drop profile for high loss priority packets so that you can monitor drops in the 
corresponding queue while test traffic is generated. Yet another option involves the use of a firewall 
filter that is written to count packets with specific DSCP settings. While all of these approaches 
have their merits, this author has decided to demonstrate the traffic monitoring approach here. 
As described previously, your test traffic must be addressed to the device doing the monitoring. In 
this case, you start with a few small pings destined to r4. The low volume of traffic should not 
exceed the be-policer, so you expect to see DSCP codings of 000000 in the resulting traffic:

[edit]

lab@T1-P1# run ping 10.0.3.4 source 130.130.0.1 count 4

PING 10.0.3.4 (10.0.3.4): 56 data bytes

64 bytes from 10.0.3.4: icmp_seq=0 ttl=254 time=0.669 ms

64 bytes from 10.0.3.4: icmp_seq=1 ttl=254 time=0.561 ms

64 bytes from 10.0.3.4: icmp_seq=2 ttl=254 time=0.555 ms

64 bytes from 10.0.3.4: icmp_seq=3 ttl=254 time=0.510 ms

--- 10.0.3.4 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.510/0.574/0.669/0.058 ms



Rewrite Markers 649

The traffic monitoring output that results at r4 is shown next:

[edit]

lab@r4# run monitor traffic interface so-0/1/0 detail

Listening on so-0/1/0, capture size 96 bytes

15:43:25.425995  In IP (tos 0x0, ttl 254, id 62966, len 84) 130.130.0.1 > 

   10.0.3.4: icmp: echo request

15:43:25.426060 Out IP (tos 0x0, ttl 255, id 58518, len 84) 10.0.3.4 > 

   130.130.0.1: icmp: echo reply

15:43:26.426399  In IP (tos 0x0, ttl 254, id 62968, len 84) 130.130.0.1 > 

   10.0.3.4: icmp: echo request

15:43:26.426464 Out IP (tos 0x0, ttl 255, id 58521, len 84) 10.0.3.4 > 

   130.130.0.1: icmp: echo reply

15:43:26.812786 Out IP (tos 0xc0, ttl 1, id 58522, len 68) 10.0.2.6 > 

   224.0.0.5:  OSPFv2-hello 48: rtrid 10.0.3.4 backbone E mask 255.255.255.252

   int 10 pri 128 dead 40 nbrs 10.0.3.3

. . .

As expected, the IP ToS value is coded with all zeros indicating low loss priority. The ping 
test is now adjusted to use large packets and rapid transmission in an attempt to exceed the 
1Mbps best-effort traffic policer in effect at r3:

[edit]

lab@T1-P1# run ping 10.0.3.4 source 130.130.0.1 count 40 size 1400 rapid

PING 10.0.3.4 (10.0.3.4): 1400 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

--- 10.0.3.4 ping statistics ---

40 packets transmitted, 40 packets received, 0% packet loss

round-trip min/avg/max/stddev = 1.266/1.284/1.503/0.037 ms

The traffic monitoring output observed at r4, which has been edited for brevity, is shown next:

[edit]

lab@r4# run monitor traffic interface so-0/1/0 detail

Listening on so-0/1/0, capture size 96 bytes

15:46:41.244891 Out Call Ref: 75, MSG Type: 95 LOCK-SHIFT-5

                IE: 01 Len: 1, LINK VERIFY

                IE: 03 Len: 2, TX Seq: 101, RX Seq: 100

. . .

15:47:28.950328  In IP (tos 0x0, ttl 254, id 63067, len 1428) 130.130.0.1 >

   10.0.3.4: icmp: echo request

15:47:28.950400 Out IP (tos 0x0, ttl 255, id 58691, len 1428) 10.0.3.4 >

   130.130.0.1: icmp: echo reply



650 Chapter 6 � Class of Service

15:47:28.952074  In IP (tos 0x0, ttl 254, id 63068, len 1428) 130.130.0.1 >

   10.0.3.4: icmp: echo request

15:47:28.952116 Out IP (tos 0x0, ttl 255, id 58692, len 1428) 10.0.3.4 > 

   130.130.0.1: icmp: echo reply

. . .

15:47:28.968976  In IP (tos 0x0, ttl 254, id 63079, len 1428) 130.130.0.1 > 

   10.0.3.4: icmp: echo request

15:47:28.969015 Out IP (tos 0x0, ttl 255, id 58703, len 1428) 10.0.3.4 > 

   130.130.0.1: icmp: echo reply

15:47:28.970504  In IP (tos 0x4, ttl 254, id 63080, len 1428) 130.130.0.1 > 

   10.0.3.4: icmp: echo request

15:47:28.970547 Out IP (tos 0x4, ttl 255, id 58704, len 1428) 10.0.3.4 > 

   130.130.0.1: icmp: echo reply

15:47:28.972036  In IP (tos 0x4, ttl 254, id 63081, len 1428) 130.130.0.1 >

   10.0.3.4: icmp: echo request

15:47:28.972076 Out IP (tos 0x4, ttl 255, id 58705, len 1428) 10.0.3.4 > 

   130.130.0.1: icmp: echo reply

. . .

The added highlights call out the presence of ToS fields coded to both 0x00 and 0x04. Con-
verting the 0x4 value into binary yields the sequence 0000 0100, which is the DSCP rewrite value 
configured at r3 for BE traffic packet with a high loss priority. The operational mode displays and 
traffic monitoring results demonstrated in this section confirm that you have correctly configured 
your CoS test bed for the exchange of PLP status between routers using DSCP-based classification.

Rewrite/Marking Summary

The use of BA-based classification by core elements can only succeed when the traffic presented 
to the core contains the expected settings of the IP precedence, DSCP, MPLS EXP, or IEEE 802.1p 
code points (depending on which BA classification is in effect). Because most end-user appli-
cations will not set these bits in any predictable or consistent manner, you typically have to 
configure packet header rewrite (marking) functionality at the network’s edge to ensure that 
packets are marked appropriately for BA-based classification action in the core.

Packet marking at the edge works in conjunction with the BA classifiers used by network 
elements that are downstream. In this section, the default DSCP classifier and rewrite table were 
shown to yield consistent classification. Albeit without support for PLP status indication for 
the BE traffic class. Where necessary, you can create custom rewrite tables, which in turn neces-
sitate customized classifiers in downstream devices.

While loss priority is not specific to rewrite and marking, this section also detailed how a 
packet’s PLP status is communicated between routers using various mechanisms such as DSCPs, IP 
Precedence, or MPLS EXP settings. Communicating PLP status between routers often involves cus-
tomized marker functionality at the edge in conjunction with a modified classification table in core 
devices because only the MPLS EXP tables support PLP status for all four traffic classes by default.



Schedulers 651

Although the examples provided in this section were based on DSCP style markers, the tech-
niques used to classify traffic and rewrite markers when using IP precedence, MPLS EXP, or 
IEEE 802.1p based CoS are very similar.

Use the show class-of-service rewrite-rule command to confirm the settings of the 
default and any user-configured rewrite tables.

Schedulers
Schedulers define a variety of parameters that control the servicing of egress queues. A scheduler 
block can specify a queue’s priority class, how “leftover” bandwidth should be handled, the 
queue’s transmission rate, the queue’s buffer size (to control delay), and RED profiles (for con-
gestion avoidance), among other things. Once a scheduler is defined, you use a scheduler-map 
to associate the scheduler with a given forwarding class (in other words, an output queue). The 
scheduler-map is then linked to one or more interfaces to affect the way in which that inter-
face’s queues are serviced.

The current CoS test bed has been configured with DSCP-based classification and rewrite func-
tionality, but the lack of scheduler configuration means that no real CoS is provided in the current 
test bed. Note that the default scheduler configuration defines the BE forwarding class (queue 0) 
as having 95 percent of interface bandwidth and buffer space while the NC class (queue 3) 
is awarded the remaining 5 percent. This means that the current test bed offers no bandwidth or 
queue space to the EF forwarding class’s queue 1! Once schedulers are added to the mix, you can 
actually expect to see differential service levels based on the traffic’s forwarding class because 
the test bed will have a functional CoS configuration for traffic flowing in the T1-C1 direction.
� BE traffic limited to 10 percent of interface bandwidth.
� Ensure that BE traffic never exceeds the configured rate, even when other queues are empty.
� Configure the EF class to get 30 percent of interface bandwidth.
� Configure the EF class for a maximum queuing delay of 100 milliseconds.
� Ensure that the EF class has precedence over all other classes, regardless of the EF queue’s 

current bandwidth credit.
� Make sure that your scheduler configuration does not adversely affect the operation of 

your routing protocols.

Configuring Schedulers

You begin scheduler configuration at r3 with issuance of the commands needed to define the 
scheduler associated with BE traffic:

[edit]

lab@r3# edit class-of-service schedulers best-effort

[edit class-of-service schedulers best-effort]

lab@r3# set transmit-rate percent 10 exact



652 Chapter 6 � Class of Service

[edit class-of-service schedulers best-effort]

lab@r3# set buffer-size percent 10

[edit class-of-service schedulers best-effort]

lab@r3# set priority low

The Best Effort scheduler has its priority set to low, which means it will be serviced only 
after all strictly-high data has been sent and all high-priority queues with positive credit have 
been serviced. Because a priority value was not specified, you could have also specified high 
priority in this example, but the low priority setting seems the best fit, considering your overall 
goal of supporting real-time VoIP traffic in conjunction with conventional Internet traffic. 
The queue depth for BE traffic has been set to match the configured bandwidth, which is the 
recommended default setting. The exact keyword associated with the queue’s transmit rate 
is critical in this case; its inclusion ensures that the associated traffic class can never exceed the 
configured transmission rate, even though all other queues may be empty (or possessing only 
negative credit). Use the remainder keyword to configure a scheduler to make use of unclaimed 
buffer space, as determined by the buffer settings of other schedulers. Note that the remaining 
keyword affects only the scheduler’s buffer size for notification cells; by default a scheduler is 
able to avail itself of excess bandwidth when other schedulers are not operating at their full rate.

The best-effort scheduler is displayed at r3:

[edit class-of-service schedulers best-effort]

lab@r3# show

best-effort {

    transmit-rate percent 10 exact;

    buffer-size percent 10;

    priority low;

}

Scheduler configuration continues at r3 with definition of the scheduler for the EF class. The 
completed expedited-forwarding scheduler is displayed:

[edit class-of-service schedulers]

lab@r3# show expedited-forwarding

expedited-forwarding {

    transmit-rate percent 30;

    buffer-size temporal 100000;

    priority strict-high;

}

The highlighted entries call out aspects of the EF scheduler that warrant additional focus. The 
strict-high priority setting is necessary to ensure that the EF queues will always be serviced 
before all other classes, even though the EF queues may have no positive credit. The buffer 
size has been configured to a depth of 100,000 microseconds through the use of the temporal 
keyword; this setting addresses the restriction that the EF queue be limited to no more than 
100 milliseconds of queuing delay. The next set of commands creates a scheduler-map 
called jncie-cos that functions to associate the previously defined schedulers with the 



Schedulers 653

BE and EF forwarding classes:

[edit class-of-service scheduler-maps]

lab@r3# set jncie-cos forwarding-class expedited-forwarding scheduler

   expedited-forwarding

[edit class-of-service scheduler-maps]

lab@r3# set jncie-cos forwarding-class best-effort scheduler best-effort

The jncie-cos scheduler-map is displayed for confirmation:

[edit class-of-service scheduler-maps]

lab@r3# show

jncie-cos {

    forwarding-class expedited-forwarding scheduler expedited-forwarding;

    forwarding-class best-effort scheduler best-effort;

}

The final step in scheduler configuration at r3 relates to the linking of the jncie-cos 
scheduler-map to the output interfaces at r3:

[edit class-of-service interfaces]

lab@r3# set at-0/1/0 scheduler-map jncie-cos

[edit class-of-service interfaces]

lab@r3# set so-0/2/0 scheduler-map jncie-cos

The resulting modifications are displayed and called out with added highlights:

[edit class-of-service interfaces]

lab@r3# show

so-0/2/0 {

    scheduler-map jncie-cos;

    unit 100 {

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}

at-0/1/0 {

    scheduler-map jncie-cos;

    unit 0 {

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}



654 Chapter 6 � Class of Service

Before proceeding to the confirmation section, similar changes are required at r4 and r5. 
The modifications made to the configuration of r4 are shown here with highlights. Note that the 
jncie-cos scheduler map is applied to the egress interface (fe-0/0/0) at r4:

[edit class-of-service]

lab@r4# show

classifiers {

    dscp dscp-plp {

        import default;

        forwarding-class best-effort {

            loss-priority low code-points 000000;

            loss-priority high code-points 000001;

        }

    }

}

interfaces {

    so-0/1/0 {

        unit 100 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

    so-0/1/1 {

        unit 0 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

    fe-0/0/0 {

        scheduler-map jncie-cos;

    }

}

scheduler-maps {

    jncie-cos {

        forwarding-class expedited-forwarding scheduler expedited-forwarding;

        forwarding-class best-effort scheduler best-effort;

    }

}

schedulers {

    best-effort {

        transmit-rate percent 10 exact;



Schedulers 655

        buffer-size percent 10;

        priority low;

    }

    expedited-forwarding {

        transmit-rate percent 30;

        buffer-size temporal 100000;

        priority strict-high;

    }

}

Confirming Schedulers

Confirmation of your scheduler configuration begins with verification that the jncie-cos 
scheduler-map has been correctly associated with each router’s output interface, based on 
traffic flowing in the direction of T1 to C1:

[edit]

lab@r3# run show class-of-service interface so-0/2/0

Physical interface: so-0/2/0, Index: 18

  Scheduler map: jncie-cos, Index: 31932

  Logical interface: so-0/2/0.100, Index: 10

    Object         Name                   Type                       Index

    Rewrite        dscp-plp               dscp                       23375

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

[edit]

lab@r3# run show class-of-service interface at-0/1/0

Physical interface: at-0/1/0, Index: 16

  Scheduler map: jncie-cos, Index: 31932

  Logical interface: at-0/1/0.0, Index: 9

    Object         Name                   Type                       Index

    Rewrite        dscp-plp               dscp                       23375

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

The highlighted entries call out the correct application of the jncie-cos scheduler to the 
egress interfaces at r3. Although not shown, you may assume that similar confirmation is 
observed in relation to the output interfaces at r4 and r5. The specific settings associated with 
a given scheduler can be viewed with a show class-of-service scheduler-map command, 
as executed here on r5:

[edit]

lab@r5# run show class-of-service scheduler-map



656 Chapter 6 � Class of Service

Scheduler map: jncie-cos, Index: 31932

  Scheduler: best-effort, Forwarding class: best-effort, Index: 61257

    Transmit rate: 10 percent, Rate Limit: exact, Buffer size: 10 percent, 
Priority: low

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP             1    <default-drop-profile>

      High            non-TCP         1    <default-drop-profile>

      High            TCP             1    <default-drop-profile>

  Scheduler: expedited-forwarding, Forwarding class: expedited-forwarding, 
Index: 13946

    Transmit rate: 30 percent, Rate Limit: none, Buffer size: 100000 us, 
Priority: strictly high

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP             1    <default-drop-profile>

      High            non-TCP         1    <default-drop-profile>

      High            TCP             1    <default-drop-profile>

The output confirms the correct transmit rate, priority, and buffer size settings for the BE and 
EF classes. Note that both classes currently use the default RED profile; custom RED profiles 
are configured in a subsequent step. Displaying the CoS entries installed in the forwarding table 
provide a different view of the parameters defined in a scheduler-map, as shown in this edited 
capture taken from r5:

[edit]

lab@r5# run show class-of-service forwarding-table scheduler-map | find so-0/1/0

Interface: so-0/1/0 (Index: 16, Map index: 31932, Num of queues: 2):

  Entry 0 (Scheduler index: 61257, Queue #: 0):

    Tx rate: 0 Kb (10%), Buffer size: 10 percent

    PLP high: 1, PLP low: 1, TCP PLP high: 1, TCP PLP low: 1

    Policy is exact

  Entry 1 (Scheduler index: 13946, Queue #: 1):

    Tx rate: 0 Kb (30%), Buffer size: 0 percent

    Strict-high priority is set

    PLP high: 1, PLP low: 1, TCP PLP high: 1, TCP PLP low: 1

. . .

The buffer size for the EF class (queue 1) is set to 0 in the forwarding table display due 
to the use of a temporal size definition in the EF scheduler. Similar information is also made 
available with a show interfaces command when the extensive switch is included, as 



Schedulers 657

shown in this edited capture, which is again taken from r5:

[edit]

lab@r5# run show interfaces so-0/1/0 extensive | find "Packet Forwarding"

  Packet Forwarding Engine configuration:

    Destination slot: 0, PLP byte: 1 (0x00)

    CoS transmit queue             Bandwidth           Buffer Priority   Limit

                              %          bps   %        bytes

    0 best-effort            10     15552000  10            0      low   exact

    1 expedited-forwarding   30     46656000   0       100000     high    none

. . .

Verifying the forwarding characteristics of a CoS design without access to precision traffic 
generation and measurement test equipment is extremely difficult. In most cases, you simply 
have to “believe” that the configured behavior is, in fact, actually occurring. For example, even 
though this scenario used a relatively low transmission rate of 10 percent in conjunction with the 
exact keyword for the BE forwarding class, it will be difficult to generate enough ping traffic 
from another router to force packet loss; this is primarily due to the internal rate limiting in 
effect on the fxp1 interface that links the RE to the PFE complex. To help prove the validity 
of your CoS configuration, the transmission and buffer size percentages for the BE scheduler are 
temporarily reduced to 1 percent at r4. r4 is modified in this example because its Fast Ethernet 
interface represents the lowest bandwidth link in the CoS domain for traffic flowing in the direction 
of T1 to C1:

[edit class-of-service schedulers best-effort]

lab@r4# set transmit-rate percent 1

[edit class-of-service schedulers best-effort]

lab@r4# set buffer-size percent 1

[edit class-of-service schedulers best-effort]

lab@r4# show

best-effort {

    transmit-rate percent 1 exact;

    buffer-size percent 1;

    priority low;

}

With the change committed at r4, you clear r4’s interface counters and generate rapid pings 
targeted to 200.200.0.1 using 15,000-byte packets simultaneously at both the T1 peer and r3; 
even with the extremely low transmit percentage that is now associated with the BE forwarding 
class, rapid pings generated from only one router do not result in packet loss.

[edit]

lab@T1-P1# run ping 200.200.0.1 source 130.130.0.1 count 2000 rapid size 15000

PING 200.200.0.1 (200.200.0.1): 15000 data bytes



658 Chapter 6 � Class of Service

!!!!.!!!!.!!!!.!!!!!!!!!!!!!!!!!!!!!!!!!!!!.!!!!.!!!!.!!!..!!!..!!!!.!!!!.!!!
..!!!!.!!!!.!!!!.!!!!.!!!!..!!!!.!!!!..!!!!.!!!!..!!!!!!!!!!!!!!!!!!!^C

--- 200.200.0.1 ping statistics ---

147 packets transmitted, 120 packets received, 18% packet loss

round-trip min/avg/max/stddev = 116.085/135.090/235.346/29.525 ms

While the ping traffic is being generated, you examine the queue and drop counters for the 
fe-0/0/0 interface at r4.

Two alternative ways of displaying this information is shown; the show interfaces queue 
command is particularly handy here, because it shows both the drop counts and the current rate 
of drops:

[edit]

lab@r4# run show interfaces fe-0/0/0 detail | find "Queue counters" 

  Queue counters:       Queued packets  Transmitted packets      Dropped packets

    0 best-effort                75926               109322                 3575

    1 expedited-fo                   0                    0                    0

    2 assured-forw                   0                    0                    0

    3 network-cont                  37                   37                    0

  Active alarms  : None

  Active defects : None 

. . .

[edit]

lab@r4# run show interfaces queue fe-0/0/0 forwarding-class best-effort

Physical interface: fe-0/0/0, Enabled, Physical link is Up

  Interface index: 12, SNMP ifIndex: 25

Forwarding class: best-effort, Queue: 0

  Queued:

    Packets              :                 76026                    49 pps

    Bytes                :             114343792               1077792 bps

  Transmitted:

    Packets              :                109546                   110 pps

    Bytes                :             110218480               1006256 bps

    Tail-dropped packets :                     0                     0 pps

    RED-dropped packets  :                  3591                     7 pps

     Low, non-TCP        :                  3591                     7 pps

     Low, TCP            :                     0                     0 pps

     High, non-TCP       :                     0                     0 pps

     High, TCP           :                     0                     0 pps

     Low, non-TCP        :               5757500                 95048 bps

     Low, TCP            :                     0                     0 bps



Schedulers 659

     High, non-TCP       :                     0                     0 bps

     High, TCP           :                     0                     0 bps

    RED-dropped bytes    :               5757500                 95048 bps

The highlights in the resulting displays confirm that the test traffic is being correctly classified 
as Best Effort, and that queue drops are occurring. Although this test is far from scientific, the 
observation of some packet loss for BE traffic provides incremental confirmation that your CoS 
configuration is working as designed. Be sure that you restore the BE scheduler configuration 
at r4 before proceeding to the next section:

[edit]

lab@r4# rollback 1

load complete

[edit]

lab@r4# show class-of-service schedulers best-effort

best-effort {

    transmit-rate percent 10 exact;

    buffer-size percent 10;

    priority low;

}

[edit]

lab@r4# commit

commit complete

A Potential Landmine

You may have noticed that the current scheduler configuration does not include a scheduler 
definition for network control (NC) traffic. When you apply a scheduler-map to an interface, you 
negate the default scheduler, which was providing queue 0 with 95 percent of the bandwidth (and 
queue depth) with the remainder going to queue 3 for NC traffic. Because the PFE affords uncon-
figured traffic classes with a modicum of transmission bandwidth (approximately .04 percent 
of the interface’s WRR is provided to each undefined class) your network control traffic (in other 
words, IBGP) appears to be functional with the current configuration. However, it is highly 
recommended that you take the time to define a NC scheduler to ensure that network control 
packets are not starved for bandwidth during periods of high traffic volume, such as might 
occur after clearing your BGP neighbors in the face of a full BGP feed. The added highlights call 
out the modifications made to r5’s configuration in support of the NC class:

[edit class-of-service]
lab@r5# show



660 Chapter 6 � Class of Service

classifiers {
    dscp dscp-plp {
        import default;
        forwarding-class best-effort {
            loss-priority low code-points 000000;
            loss-priority high code-points 000001;
        }
    }
}
drop-profiles {
    be-low-plp {
        fill-level 70 drop-probability 1;
    }
    be-high-plp {
        fill-level 50 drop-probability 10;
    }
}
interfaces {
    at-0/2/1 {
        unit 0 {
            classifiers {
                dscp dscp-plp;
            }
        }
    } 
    so-0/1/0 {
        scheduler-map jncie-cos;
    }
}
scheduler-maps {
    jncie-cos {
        forwarding-class expedited-forwarding scheduler expedited-forwarding;
        forwarding-class best-effort scheduler best-effort;
        forwarding-class network-control scheduler network-control;
    }
}
schedulers {
    best-effort {
        transmit-rate percent 10 exact;
        buffer-size percent 10;
        priority low;
        drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;
        drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;
    }
    expedited-forwarding {
        transmit-rate percent 30;
        buffer-size temporal 100000;
        priority strict-high;
    }
    network-control {
        transmit-rate percent 5;
        buffer-size percent 5;

                  priority high;
    }
}



Schedulers 661

RED Profiles

The RED algorithm is designed to prevent the global synchronization of TCP retransmissions, 
and the associated congestion-induced back-off procedures that can occur when packets are 
dropped from the end of a full queue (tail drops). Put simply, RED functions by monitoring 
the fill level of a queue to anticipate incipient congestion, which is then proactively reduced by 
performing drops from the head of the queue according to a drop probability that is indexed 
to the queue’s fill level. RED is of most use when dealing with TCP-based applications because 
TCP reacts to packet loss by reducing the current transmission rate. A scheduler definition can 
be linked to two independent RED profiles; in such cases one of the profiles is referenced for 
packets with low loss priority while the other is used for packets with high loss priority.

To complete this section, you must reconfigure the routers in the CoS test bed according to 
these requirements:
� Drop 1 percent of the BE traffic with a low loss priority at 70 percent buffer fill.
� Drop 10 percent of the BE traffic with a high loss priority at 50 percent buffer fill.
� Do not alter the default RED profiles in effect for the EF and NC forwarding classes.
� Ensure that RED acts only on TCP-based BE traffic.

Configuring RED Profiles

To meet the required behavior, you need to define RED profiles that are linked to the best-effort 
scheduler. You start at r3 with the definition of a RED profile for low loss priority BE traffic:

[edit class-of-service drop-profiles]

lab@r3# set be-low-plp fill-level 70 drop-probability 1

After committing the change, the NC scheduler is confirmed:

[edit class-of-service scheduler-maps]
lab@r5# run show interfaces so-0/1/0 detail extensive | find "Forwarding"
  Packet Forwarding Engine configuration:
    Destination slot: 0, PLP byte: 1 (0x00)    
    CoS transmit queue             Bandwidth           Buffer Priority   Limit
                              %          bps   %        bytes
    0 best-effort            10     15552000  10            0      low   exact
    1 expedited-forwarding   30     46656000   0       100000     high    none
    3 network-control         5      7776000   5            0      low    none
. . .

It is critical to note that the network-control scheduler has been assigned a high priority. 
This setting is needed to ensure that network control traffic is not starved when excess 
amounts of EF class traffic are present. A strictly high scheduler can only lose the WRR 
selection algorithm to another high-priority scheduler; setting the network control scheduler 
to a high priority prevents problems with your network control traffic. You should make 
similar changes on r3 and r4 to prevent potential problems with network control traffic 
before proceeding.



662 Chapter 6 � Class of Service

The be-low-plp RED profile is displayed:

[edit class-of-service drop-profiles]

lab@r3# show

be-low-plp {

    fill-level 70 drop-probability 1;

}

The second RED profile is configured in a similar fashion; the completed profile is then 
displayed for confirmation:

[edit class-of-service drop-profiles]

lab@r3# show be-high-plp

be-high-plp {

    fill-level 50 drop-probability 10;

}

The custom RED profiles are now linked to the scheduler for the BE forwarding class:

[edit class-of-service]

lab@r3# edit schedulers best-effort

[edit class-of-service schedulers best-effort]

lab@r3#

[edit class-of-service schedulers best-effort]

lab@r3# set drop-profile-map loss-priority low protocol tcp drop-profile

   be-low-plp

[edit class-of-service schedulers best-effort]

lab@r3# set best-effort drop-profile-map loss-priority high protocol tcp 

   drop-profile be-high-plp

Inclusion of the tcp flag ensures that the RED profiles are applied only to traffic that is desig-
nated as being TCP based, which is in accordance with the restrictions posed in this example. The 
modified best-effort scheduler is displayed with highlights added to call out recent modifications:

[edit class-of-service schedulers]

lab@r3# show

best-effort {

    transmit-rate percent 10 exact;

    buffer-size percent 10;

    priority low;

    drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;

    drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;

}



Schedulers 663

expedited-forwarding {

    transmit-rate percent 30;

    buffer-size temporal 100000;

    priority strict-high;

}

network-control {

    transmit-rate percent 5;

    buffer-size percent 5;

    priority high;

}

The changes are committed on r3, and similar modifications are now made on r4 and r5. 
The changes made to r4’s configuration are shown with added highlights:

[edit class-of-service]

lab@r4# show

classifiers {

    dscp dscp-plp {

        import default;

        forwarding-class best-effort {

            loss-priority low code-points 000000;

            loss-priority high code-points 000001;

        }

    }

}

drop-profiles {

    be-low-plp {

        fill-level 70 drop-probability 1;

    }

    be-high-plp {

        fill-level 50 drop-probability 10;

    }

}

interfaces {

    so-0/1/0 {

        unit 100 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

    so-0/1/1 {



664 Chapter 6 � Class of Service

        unit 0 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

    fe-0/0/0 {

        scheduler-map jncie-cos;

    }

}

scheduler-maps {

    jncie-cos {

        forwarding-class expedited-forwarding scheduler expedited-forwarding;

        forwarding-class best-effort scheduler best-effort;

        forwarding-class network-control scheduler network-control;

    }

}

schedulers {

    best-effort {

        transmit-rate percent 10 exact;

        buffer-size percent 10;

        priority low;

        drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;

        drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;

    }

    expedited-forwarding {

        transmit-rate percent 30;

        buffer-size temporal 100000;

        priority strict-high;

    }

    network-control {

        transmit-rate percent 5;

        buffer-size percent 5;

        priority high;

    }

}

Verifying RED Profile

Use the show class-of-service drop-profile command to quickly display the default RED 
profile in addition to any user-configured profiles:

[edit]

lab@r4# run show class-of-service drop-profile



Schedulers 665

Drop profile: <default-drop-profile>, Type: discrete, Index: 1

  Fill level    Drop probability

         100                 100

Drop profile: be-high-plp, Type: discrete, Index: 19129

  Fill level    Drop probability

          50                  10

Drop profile: be-low-plp, Type: discrete, Index: 45288

  Fill level    Drop probability

          70                   1

The display, taken from r4, confirms that the be-low-plp and be-high-plp profiles correctly 
reflect the parameters specified for low and high loss priority traffic that is associated with the BE 
forwarding class. Displaying the scheduler maps with a show class-of-service scheduler-map 
command provides a convenient way of determining the drop profiles that are in use for each 
forwarding class:

[edit]

lab@r4# run show class-of-service scheduler-map

Scheduler map: jncie-cos, Index: 31932

  Scheduler: best-effort, Forwarding class: best-effort, Index: 61257

    Transmit rate: 10 percent, Rate Limit: exact, Buffer size: 10 percent, 
Priority: low

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP         45288    be-low-plp

      High            non-TCP         1    <default-drop-profile>

      High            TCP         19129    be-high-plp

  Scheduler: expedited-forwarding, Forwarding class: expedited-forwarding, 
Index: 13946

    Transmit rate: 30 percent, Rate Limit: none, Buffer size: 100000 us, 
Priority: strictly high

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP             1    <default-drop-profile>

      High            non-TCP         1    <default-drop-profile>

      High            TCP             1    <default-drop-profile>

  Scheduler: network-control, Forwarding class: network-control, Index: 38488

    Transmit rate: 5 percent, Rate Limit: none, Buffer size: 5 percent, 
Priority: high



666 Chapter 6 � Class of Service

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP             1    <default-drop-profile>

      High            non-TCP         1    <default-drop-profile>

      High            TCP             1    <default-drop-profile>

The highlights call out the correct application of the new RED profiles to TCP traffic belong-
ing to the BE forwarding class only. Note how non-TCP traffic, and the traffic associated with 
the EF and NC forwarding classes, continues to use the default RED profile. The results shown 
in this section confirm that you have configured RED and scheduler functionality in accordance 
with all requirements posed.

Combining this output with the results shown in previous sections of this chapter body indi-
cate that you have met all requirements for the CoS configuration scenario. Congratulations!

Scheduler Summary

Scheduler configuration blocks specify parameters that relate to a queue’s priority, transmit 
rate, buffer depth, and RED profiles. Once configured, you link the scheduler to one or more 
forwarding classes with a scheduler-map. The scheduler-map is then associated with one or 
more output interfaces to put the scheduler into effect for that interface’s output queues. The 
default scheduler has support for the BE and NC classes only. Scheduling EF or AF forwarding 
classes requires explicit configuration.

You can specify a scheduler’s queue depth as a percentage of the available buffer, or as a 
temporal value that reflects the maximum queuing delay. Generally speaking, time-sensitive 
traffic such as real-time voice should be configured with a shallow buffer to minimize the delay 
associated with the traffic; delivering VoIP traffic late is normally worse than not delivering the 
traffic at all. Low-priority schedulers are only serviced when no high-priority queues have 
positive credit, and when no strict-priority queue has data pending (regardless of its credit 
value). Note that the use of strict-priority can result in other queues being starved when there 
is a high volume of traffic in the corresponding forwarding class.

Do not forget that the application of a user-defined scheduler-map to an interface negates 
the default scheduler that would otherwise be in place. You must therefore use care to ensure 
that any user-defined schedulers adequately address all forwarding classes expected to egress 
on the associated interface.

You can confirm scheduler and RED profile settings with the show class-of-service 
schedule-map and show class-of-service drop-profile operational mode commands. 
Additional information about schedules that have been applied to interfaces can be displayed 
when the extensive switch is added to a show interfaces command.

Summary
This chapter provided an example of a typical JNCIE-level CoS configuration scenario. The 
chapter began with a packet classification example that was based on a multifield classifier in 



Case Study: CoS 667

the form of a firewall filter, and went on to show how marker rewrite actions were needed at 
edge devices to permit DSCP-based BA classification in core devices. Loss priority, and how a 
packet’s PLP status is conveyed between routers, was also demonstrated.

The chapter went on to discuss schedulers, which define transmit rates, queue depths, sched-
uling priority, and indexes to RED profiles. The scheduler section showed how schedulers are 
linked to a forwarding class through a scheduler-map, and how the scheduler-map is also 
used to associate one or more schedulers with a given output interface. The chapter ended with 
a RED profile configuration example that resulted in packet discard behavior that was based, 
at least in part, on the local indication of a packet’s loss priority.

Keep in mind that it can be all but impossible to empirically verify the effects of a CoS con-
figuration unless you have access to sophisticated test equipment, or your test bed is equipped 
with low-speed interfaces (such as a DS1 providing a paltry 1.536Mbps of throughput) in the 
core. You should therefore be prepared to rely on operational mode command output, and 
the visual inspection of the CoS-related aspects of your configurations, when validating a CoS 
configuration in a lab examination setting.

On a final note, the lack of MPLS and IEEE 802.1p based CoS configuration scenarios in this 
chapter might be seen as a significant omission by some readers. The decision to focus on DSCP-
based classification and marker rewrite in this chapter was intended to accommodate the widest 
CoS audience possible by taking into consideration that the majority of M-series customers that 
have actually deployed CoS have done so based on the DiffServ specifications. On the up side, 
CoS is CoS, and a classifier is a classifier. It is the opinion of this author that the reader who 
understands the DSCP-based CoS scenario presented in this chapter will not have significant 
difficulty applying the techniques and concepts demonstrated in this chapter to an MPLS or 
IEEE 802.1p based CoS design—assuming, of course, that the reader understands the generic 
aspects of that technology. To help prove this point, one of the “Spot the Issues” questions at 
the end of this chapter deals specifically with CoS in a MPLS environment.

Case Study: CoS
The CoS case study takes a unique approach that stems from the fact that an end-to-end CoS 
solution tends to be an “all or nothing” proposition. For example, rather than starting with a 
new baseline configuration that is CoS free, in this case the JNCIE candidate begins with the 
configuration left from the chapter body, with the goal being a replication of the existing CoS 
functionality in the opposite direction. This approach helps to reinforce the directionally sig-
nificant aspects of CoS while also accommodating a straightforward and pedagogical chapter 
structure. While you can use the existing CoS configuration to help yourself complete the case 
study, it is suggested that you perform the case study without the use of cut and paste and with 
minimal “reverse engineering” of the existing configuration.

The CoS case study is performed on the existing topology; refer back to Figure 6.1 as needed. 
Once again it is expected that a prepared JNCIE candidate will be able to complete this case 
study in approximately one hour, with the resulting network meeting the majority of the spec-
ified behaviors and operational characteristics.



668 Chapter 6 � Class of Service

Listings that identify the changes made to the current configurations of all three routers in 
the CoS test bed are provided at the end of the case study. To accommodate differing con-
figuration approaches, the output from various operational mode commands is included in 
the case study analysis section to permit the comparison of your network’s operation to that 
of a known good example.

To complete the CoS case study, the routers comprising the CoS test bed must be configured 
to meet the criteria specified at the beginning of the chapter. However, you are now concerned 
with traffic flowing in the C1-to-T1 direction. The CoS configuration requirements listed here 
have been edited to reflect this change in directionality:
� SIP signaling (VoIP) uses TCP/UDP, port 5060.
� RTP media channels use UDP with port assignments in the range of 16,384–32,767.
� Classify all VoIP traffic as EF.
� Ensure that network control traffic continues to be classified as NC.
� Classify all remaining traffic with IP precedence 0 as BE.
� Your classification design must tolerate the failure of any single core interface or link.
� Police BE traffic to 1Mbps with excess data marked for discard.
� Configure r4 so that traffic received from the C1 peer is classified according to a DSCP-

based BA at r3 and r5.
� Ensure that traffic received from the C1 peer is consistently classified by all network 

elements.
� Ensure that r3 and r5 are able to differentiate BE traffic received from the C1 peer based 

on its compliance with the configured policer.
� You must use DSCP-based classification at r3 and r5.
� Configure schedulers in the CoS test bed according to these criteria:

� BE traffic limited to 10 percent of interface bandwidth.
� Ensure that BE traffic never exceeds the configured rate, even when other queues are 

empty.
� Configure the EF class to get 30 percent of interface bandwidth.
� Configure the EF class for a maximum queuing delay of 100 milliseconds.
� Ensure that the EF class has precedence over all other classes, regardless of the EF 

queue’s current bandwidth credit.
� Make sure that your scheduler configuration does not adversely affect the operation of 

your routing protocols.
� Drop 1 percent of the BE traffic with a low loss priority at 70 percent buffer fill.
� Drop 10 percent of the BE traffic with a high loss priority at 50 percent buffer fill.
� Do not alter the default RED profiles in effect for the EF and NC forwarding classes.
� Ensure that RED acts only on TCP-based BE traffic.



Case Study: CoS 669

You can assume that the T1 and C1 routers are correctly configured, and that you are not 
permitted to modify or view their configurations. You may telnet to these routers to perform 
connectivity testing as needed.

CoS Case Study Analysis

Each configuration requirement for the CoS case study is matched in the following to one or 
more valid router configurations and, as appropriate, examples of operational mode commands 
and sample output that confirm the network’s operation adheres to all specified behaviors and 
restrictions.

The CoS case study analysis begins with the following criteria:
� SIP signaling (VoIP) uses TCP/UDP, port 5060.
� RTP media channels using UDP, ports 16,384–32,767.
� Classify all VoIP traffic as EF.
� Ensure that network control traffic continues to be classified as NC.
� Classify all remaining traffic with IP precedence 0 as BE.
� Police BE traffic to 1Mbps with excess data marked for discard.

The first grouping of criteria requires the configuration of multifield classification and traffic 
policing at the ingress node, which is now r4. The r4-voip-classifier filter shown here 
meets all requirements specified. Note that this filter uses a slightly different syntax from the 
filter that is in place at r3:

[edit firewall]

lab@r4# show

policer 1m {

    if-exceeding {

        bandwidth-limit 1m;

        burst-size-limit 15k;

    }

    then loss-priority high;

}

filter r4-voip-classifier {

    term 1 {

        from {

            protocol [ tcp udp ];

            port 5060;

        }

        then forwarding-class expedited-forwarding;

    }

    term 2 {

        from {



670 Chapter 6 � Class of Service

            protocol udp;

            port 16384-32767;

        }

        then forwarding-class expedited-forwarding;

    }

    term 3 {

        from {

            precedence [ net-control internet-control ];

        }

        then forwarding-class network-control;

    }

    term 4 {

        then {

            policer 1m;

            forwarding-class best-effort;

        }

    }

}

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        filter {

            input r4-voip-classifier;

        }

        address 172.16.0.5/30;

    }

}

The primary difference between the two multifield classifiers relates to terms 3 and 4, which 
in this example explicitly classify network control traffic (precedence settings 110 and 111) as 
Best Effort traffic. The filter in effect at r3 relies on the default IP precedence classifier for the 
classification of NC and BE traffic. A quick confirmation of the filter’s classification action is 
achieved by generating test traffic from C1 after clearing the interface counters associated with 
r4’s egress interface (not shown):

lab@c1> telnet 130.130.0.1 source 200.200.0.1 port 5060

Trying 130.130.0.1...

telnet: connect to address 130.130.0.1: Connection refused

telnet: Unable to connect to remote host

lab@c1> ping 130.130.0.1 source 200.200.0.1 tos 192 count 200 rapid



Case Study: CoS 671

PING 130.130.0.1 (130.130.0.1): 56 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

--- 130.130.0.1 ping statistics ---

200 packets transmitted, 200 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.225/0.231/0.366/0.011 ms

The (edited) classification results observed at r4 are shown:

[edit]

lab@r4# run show interfaces so-0/1/0 detail

Physical interface: so-0/1/0, Enabled, Physical link is Up

  Interface index: 16, SNMP ifIndex: 15, Generation: 15

  Link-level type: Frame-Relay, MTU: 4474, Clocking: Internal, SONET mode, 
Speed: OC3, Loopback: None,

  . . .

  Queue counters:       Queued packets  Transmitted packets      Dropped packets

    0 best-effort                    0                    0                    0

    1 expedited-fo                   1                    1                    0

    2 assured-forw                   0                    0                    0

    3 network-cont                 203                  203                    0

  SONET alarms   : None

  . . .

The highlighted queue counters accurately reflect the types of test traffic that was generated. 
If desired, you can confirm BE classification by omitting the tos argument to the previous ping 
command. These results confirm that multifield classification is operational at r4, which brings 
you to the next set of case study criteria:
� Configure r4 so that traffic received from the C1 peer is classified according to a DSCP-

based BA at r3 and r5.
� Ensure that traffic received from the C1 peer is consistently classified by all network elements.
� Ensure that r3 and r5 are able to differentiate BE traffic received from the C1 peer based 

on its compliance with the configured policer.
� You must use DSCP-based classification at r3 and r5.
� Your classification design must tolerate the failure of any single core interface or link.

To achieve the functionality defined by this grouping of case study requirements, you need to 
configure DSCP rewrite at r4 and r5, and you need to configure r3 and r5 to perform DSCP-based 
BA classification on their ingress interfaces to ensure their ability to differentiate BE traffic based on 
loss priority. The changes made to r4 in support of these requirements are shown next:

[edit class-of-service]

lab@r4# show rewrite-rules

dscp r4-dscp-rewrite {

    import default;



672 Chapter 6 � Class of Service

    forwarding-class best-effort {

        loss-priority low code-point 000000;

        loss-priority high code-point 000001;

    }

}

[edit class-of-service]

lab@r4# show interfaces

so-0/1/0 {

    unit 100 {

        classifiers {

            dscp dscp-plp;

        }

        rewrite-rules {

            dscp r4-dscp-rewrite;

        }

    }

}

so-0/1/1 {

    unit 0 {

        classifiers {

            dscp dscp-plp;

        }

        rewrite-rules {

            dscp r4-dscp-rewrite;

        }

    }

}

fe-0/0/0 {

    scheduler-map jncie-cos;

}

Note that the r4-dscp-rewrite table is correctly applied to both of r4’s egress interfaces, 
as needed to meet the classification redundancy stipulation. The changes made to r3 in support 
of DSCP-based BA classification are shown here:

[edit class-of-service]

lab@r3# show classifiers

dscp r3-dscp-classifier {

    import default;

    forwarding-class best-effort {

        loss-priority low code-points 000000;

        loss-priority high code-points 000001;



Case Study: CoS 673

    }

}

[edit class-of-service]

lab@r3# show interfaces

so-0/2/0 {

    scheduler-map jncie-cos;

    unit 100 {

        classifiers {

            dscp r3-dscp-classifier;

        }

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}

at-0/1/0 {

    scheduler-map jncie-cos;

    unit 0 {

        classifiers {

            dscp r3-dscp-classifier;

        }

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}

Because r5 already has an appropriate DSCP classifier configured, you need only apply the 
existing classifier to its r4-facing interface to achieve the functionality required by the current 
set of case study criteria:

[edit class-of-service]

lab@r5# show interfaces so-0/1/0

so-0/1/0 {

    scheduler-map jncie-cos;

    unit 0 {

        classifiers {

            dscp dscp-plp;

        }

    }

}



674 Chapter 6 � Class of Service

A quick confirmation of the r4-dscp-rewrite table’s contents, and its correct application 
to r4’s output interfaces, is performed next:

[edit class-of-service]

lab@r4# run show class-of-service rewrite-rule name r4-dscp-rewrite

Rewrite rule: r4-dscp-rewrite, Code point type: dscp, Index: 48737

  Forwarding class                    Loss priority       Code point

  best-effort                         low                 000000

  best-effort                         high                000001

  expedited-forwarding                low                 101110

  expedited-forwarding                high                101110

  assured-forwarding                  low                 001010

  assured-forwarding                  high                001100

  network-control                     low                 110000

  network-control                     high                111000

[edit class-of-service]

lab@r4# run show class-of-service interface so-0/1/0

Physical interface: so-0/1/0, Index: 16

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/1/0.100, Index: 9

    Object         Name                   Type                       Index

    Rewrite        r4-dscp-rewrite        dscp                       48737

    Rewrite        exp-default            exp                            2

[edit class-of-service]

lab@r4# run show class-of-service interface so-0/1/1

Physical interface: so-0/1/1, Index: 17

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/1/1.0, Index: 10

    Object         Name                   Type                       Index

    Rewrite        r4-dscp-rewrite        dscp                       48737

    Rewrite        exp-default            exp                            2

    Classifier     dscp-plp               dscp                       23375

A similar check is performed at r3 for the contents and application of the r3-dscp-
classifier:

[edit class-of-service]

lab@r3# run show class-of-service classifier name r3-dscp-classifier

Classifier: r3-dscp-classifier, Code point type: dscp, Index: 37820



Case Study: CoS 675

  Code point         Forwarding class                    Loss priority

  000000             best-effort                         low

  000001             best-effort                         high

  000010             best-effort                         low

  . . .

  111111             best-effort                         low

[edit class-of-service]

lab@r3# run show class-of-service interface at-0/1/0

Physical interface: at-0/1/0, Index: 16

  Scheduler map: jncie-cos, Index: 31932

  Logical interface: at-0/1/0.0, Index: 9

    Object         Name                   Type                       Index

    Rewrite        dscp-plp               dscp                       23375

    Rewrite        exp-default            exp                            2

    Classifier     r3-dscp-classifier     dscp                       37820

[edit class-of-service]

lab@r3# run show class-of-service interface so-0/2/0

Physical interface: so-0/2/0, Index: 18

  Scheduler map: jncie-cos, Index: 31932

  Logical interface: so-0/2/0.100, Index: 10

    Object         Name                   Type                       Index

    Rewrite        dscp-plp               dscp                       23375

    Rewrite        exp-default            exp                            2

    Classifier     r3-dscp-classifier     dscp                       37820

Although not shown here, a similar check of the DSCP classification table and interface 
application is performed at r5. These results indicate that you have correctly configured DSCP 
rewrite and DSCP-based BA classification according to the case study criteria. If time permits, 
you can verify that the PLP indication is correctly being set at ingress, and that r4’s DSCP 
rewrite table is operational by monitoring traffic in the core while rapid pings are generated 
at the C1 peer. Note that these pings must be targeted to the core router that is performing the 
traffic monitoring. You can tell that PLP setting and rewrite functionality is working when you 
see a mix of ToS values such those shown next in this edited capture:

[edit]

lab@r3# run monitor traffic interface so-0/2/0 detail

Listening on so-0/2/0, capture size 96 bytes

17:55:27.562622 Out IP (tos 0xc0, ttl 1, id 12161, len 68) 10.0.2.5 > 224.0.0.5:

   OSPFv2-hello 48: rtrid 10.0.3.3 backbone E mask 255.255.255.252 int 10



676 Chapter 6 � Class of Service

   pri 128 dead 40 nbrs 10.0.3.4

. . .

17:55:49.145108  In IP (tos 0x0, ttl 254, id 8712, len 1028) 200.200.0.1 >

   10.0.3.3: icmp: echo request

17:55:49.145141 Out IP (tos 0x0, ttl 255, id 12225, len 1028) 10.0.3.3 >

   200.200.0.1: icmp: echo reply

17:55:49.146184  In IP (tos 0x4, ttl 254, id 8713, len 1028) 200.200.0.1 >

   10.0.3.3: icmp: echo request

17:55:49.146218 Out IP (tos 0x4, ttl 255, id 12226, len 1028) 10.0.3.3 >

   200.200.0.1: icmp: echo reply

17:55:49.167686  In IP (tos 0x4, ttl 254, id 8714, len 1028) 200.200.0.1 >

   10.0.3.3: icmp: echo request

17:55:49.167721 Out IP (tos 0x4, ttl 255, id 12227, len 1028) 10.0.3.3 >

   200.200.0.1: icmp: echo reply

17:55:49.168788  In IP (tos 0x0, ttl 254, id 8715, len 1028) 200.200.0.1 >

   10.0.3.3: icmp: echo request

17:55:49.168822 Out IP (tos 0x0, ttl 255, id 12228, len 1028) 10.0.3.3 >

   200.200.0.1: icmp: echo reply

. . .

^C

75 packets received by filter

0 packets dropped by kernel

There is no easy way to confirm that the DSCP-based BA classifiers at r3 and r5 are actually 
mapping DSCP to a local loss priority. Visual confirmation of the DSCP classifier table, com-
bined with the knowledge that the classifier is in effect on the ingress interfaces of r3 and r5, 
provides sufficient confirmation at this time. With marker rewrite and policer-based setting of 
PLP status confirmed, you move on to address these scheduler-related criteria:
� Configure schedulers in the CoS test bed according to these criteria:

� BE traffic limited to 10 percent of interface bandwidth.
� Ensure that BE traffic never exceeds the configured rate, even when other queues are 

empty.
� Configure the EF class to get 30 percent of interface bandwidth.
� Configure the EF class for a maximum queuing delay of 100 milliseconds.
� Ensure that the EF class has precedence over all other classes, regardless of the EF 

queue’s current bandwidth credit.
� Make sure your scheduler configuration does not adversely affect the operation of your 

routing protocols.

Because schedulers were defined in the chapter body that meet the specified criteria, the 
only requirement needed to meet the case study criteria is to apply the existing scheduler-map 
to the interfaces that act as egress for traffic flowing in the direction of C1 to T1. For added 
practice, you can opt to define a new scheduler with a different name. The changes made to r3 



Case Study: CoS 677

and r5 in support of the “reapply the existing scheduler” approach are shown next:

[edit class-of-service]

lab@r3# show interfaces

so-0/2/0 {

    scheduler-map jncie-cos;

    unit 100 {

        classifiers {

            dscp r3-dscp-classifier;

        }

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}

at-0/1/0 {

    scheduler-map jncie-cos;

    unit 0 {

        classifiers {

            dscp r3-dscp-classifier;

        }

        rewrite-rules {

            dscp dscp-plp;

        }

    }

}

fe-0/0/2 {

    scheduler-map jncie-cos;

}

[edit class-of-service]

lab@r5# show interfaces

at-0/2/1 {

    scheduler-map jncie-cos;

    unit 0 {

        classifiers {

            dscp dscp-plp;

        }

    }

}

so-0/1/0 {

    scheduler-map jncie-cos;

    unit 0 {



678 Chapter 6 � Class of Service

        classifiers {

            dscp dscp-plp;

        }

    }

}

Note that the jncie-cos scheduler-map must be applied to both of r4’s egress interfaces 
(not shown). Confirmation that the scheduler-map is correctly applied to an interface is 
straightforward; this example is taken from r4:

[edit class-of-service]

lab@r4# run show class-of-service interface so-0/1/0

Physical interface: so-0/1/0, Index: 16

  Scheduler map: jncie-cos, Index: 31932

  Logical interface: so-0/1/0.100, Index: 9

    Object         Name                   Type                       Index

    Rewrite        r4-dscp-rewrite        dscp                       48737

    Rewrite        exp-default            exp                            2

    Classifier     dscp-plp               dscp                       23375

Use a show interface extensive to quickly confirm the transmit rate and buffer settings 
for the associated forwarding classes:

[edit class-of-service]

lab@r3# run show interfaces fe-0/0/2 extensive | find "Packet Forwarding"

  Packet Forwarding Engine configuration:

    Destination slot: 0

    CoS transmit queue             Bandwidth           Buffer Priority   Limit

                              %          bps   %        bytes

    0 best-effort            10     10000000  10            0      low   exact

    1 expedited-forwarding   30     30000000   0       100000     high    none

    3 network-control         5      5000000   5            0     high    none

  . . .

Visual inspection of the scheduler definition, coupled with the captures shown previously, 
confirm that you have correctly applied a pre-existing scheduler-map to a new set of output 
interfaces for the routers in the CoS test bed. This brings you to the final set of case study 
criteria:
� Drop 1 percent of the BE traffic with a low loss priority at 70 percent buffer fill.
� Drop 10 percent of the BE traffic with a high loss priority at 50 percent buffer fill.
� Do not alter the default RED profiles in effect for the EF and NC forwarding classes.
� Ensure that RED acts only on TCP-based BE traffic.

As with the scheduler-related criteria addressed previously, all routers in the CoS test bed 
already have the required drop profiles configured. Recalling that the custom RED drop pro-
files are indexed by the best-effort scheduler, which in turn is indexed by the jncie-cos 



Case Study: CoS 679

scheduler-map, you suddenly realize that you have indirectly achieved the RED-related 
requirements by virtue of the jncie-cos scheduler-map’s application to the new set of 
egress interfaces. Your realization is correct, and better yet, it is easy to confirm.

[edit class-of-service]

lab@r5# run show class-of-service scheduler-map

Scheduler map: jncie-cos, Index: 31932

  Scheduler: best-effort, Forwarding class: best-effort, Index: 61257

    Transmit rate: 10 percent, Rate Limit: exact, Buffer size: 10 percent, 
Priority: low

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP         45288    be-low-plp

      High            non-TCP         1    <default-drop-profile>

      High            TCP         19129    be-high-plp

  Scheduler: expedited-forwarding, Forwarding class: expedited-forwarding, 
Index: 13946

    Transmit rate: 30 percent, Rate Limit: none, Buffer size: 100000 us, 
Priority: strictly high

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP             1    <default-drop-profile>

      High            non-TCP         1    <default-drop-profile>

      High            TCP             1    <default-drop-profile>

  Scheduler: network-control, Forwarding class: network-control, Index: 38488

    Transmit rate: 5 percent, Rate Limit: none, Buffer size: 5 percent, 
Priority: low

    Drop profiles:

      Loss priority   Protocol    Index    Name

      Low             non-TCP         1    <default-drop-profile>

      Low             TCP             1    <default-drop-profile>

      High            non-TCP         1    <default-drop-profile>

      High            TCP             1    <default-drop-profile>

The output confirms the use of the be-low-plp and be-high-plp drop profiles by the 
jncie-cos scheduler-map for the BE class only. You next confirm that the jncie-cos 
scheduler-map is correctly applied to the new output interface at r5:

[edit class-of-service]

lab@r5# run show class-of-service interface at-0/2/1

Physical interface: at-0/2/1, Index: 21



680 Chapter 6 � Class of Service

  Scheduler map: jncie-cos, Index: 31932

  Logical interface: at-0/2/1.0, Index: 8

    Object         Name                   Type                       Index

    Rewrite        exp-default            exp                            2

    Classifier     dscp-plp               dscp                       23375

These results confirm proper drop-profile configuration and application, which brings the 
case study analysis section to a close. If time permits, it is suggested that you perform traffic 
monitoring and queue counter analysis for r3’s egress interface, which generates test traffic 
from the C1 peer. Such a test confirms the end-to-end aspects of your CoS configuration.

CoS Case Study Configurations

The changes made to the OSPF baseline network topology to support CoS are listed next for all 
routers in the CoS test bed. The added highlights in Listings 6.1 through 6.3 call out the CoS-
related changes that were added in support of the chapter’s case study.

r1 was not part of the CoS test bed. No changes were made to its configuration in support 
of this chapter’s case study.

r2 was not part of the CoS test bed. No changes were made to its configuration in support 
of this chapter’s case study.

Listing 6.1: CoS Case Study Configuration for r3

[edit]

lab@r3# show class-of-service

classifiers {

    dscp r3-dscp-classifier {

        import default;

        forwarding-class best-effort {

            loss-priority low code-points 000000;

            loss-priority high code-points 000001;

        }

    }

}

drop-profiles {

    be-low-plp {

        fill-level 70 drop-probability 1;

    }

    be-high-plp {

        fill-level 50 drop-probability 10;

    }

}

interfaces {

    so-0/2/0 {



Case Study: CoS 681

        scheduler-map jncie-cos;

        unit 100 {

            classifiers {

                dscp r3-dscp-classifier;

            }

            rewrite-rules {

                dscp dscp-plp;

            }

        }

    }

    at-0/1/0 {

        scheduler-map jncie-cos;

        unit 0 {

            classifiers {

                dscp r3-dscp-classifier;

            }

            rewrite-rules {

                dscp dscp-plp;

            }

        }

    }

    fe-0/0/2 {

        scheduler-map jncie-cos;

    }

}

rewrite-rules {

    dscp dscp-plp {

        import default;

        forwarding-class best-effort {

            loss-priority low code-point 000000;

            loss-priority high code-point 000001;

        }

    }

}

scheduler-maps {

    jncie-cos {

        forwarding-class expedited-forwarding scheduler expedited-forwarding;

        forwarding-class best-effort scheduler best-effort;

        forwarding-class network-control scheduler network-control;

    }

}



682 Chapter 6 � Class of Service

schedulers {

    best-effort {

        transmit-rate percent 10 exact;

        buffer-size percent 10;

        priority low;

        drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;

        drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;

    }

    expedited-forwarding {

        transmit-rate percent 30;

        buffer-size temporal 100000;

        priority strict-high;

    }

    network-control {

        transmit-rate percent 5;

        buffer-size percent 5;

        priority high;

    }

}

[edit]

lab@r3# show firewall

policer be-policer {

    if-exceeding {

        bandwidth-limit 1m;

        burst-size-limit 15k;

    }

    then loss-priority high;

}

filter classify {

    term sip {

        from {

            protocol [ udp tcp ];

            port 5060;

        }

        then {

            forwarding-class expedited-forwarding;

            accept;

        }

    }

    term rtp {



Case Study: CoS 683

        from {

            protocol udp;

            port 16384-32767;

        }

        then {

            forwarding-class expedited-forwarding;

            accept;

        }

    }

    term be {

        then policer be-policer;

    }

}

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        filter {

            input classify;

        }

        address 172.16.0.13/30;

    }

}

Listing 6.2: CoS Case Study Configuration for r4

[edit]

lab@r4# show class-of-service

classifiers {

    dscp dscp-plp {

        import default;

        forwarding-class best-effort {

            loss-priority low code-points 000000;

            loss-priority high code-points 000001;

        }

    }

}

drop-profiles {

    be-low-plp {

        fill-level 70 drop-probability 1;

    }



684 Chapter 6 � Class of Service

    be-high-plp {

        fill-level 50 drop-probability 10;

    }

}

interfaces {

    so-0/1/0 {

        scheduler-map jncie-cos;

        unit 100 {

            classifiers {

                dscp dscp-plp;

            }

            rewrite-rules {

                dscp r4-dscp-rewrite;

            }

        }

    }

    so-0/1/1 {

        scheduler-map jncie-cos;

        unit 0 {

            classifiers {

                dscp dscp-plp;

            }

            rewrite-rules {

                dscp r4-dscp-rewrite;

            }

        }

    }

    fe-0/0/0 {

        scheduler-map jncie-cos;

    }

}

rewrite-rules {

    dscp r4-dscp-rewrite {

        import default;

        forwarding-class best-effort {

            loss-priority low code-point 000000;

            loss-priority high code-point 000001;

        }

    }

}



Case Study: CoS 685

scheduler-maps {

    jncie-cos {

        forwarding-class expedited-forwarding scheduler expedited-forwarding;

        forwarding-class best-effort scheduler best-effort;

        forwarding-class network-control scheduler network-control;

    }

}

schedulers {

    best-effort {

        transmit-rate percent 10 exact;

        buffer-size percent 10;

        priority low;

        drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;

        drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;

    }

    expedited-forwarding {

        transmit-rate percent 30;

        buffer-size temporal 100000;

        priority strict-high;

    }

    network-control {

        transmit-rate percent 5;

        buffer-size percent 5;

        priority high;

    }

}

[edit]

lab@r4# show firewall

policer 1m {

    if-exceeding {

        bandwidth-limit 1m;

        burst-size-limit 15k;

    }

    then loss-priority high;

}

filter r4-voip-classifier {

    term 1 {

        from {

            protocol [ tcp udp ];

            port 5060;



686 Chapter 6 � Class of Service

        }

        then forwarding-class expedited-forwarding;

    }

    term 2 {

        from {

            protocol udp;

            port 16384-32767;

        }

        then forwarding-class expedited-forwarding;

    }

    term 3 {

        from {

            precedence [ net-control internet-control ];

        }

        then forwarding-class network-control;

    }

    term 4 {

        then {

            policer 1m;

            forwarding-class best-effort;

        }

    }

}

[edit]

lab@r4# show interfaces fe-0/0/0

unit 0 {

    family inet {

        filter {

            input r4-voip-classifier;

        }

        address 172.16.0.5/30;

    }

}

Listing 6.3: CoS Case Study Configuration for r5

[edit]

lab@r5# show class-of-service

classifiers {

    dscp dscp-plp {

        import default;



Case Study: CoS 687

        forwarding-class best-effort {

            loss-priority low code-points 000000;

            loss-priority high code-points 000001;

        }

    }

}

drop-profiles {

    be-low-plp {

        fill-level 70 drop-probability 1;

    }

    be-high-plp {

        fill-level 50 drop-probability 10;

    }

}

interfaces {

    at-0/2/1 {

        scheduler-map jncie-cos;

        unit 0 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

    so-0/1/0 {

        scheduler-map jncie-cos;

        unit 0 {

            classifiers {

                dscp dscp-plp;

            }

        }

    }

}

scheduler-maps {

    jncie-cos {

        forwarding-class expedited-forwarding scheduler expedited-forwarding;

        forwarding-class best-effort scheduler best-effort;

        forwarding-class network-control scheduler network-control;

    }

}

schedulers {



688 Chapter 6 � Class of Service

    best-effort {

        transmit-rate percent 10 exact;

        buffer-size percent 10;

        priority low;

        drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;

        drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;

    }

    expedited-forwarding {

        transmit-rate percent 30;

        buffer-size temporal 100000;

        priority strict-high;

    }

    network-control {

        transmit-rate percent 5;

        buffer-size percent 5;

        priority high;

    }

}

Note that r5’s configuration does not include any multifield classification or marker rewrite 
functionality, which is in keeping with its placement in the network’s core.

r6 was not part of the IPv6 test bed. No changes were made to its configuration in support 
of this chapter’s case study.

r7 was not part of the IPv6 test bed. No changes were made to its configuration in support 
of this chapter’s case study.



Spot the Issues: Review Questions 689

Spot the Issues: Review Questions
1. You are trying to configure MPLS CoS according to the topology shown in Figure 6.3.

F I G U R E 6 . 3 CoS topology

The LSP has been established, and traceroutes from T1 to C1 confirm that LSP forwarding is 
operational. While the queue counters on r5’s so-0/1/0 interface show the expected forwarding 
class mappings, r4’s fe-0/0/0 queue counters indicate that all EF and BE traffic is being placed 
into queue 0. Can you spot the problem given the CoS-related configuration stanzas shown next?

RSVP signaled LSP

You may assume that multifield
classification is functioning at r3
as demonstrated in the chapter.

[edit]
lab@r3# show protocols mpls
label-switched-path mpls-cos-test {
    to 10.0.3.4;
    no-cspf;
    primary use-r5;
}
path use-r5 {
    10.0.3.5 loose;
}
interface all;

AS 65010
200.200/16

C1

fe-0/0/0
172.16.0.4/30

fe-0/0/2

AS 65222
130.130/16

T1

172.16.0.12/30

.13

M5M5

M5M5

M5M5

r3

r5
10.0.2.4/30

10.0.2.0/30

10.0.2.8/30

so
-0/

1/1

so-0/1/0

at-0/2/1

at-0/1/0

.9

.1

.5

.6

.5

.10

.2

r4

so-0/2/0
so-0/1/0



690 Chapter 6 � Class of Service

[edit]

lab@r3# show class-of-service

[edit]

lab@r3#

[edit]

lab@r4# show class-of-service

interfaces {

    so-0/1/0 {

        unit 0 {

            classifiers {

                exp default;

            }

        }

    }

}

[edit]

lab@r4#

[edit]

lab@r5# show class-of-service

interfaces {

    at-0/2/1 {

        unit 0 {

            classifiers {

                exp default;

            }

        }

    }

}

2. Can you think of another way to address the classification problem detailed in the previous 
question, one that does not involve rewrite functionality at r5?

3. This scheduler block is intended to provide real-time traffic, which is classified as EF, with 
low latency and low loss. The user is complaining about poor media quality. Can you spot any 
problems with the scheduler configuration?

[edit]

lab@r4# show class-of-service schedulers

best-effort {

    transmit-rate percent 80 exact;

    buffer-size percent 15;



Spot the Issues: Review Questions 691

    priority low;

    drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;

    drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;

}

expedited-forwarding {

    transmit-rate percent 15;

    buffer-size percent 80;

    priority high;

}

network-control {

    transmit-rate percent 5;

    buffer-size percent 5;

    priority high;

}

4. List the default classifier and rewrite functionality that is associated with an M-series router that 
has no explicit CoS configuration.



692 Chapter 6 � Class of Service

Spot the Issues: Answers to Review 
Questions
1. This is a tricky question, especially without access to the actual routers! For a hint, consider the 

operational output obtained at r4:

[edit]

lab@r4# run show class-of-service interface so-0/1/1

Physical interface: so-0/1/1, Index: 16

  Scheduler map: <default>, Index: 1

  Logical interface: so-0/1/1.100, Index: 11

    Object         Name                   Type                       Index

    Rewrite        exp-default            exp                            2

    Classifier     ipprec-compatibility   ip                             5

If you are thinking that the default EXP classifier will have no effect on the traffic arriving at r4, 
due to the penultimate hop-popping (PHP) behavior at r5, which results in the receipt of 
unlabeled packets at r4, then you are definitely getting warm! The only other classifier in place 
also has no practical effect on the incoming traffic because the default IP precedence classifier 
supports only the BE and NC forwarding classes. The solution shown next resolves the issue 
with an IP precedence rewrite function at the penultimate node and a matching IP precedence 
classifier at the egress node. Note that the lack of an IP precedence rewrite function at r4 will 
result in C1 receiving IP packets with precedence settings that differ from those generated by T1:

[edit class-of-service]

lab@r4# show

classifiers {

    inet-precedence php-classifier {

        import default;

        forwarding-class best-effort {

            loss-priority low code-points 000;

            loss-priority high code-points 001;

        }

        forwarding-class expedited-forwarding {

            loss-priority low code-points 010;

        }

    }

}

interfaces {

    so-0/1/1 {

        unit 0 {



Spot the Issues: Answers to Review Questions 693

            classifiers {

                inet-precedence php-classifier;

            }

        }

    }

}

[edit class-of-service]

lab@r5# show

interfaces {

    at-0/2/1 {

        unit 0 {

            classifiers {

                exp default;

            }

        }

    }

    so-0/1/0 {

        unit 0 {

            rewrite-rules {

                inet-precedence php-classifier;

            }

        }

    }

}

rewrite-rules {

    inet-precedence php-classifier {

        import default;

        forwarding-class best-effort {

            loss-priority low code-point 000;

            loss-priority high code-point 001;

        }

        forwarding-class expedited-forwarding {

            loss-priority low code-point 010;

        }

    }

}

A code point for EF traffic with high loss priority was not assigned because this traffic is not 
being marked with a PLP status. 



694 Chapter 6 � Class of Service

2. Because the problem relates to the default MPLS PHP behavior, another solution is to configure 
r4 to request an explicit null label, as shown here:
[edit]

lab@r4# show protocols mpls

explicit-null;

interface all;

[edit]

lab@r4# show class-of-service

interfaces {

    so-0/1/1 {

        unit 0 {

            classifiers {

                exp default;

            }

        }

    }

}

[edit]

lab@r5# show class-of-service

interfaces {

    at-0/2/1 {

        unit 0 {

            classifiers {

                exp default;

            }

        }

    }

}

By configuring the exchange of labeled packets on the LSPs final hop, you allow the default EXP 
rewrite table, which is in effect on r5’s output interface, to work with the explicitly applied 
default EXP classifier at r4 to correctly classify traffic originating at the T1 peer. Note that their 
configurations no longer require custom rewrite or classification functionality.

3. The problem with the configuration relates to the buffer depths that have been assigned to the BE 
and EF classes, respectively. For real-time traffic, loss is often preferred over high level of latency, 
as the latter normally results in discard by the end-user application anyway. With this configura-
tion, EF traffic could experience a significant queuing delay when the aggregate traffic load for 
the interface exceeds its output capacity. The changes shown next will reduce queuing delays at the 



Spot the Issues: Answers to Review Questions 695

expense of traffic discard during periods of congestion, which is a behavior that is generally 
desirable for real-time traffic such as voice:
[edit]

lab@r4# show class-of-service schedulers

best-effort {

    transmit-rate percent 80 exact;

    buffer-size percent 80;

    priority low;

    drop-profile-map loss-priority low protocol tcp drop-profile be-low-plp;

    drop-profile-map loss-priority high protocol tcp drop-profile be-high-plp;

}

expedited-forwarding {

    transmit-rate percent 15;

    buffer-size percent 15;

    priority high;

}

network-control {

    transmit-rate percent 5;

    buffer-size percent 5;

     priority high;

 }

If the increased loss becomes an issue, then you might consider changing the EF class to strict-
high priority and/or making transmit percentage adjustments to afford the EF class with a higher 
transmit capacity.

4. A factory default configuration, which contains no explicit CoS settings, supports packet classifi-
cation using the ipprec-compatibility table and MPLS EXP rewrite using the exp-default 
table only.





 

Chapter

 

7

 

VPNs

 

JNCIE LAB SKILLS COVERED IN THIS 
CHAPTER:

�

 

Layer 3 VPNs (2547 bis)

�

 

Preliminary Configuration
�

 

PE-CE BGP and Static Routing
�

 

PE-CE OSPF Routing

�

 

Layer 2 VPNs

�

 

Draft-Kompella with Non-VRF Internet Access
�

 

Draft-Martini



 

This chapter exposes the reader to several JNCIE-level provider 
provisioned (PP) virtual private networking (VPN) configuration 
scenarios, all of which employ some form of MPLS technology for 

forwarding VPN traffic across the provider’s backbone. A provider provisioned VPN solution 
can take the form of a Layer 3 or Layer 2 VPN service offering.

A Layer 3 VPN solution allows a customer to outsource their backbone routing to the service 
provider. In a Layer 3 solution, the customer edge (CE) and provider edge (PE) devices are Layer 3 
peers; they share a common IP subnet and routing protocol. Layer 3 PP VPNs are defined in 

 

BGP/MPLS VPNs

 

, draft-ietf-ppvpn-rfc2547bis-04. JUNOS software release 5.6 supports 
Layer 3 VPNs based on either IPv4 or IPv6.

Layer 2 VPN solutions are very similar to a private line or Frame Relay/ATM solution, in 
that the customer is provided with Layer 2 forwarding services that completely separate the 
customer’s network level and routing protocols from those of the service provider. Because 
a Layer 2 VPN is protocol agnostic, a L2 VPN service can be deployed to support non-IP 
and non-routable protocols such as IPX, SNA/APPN, and NetBEUI. Layer 2 PP VPNs are 
defined in a number of drafts; key among these are 

 

MPLS-based Layer 2 VPNs

 

, Internet 
draft draft-kompella-ppvpn-l2vpn-02.txt, and 

 

Transport of Layer 2 Frames Over MPLS

 

, 
Internet draft draft-martini-l2circuit-trans-mpls-07.txt.

The VPN solutions supported by JUNOS software release 5.6 employ MPLS forwarding in 
the data plane. The use of MPLS forwarding across the provider’s core enables support for non-
routable protocols (L2 VPN solution) and for customers using overlapping or private use–only 
IP addressing in the context of a Layer 3 VPN solution. The MPLS control plane can make use 
of RSVP or LDP signaling for establishment of LSPs between PE routers. The VPN control plane 
is responsible for communicating VPN membership and is based on the use of MP-BGP for 
2547 bis (Layer 3) and draft-Kompella (Layer 2) VPNs. In contrast, the draft-Martini approach 
requires LDP-based signaling in the VPN control plane.

The VPN examples demonstrated in the chapter body are based on the IS-IS baseline topology 
that was discovered in the Chapter 1 case study. If you are unsure as to the state of your test bed, 
you should take a few moments to load up and confirm the IS-IS baseline configuration before 
proceeding; if needed, you should refer to Chapter 1 for suggestions on how to quickly confirm 
the baseline network’s operation and to review the IS-IS baseline topology. It is assumed that all 
facets of the IS-IS IGP topology are operational at this time. Figure 7.1 displays the results of the 
IS-IS discovery scenario to help you recall the specifics of the IGP that will support your VPN 
configurations.



 

Layer 3 VPNs (2547 bis)

 

699

 

F I G U R E 7 . 1

 

Summary of IS-IS discovery

 

Layer 3 VPNs (2547 bis)

 

Although it is assumed that the reader possesses a working knowledge of Layer 3 VPN 
technology to the extent covered in the 

 

JNCIS Study Guide

 

 (Sybex, 2003), a brief review of 
key 2547 bis terms and concepts is provided in Figure 7.2 for purposes of review.

The figure shows how the provider’s edge (PE) routers maintain per-VPN Routing and 
Forwarding tables called VRFs that house the routes associated with a given VPN site separately 
from the main routing table. A key concept to scaling a PP VPN solution is the fact that provider 
(P) routers do not maintain any VPN-specific state. The lack of VPN awareness in P routers is 

Notes:

Multi-level IS-IS, Areas 0001 and 0002 with ISO NET based on router number.

lo0 address of r3 and r4 not injected into Area 0001 to ensure optimal forwarding between 10.0.3.3 and 10.0.3.4.

Passive setting on r5's core interfaces for optimal Area 0002-to-core routing.

No authentication or route summarization. Routing policy at r5 to leak L1 externals (DC routes) to L2.

Suboptimal routing detected at the data center and at r1/r2 for some locations. This is the result of random nexthop
choice for data center's default, and the result of r1 and r2's preference for r3's RID over r4 with regard to the
10.0/16 route. This is considered normal behavior, so no corrective actions are taken.

Redistribution of static default route to data center from both r6 and r7. Redistribution of 192.168.0/24 through
192.168.3/24 routes from RIP into IS-IS by both r6 and r7.

All adjacencies are up, reachability problem discovered at r1 and r2 caused by local aggregate definition. Corrected
through IBGP policy to effect 10.0/16 route advertisement from r3 and r4 to r1 and r2; removed local aggregate
from r1 and r2.

Area 0001
L1

L2 Area 0002
L1

r2 r4
r7

r6

RIP v2

Data
Center

r5

r3r1

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

M5M5

M5M5

M5M5

M5M5

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

IS-IS
Passive

Data
Center



 

700

 

Chapter 7 �

 

VPNs

 

made possible by the use of MPLS forwarding in the provider’s core. The legend in Figure 7.2 
illustrates how each collection of sites that constitute a given VPN is normally identified with 
a common route target (RT). The RT is an extended BGP community that is attached to routes 
as they are advertised to remote PE routers using VRF export policy; upon receipt, the RT is 
used in conjunction with VRF import policy to install routes into matching VRFs based on the 
RT associated with each VRF instance. The RT community can be coded with an IP address or 
the provider’s Autonomous System Number (ASN). Although not shown in the figure, a route 
distinguisher (RD) is added to the L3 VPN Network Layer Reachability Information (NLRI) 
advertised by each PE router to ensure the uniqueness of each IPv4 and IPv6 VPN prefix. Recall 
that VPN customers can deploy local use addressing (RFC 1918) that will result in address overlap 
between VPNs.

 

F I G U R E 7 . 2

 

2547 bis terminology

 

Your Layer 3 VPN configuration scenario begins with the preliminary configuration needed 
to establish RSVP signaled LSPs and MPLS forwarding in your network. Your preliminary 
configuration criteria are as follows:
�

 

Enable RSVP signaling on all internal-facing interfaces.
�

 

Establish bidirectional LSPs between PE routers.

 

Preliminary Configuration

 

You begin your preliminary configuration task by adding the 

 

mpls

 

 family and RSVP signaling 
to all internal-facing transit interfaces associated with 

 

r1

 

 through 

 

r7

 

. This preliminary 
configuration provides the infrastructure needed to support the Layer 3 VPN configuration 
that is added in a subsequent step. Refer to Figure 7.3 for the topology specifics needed to 
complete this configuration task.

M40M40

M40M40

M40M40

M40M40

M40M40

M40M40

M40M40

M40M40

M40M40

Site 1

Site 2

Site 1

Site 2

Site 3

Site 3VRF VRF

VRF

VRF
VRF

VRF

CE CE

CE

CE

PE

PEPE

Service Provider's Network

Customer
Sites

PE

P

P P

P

P
CE

CE

VPN “A” Target = ASN:100
VPN “B” Target = ASN:200



 

Layer 3 VPNs (2547 bis)

 

701

 

F I G U R E 7 . 3

 

VPN configuration scenario topology

 

The following commands correctly add the 

 

mpls

 

 family to the internal transit interfaces on 

 

r5

 

:

 

[edit]

lab@r5# 

 

edit interfaces

 

[edit interfaces]

lab@r5# 

 

set at-0/2/1 unit 0 family mpls

 

[edit interfaces]

lab@r5# 

 

set so-0/1/0 unit 0 family mpls

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

fe-0/0/1fe-0/0/0

r1

r2

r3

r5

fe-0/0/3

fe-0/0/0 fe-0/0/1 fe-0/0/1

fe-0/0/2

10
.0

.5
/2

4

10
.0

.4
.4

/3
0

fe-0/0/3

fe-0/0/0
10.0.4.12/30

10.0.2.4/30

fe-0/0/1

fe-0/3/1

fe-0/3/3fe-0/0/3

fe-
0/3/2

10.0.2.12/30

10.0.2.0/30

10.0.8.4/30

10.0.8.8/3010.0.2.8/30

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.1 .14 .13 .14
.13

.9

.5

.6

.9

.1

.9

.10

.17.1

fe-0/0/3

fe-
0/0

/0
fe-

0/1
/0

fe-0/1/1

fe-0/1/3

172.16.0.8/30

.1
.5

.18

.2 .10 .910.0.4.8/30
10.0.2.16/30

172.16.0.0/30172.16.0.4/30

10.0.4.16/30

fe-
0/0

/1

fe-
0/0

/2 10
.0.

4.0
/30

fe-0/0/2
.2 .17

.18
fe-0/0/0

.5

.6 .10

.2
.5

r6

r4 r7
Loopbacks

r1 = 10.0.6.1
r2 = 10.0.6.2
r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5
r6 = 10.0.9.6
r7 = 10.0.9.7
C1 = 200.200.0.1
C2 = 220.220.0.1

.6

so-0/2/0

AS 65010
200.200/16

C1

AS 65020
220.220/16

C2



 

702

 

Chapter 7 �

 

VPNs

 

[edit interfaces]

lab@r5# 

 

set fe-0/0/0 unit 0 family mpls

 

[edit interfaces]

lab@r5# 

 

set fe-0/0/1 unit 0 family mpls

 

RSVP signaling and MPLS processing is now enabled for all interfaces, excepting the router’s 
fxp0 OoB interface:

 

[edit]

lab@r5# 

 

set protocols mpls interface all

 

[edit]

lab@r5# 

 

set protocols mpls interface fxp0 disable

 

[edit protocols]

lab@r5# 

 

set rsvp interface all

 

[edit protocols]

lab@r5# 

 

set rsvp interface fxp0 disable

 

The changes made to 

 

r5

 

’s IS-IS baseline configuration are displayed with highlights added to 
call out changes to existing stanzas:

 

[edit]

lab@r5# 

 

show protocols mpls

 

interface all;

interface fxp0.0 {

    disable;

}

[edit]

lab@r5# 

 

show protocols rsvp

 

interface all;

interface fxp0.0 {

    disable;

}

[edit]

lab@r5# 

 

show interfaces

 

fe-0/0/0 {

    unit 0 {

        family inet {

            address 10.0.8.6/30;

        }



 

Layer 3 VPNs (2547 bis)

 

703

 

        family iso;

        family mpls;

    }

}

fe-0/0/1 {

    unit 0 {

        family inet {

            address 10.0.8.9/30;

        }

        family iso;

        family mpls;

    }

}

so-0/1/0 {

    encapsulation ppp;

    unit 0 {

        family inet {

            address 10.0.2.9/30;

        }

        family iso;

        family mpls;

    }

}

at-0/2/1 {

    atm-options {

        vpi 0 {

            maximum-vcs 64;

        }

    }

    unit 0 {

        point-to-point;

        vci 50;

        family inet {

            address 10.0.2.1/30;

        }

        family iso;

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {



 

704

 

Chapter 7 �

 

VPNs

 

            address 10.0.1.5/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.3.5/32;

        }

        family iso {

            address 49.0002.5555.5555.5555.00;

        }

    }

}

 

Similar changes are needed in the remaining routers that compose the JNCIE VPN test bed. 
Note that MPLS processing and RSVP signaling is not enabled on the 10.0.5/24 subnet associated 
with the fe-0/0/0 interface of 

 

r1

 

 and 

 

r2

 

. The changes made to 

 

r7

 

’s configuration are displayed 
next with highlights:

 

[edit]

lab@r7# 

 

show protocols mpls

 

interface all;

interface fxp0.0 {

    disable;

}

[edit]

lab@r7# 

 

show protocols rsvp

 

interface all;

interface fxp0.0 {

    disable;

}

[edit]

lab@r7# 

 

show interfaces

 

fe-0/3/0 {

    unit 0 {

        family inet {

            address 10.0.8.14/30;

        }

        family iso;

    }



 

Layer 3 VPNs (2547 bis)

 

705

 

}

fe-0/3/1 {

    unit 0 {

        family inet {

            address 10.0.8.10/30;

        }

        family iso;

        family mpls;

    }

}

fe-0/3/2 {

    unit 0 {

        family inet {

            address 172.16.0.1/30;

        }

        family mpls;

    }

}

fe-0/3/3{

    unit 0 {

        family inet {

            address 10.0.2.17/30;

        }

        family iso;

        family mpls;

    }

}

fxp0 {

    unit 0 {

        family inet {

            address 10.0.1.7/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 10.0.9.7/32;

        }

        family iso {



 

706

 

Chapter 7 �

 

VPNs

 

            address 49.0002.7777.7777.7777.00;

        }

    }

}

 

With MPLS processing and RSVP signaling enabled at all routers, you proceed to the 
definition of the LSPs that are needed between PE routers. You begin at 

 

r4

 

 with the configuration 
of its ingress LSPs that terminate at 

 

r6

 

 and 

 

r7

 

:

 

[edit protocols mpls]

lab@r4# 

 

set label-switched-path r4-r6 to 10.0.9.6 no-cspf

 

[edit protocols mpls]

lab@r4# 

 

set label-switched-path r4-r7 to 10.0.9.7 no-cspf

 

Note that CSPF has been disabled in this example because its use is not required by the 
scenario’s restrictions. Disabling CSPF eliminates the potential for CSPF failures stemming from 
the fact that there are multiple TED domains in the test bed’s multi-level IS-IS topology. Also 
note that no Explicit Route Objects (ERO) or bandwidth-related constraints are configured, 
which is again in keeping with the minimum level of functionality required in the preliminary 
configuration. The modified MPLS stanza is displayed next at 

 

r4

 

 with highlights:

 

[edit protocols mpls]

lab@r4# 

 

show

 

label-switched-path r4-r6 {

    to 10.0.9.6;

    no-cspf;

}

label-switched-path r4-r7 {

    to 10.0.9.7;

    no-cspf;

}

interface all;

interface fxp0.0 {

    disable;

}

 

Similar LSP definitions are needed at 

 

r6

 

 and r7. The MPLS stanza at r7 is shown here with 
highlights:

[edit protocols mpls]

lab@r7# show

label-switched-path r7-r4 {

    to 10.0.3.4;

    no-cspf;

}



Layer 3 VPNs (2547 bis) 707

label-switched-path r7-r6 {

    to 10.0.9.6;

    no-cspf;

}

interface all;

interface fxp0.0 {

    disable;

}

Be sure that you commit the preliminary configuration changes on all routers before 
proceeding to the verification section.

Verifying Preliminary Configuration

Verifying your preliminary configuration begins with the determination that RSVP signaling 
and MPLS processing have been correctly provisioned. The following commands verify that r3 
is correctly configured for basic MPLS and RSVP support:

[edit]

lab@r3# run show mpls interface

Interface        State       Administrative groups

fe-0/0/0.0       Up         <none>

fe-0/0/1.0       Up         <none>

fe-0/0/3.0       Up         <none>

at-0/1/0.0       Up         <none>

so-0/2/0.100     Up         <none>

[edit]

lab@r3# run show rsvp interface

RSVP interface: 6 active

                  Active Subscr- Static      Available   Reserved    Highwater

Interface   State resv   iption  BW          BW          BW          mark

fe-0/0/0.0  Up         0   100%  100Mbps     100Mbps     0bps        0bps

fe-0/0/1.0  Up         0   100%  100Mbps     100Mbps     0bps        0bps

fe-0/0/2.0  Up         0   100%  100Mbps     100Mbps     0bps        0bps

fe-0/0/3.0  Up         1   100%  100Mbps     100Mbps     0bps        0bps

at-0/1/0.0  Up         0   100%  155.52Mbps  155.52Mbps  0bps        0bps

so-0/2/0.100Up         1   100%  155.52Mbps  155.52Mbps  0bps        0bps

Although not shown, you can assume that all other routers are providing similar indications 
regarding interface support for MPLS packets and RSVP signaling. Next, you confirm successful 
establishment of the RSVP signaled LSPs that are associated with r4:

[edit protocols mpls]

lab@r4# run show rsvp session

Ingress RSVP: 2 sessions



708 Chapter 7 � VPNs

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.6        10.0.3.4        Up     1  1 FF       -   100002 r4-r6

10.0.9.7        10.0.3.4        Up     1  1 FF       -        3 r4-r7

Total 2 displayed, Up 2, Down 0

Egress RSVP: 2 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.3.4        10.0.9.6        Up     0  1 FF       3        - r6-r4

10.0.3.4        10.0.9.7        Up     0  1 FF       3        - r7-r4

Total 2 displayed, Up 2, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0

[edit protocols mpls]

lab@r4#

The highlights in the output of the show rsvp session command confirm the expected 
number of ingress and egress sessions, which confirms that all four of the LSPs associated with r4 
have been correctly established. You can assume that a similar display is observed at r6 and r7 
(not shown).

Verification of your preliminary configuration is complete when all routers in the test bed 
display support for MPLS processing and RSVP signaling on the required interfaces, and when 
all RSVP signaled LSPs are successfully established. It is imperative that you have a functional 
MPLS infrastructure before you proceed to the next section, because PP-VPNs rely on a func-
tional MPLS control and data plane for forwarding VPN traffic. Being able to distinguish between 
conventional MPLS problems and those that specifically relate to the configuration of a VPN 
is an invaluable skill for the JNCIE candidate.

Preliminary Configuration Summary

This section involved the configuration and testing of the MPLS infrastructure that will support 
the Layer 3 VPN configuration added in the following section. While this section demonstrated the 
configuration of RSVP signaled LSPs, it should be noted that, with very few exceptions, LDP 
signaled LSPs can also serve to support the Layer 2 and Layer 3 VPN configurations shown in 
this chapter.

The reader is encouraged to refer back to Chapter 2, “MPLS and Traffic Engineering,” for 
detailed coverage of MPLS configurations and verification techniques.

PE-CE BGP and Static Routing

With the MPLS forwarding and control plane infrastructure in place and confirmed, it is time 
to get cracking on a Layer 3 VPN configuration. Your first L3 VPN scenario requires a combi-
nation of static and BGP routing on the PE-CE links, as shown in Figure 7.4.



Layer 3 VPNs (2547 bis) 709

F I G U R E 7 . 4 L3 VPN with static and BGP routing

The use of dissimilar routing protocols on the PE-CE constituting the Layer 3 VPN is designed 
to confirm that the JNCIE candidate is competent with more than one PE-CE routing mechanism; 
having multiple PE-CE routing protocols also adds complexity to your assignment because you 
will need distinctly different VPN configurations to support the C1 and C2 devices. To complete 
this Layer 3 scenario, you must configure the subset of routers shown in Figure 7.4 according 
to these criteria:
� Establish a L3 VPN providing connectivity between C1 and C2.
� You must support pings that originate and terminate on VRF interfaces.

M5M5

fe-0/0/3

EBGP EBGP

Static
Routing

fe-
0/3

/2
so-0/1/0

fe-0/1/3
172.16.0.8/30

fe-0/0/1

fe-
0/0

/0 fe-
0/1

/0

so
-0

/1/
1

17
2.1

6.0
.0/

30

172.16.0.4/30

fe-0/0/0

10.0.2.16/30

10.0.2.8/30 10.0.8.8/30

10.0.8.4/30

fe-0/3/3
fe-0/3/1.10

.18
r4 r7

r5

r6

.5

.9 .9

.6

.5

.9

.10

.17
.1

AS 65010
200.200/16

C1

M5M5 M5M5

Loopbacks

r4 = 10.0.3.4
r5 = 10.0.3.5
r6 = 10.0.9.6
r7 = 10.0.9.7
C1 = 200.200.0.1
C2 = 220.220.0.1

AS 65020
220.220/16

C2

M5M5



710 Chapter 7 � VPNs

� Ensure that the VPN is not disrupted by the failure of r4 or r7, or by any internal link/interface 
failure.

� You must not configure the RD within the VRF instance.
� Use an RD that is based on the PE lo0 address.
� Configure a route target of target:65412:420.
� Your VPN configuration can not disrupt existing IPv4 routing and forwarding functionality 

within your AS.
� You may add two static routes to the configuration of C2.

Initial L3 VPN Configuration: Static and BGP Routing

Configuration of the L3 VPN begins at r6 with the creation of a VRF routing instances called c2. 
The first grouping of commands creates the VRF and associates r6’s fe-0/1/3 interface with the 
VRF instance:

[edit]

lab@r6# edit routing-instances c2

[edit routing-instances c2]

lab@r6# set instance-type vrf

[edit routing-instances c2]

lab@r6# set interface fe-0/1/3

JUNOS software releases prior to 5.5 required the manual creation of VRF import and 
export policies, as well as the definition of a named extended community for use as a RT. 
Although manual VRF policy definition is still supported, use of the vrf-target statement 
significantly simplifies the configuration of a Layer 3 VPN. The resulting “default VRF 
policy” attaches the configured RT community to all route advertisements from that VRF and 
also matches on the specified community for routes received from remote PEs. Because the 
default VRF policy associated with the vrf-target statement advertises all active routes 
received from the CE, as well as the VRF’s static and direct routes, the use of vrf-target supports 
all of the functionality specified in this scenario. Note that local routes can not be exported 
using routing policy, and therefore local routes are not exported in conjunction with the 
vrf-target statement.

Some VPN applications, for example, a hub and spoke topology, require that you attach one 
RT to the routes being advertised while matching on a different RT in the routes being received. 
For these applications, use the import and export keywords in conjunction with the vrf-target 
statement to effect the advertisement of one community while matching on a different community 
in routes that are received. The VPN’s RT is now configured in association with the vrf-target 
feature according to the criteria specified:

[edit routing-instances c2]

lab@r6# set vrf-target target:65412:420



Layer 3 VPNs (2547 bis) 711

The restriction on manual assignment of the RD within the VRF is addressed with automatic 
RD computation in conjunction with the route-distinguisher-id statement. The automatically 
derived RD is computed by concatinating the IP address specified with a unique identifier that 
is associated with each VRF instance on the local router. You enter the route-distinguisher-id 
statement at the [edit routing-options] hierarchy:

[edit routing-options]

lab@r6# set route-distinguisher-id 10.0.9.6

The static route used by r6 when forwarding traffic to the C2 site is now defined:

[edit routing-instances c2]

lab@r6# set routing-options static route 220.220/16 next-hop 172.16.0.10

The c2 VRF routing instance configuration is displayed next for visual inspection:

[edit routing-instances c2]

lab@r6# show

instance-type vrf;

interface fe-0/1/3.0;

vrf-target target:65412:420;

routing-options {

    static {

        route 220.220.0.0/16 next-hop 172.16.0.10;

    }

}

Although additional changes might be required at r6 to meet all of the specified criteria, you 
decide to commit the VRF changes at r6 and direct your attention to the configuration of the 
c1 VRF routing instance at r4. As with the c2 instance on r6, the c1 routing instance also makes 
use of the vrf-target statement and its related default VRF import and export policy.

The changes made to r4’s configuration in support of the C1-C2 VPN are shown here with 
highlights added to call out changes to existing configuration stanzas:

[edit]

lab@r4# show routing-options

static {

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

route-distinguisher-id 10.0.3.4;

autonomous-system 65412;



712 Chapter 7 � VPNs

[edit]

lab@r4# show routing-instances

c1 {

    instance-type vrf;

    interface fe-0/0/0.0;

    vrf-target target:65412:420;

    protocols {

        bgp {

            group c1 {

                type external;

                peer-as 65010;

                neighbor 172.16.0.6;

            }

        }

    }

}

Although a similar configuration is needed at r7 to meet the stated redundancy requirement, 
you decide to test the waters by committing the changes at r4 so that you can determine 
where your existing VPN configuration might need additional tweaking.

Initial L3 VPN Confirmation: Static and BGP Routing

One of the benefits of a L3 VPN is the ability to conduct local testing of the PE-CE VRF link 
and routing protocols. The fact that the PE and CE interact at the IP layer in a L3 VPN greatly 
simplifies fault isolation, as you will experience when Layer 2 VPNs are deployed in a later 
section. You begin initial confirmation by confirming the presence of an active static route at r6 
for the 220.220/16 prefix associated with C2:

[edit]

lab@r6# run show route protocol static 220.220/16

c2.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

220.220.0.0/16     *[Static/5] 00:41:45

                    > to 172.16.0.10 via fe-0/1/3.0

The static route is present and active, so ping testing is conducted from r6 to C2; note that 
the pings fail when the ping command is not associated with the correct routing instance:

[edit]

lab@r6# run ping 220.220.0.1 count 2

PING 220.220.0.1 (220.220.0.1): 56 data bytes

ping: sendto: No route to host

ping: sendto: No route to host



Layer 3 VPNs (2547 bis) 713

--- 220.220.0.1 ping statistics ---

2 packets transmitted, 0 packets received, 100% packet loss

The pings fail because the egress interface associated with the route is not present in the 
inet.0 routing table. Specifying the c2 routing instance allows r6 to correctly identify the egress 
interface (fe-0/1/3) for the test traffic:

[edit]

lab@r6# run ping 220.220.0.1 count 2 routing-instance c2

PING 220.220.0.1 (220.220.0.1): 56 data bytes

64 bytes from 220.220.0.1: icmp_seq=0 ttl=255 time=0.321 ms

64 bytes from 220.220.0.1: icmp_seq=1 ttl=255 time=0.172 ms

--- 220.220.0.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.172/0.246/0.321/0.074 ms

The r6–C2 ping is successful, which confirms that static routing is working between PE r6 
and CE C2. The status of the EBGP session between r4 and C1 is now verified:

[edit]

lab@r4# run show bgp summary instance c1

Groups: 1 Peers: 1 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

c1.inet.0              0          0          0          0          0          0

Peer               AS      InPkt     OutPkt    OutQ   Flaps Last Up/Dwn
   State|#Active/Received/Damped...

172.16.0.6      65010      24684         12       0       0        4:23 Establ

   c1.inet.0: 2/3/0

Note that the output is limited to the status of BGP sessions associated with the c1 routing 
instance by including the instance switch. The contents of the c1 VRF are now displayed to 
confirm receipt of BGP routes from the C1 peer:

[edit]

lab@r4# run show route table c1

c1.inet.0: 5 destinations, 5 routes (4 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.0.4/30      *[Direct/0] 00:08:24

                    > via fe-0/0/0.0

172.16.0.5/32      *[Local/0] 00:08:24

                      Local via fe-0/0/0.0

200.200.0.0/16     *[BGP/170] 00:06:26, MED 0, localpref 100

                      AS path: 65010 I

                    > to 172.16.0.6 via fe-0/0/0.0



714 Chapter 7 � VPNs

200.200.1.0/24     *[BGP/170] 00:06:26, MED 0, localpref 100

                      AS path: 65010 I

                    > to 172.16.0.6 via fe-0/0/0.0

Initial confirmation indicates that both of the PE-CE VRF links are operational. However, 
you note that the c1 VRF does not contain any routes associated with the C2 site. Can you 
identify why VPN NLRI is not being exchanged between the PE routers?

Troubleshooting a Layer 3 VPN Problem

You have determined that VPN routes are not being exchanged between PE routers r4 and r6 
in your initial Layer 3 VPN configuration. Can you spot the issue based on the results of a show 
bgp neighbor display?

[edit]
lab@r4# run show bgp neighbor 10.0.9.6
Peer: 10.0.9.6+179    AS 65412 Local: 10.0.3.4+2471   AS 65412
  Type: Internal    State: Established    Flags: <>
  Last State: OpenConfirm   Last Event: RecvKeepAlive
  Last Error: None
  Export: [ nhs ]
  Options: <Preference LocalAddress HoldTime AdvertiseInactive Refresh>
  Local Address: 10.0.3.4 Holdtime: 90 Preference: 170
  Number of flaps: 0
  Peer ID: 10.0.9.6         Local ID: 10.0.3.4         Active Holdtime: 90
  Keepalive Interval: 30
  NLRI advertised by peer: inet-unicast
  NLRI for this session: inet-unicast
  Peer supports Refresh capability (2)
  Table inet.0 Bit: 10000
    RIB State: BGP restart is complete
    Send state: in sync
    Active prefixes:            0
    Received prefixes:          4
    Suppressed due to damping:  0
  Last traffic (seconds): Received 5    Sent 29   Checked 29
  Input messages:  Total 52     Updates 1       Refreshes 0     Octets 1036
  Output messages: Total 54     Updates 2       Refreshes 0     Octets 1106
  Output Queue[0]: 0

If you identified the fact that MP-IBGP has not been configured with support for the inet-vpn 
family, then you are operating in a “fully switched on” mode and should congratulate yourself! 
Candidates often fail to adjust their existing IBGP sessions to support the appropriate VPN family, 
and then find themselves wasting time manipulating their VRF policies in a futile attempt to 
evoke the advertisement of VPN NLRI. The changes shown for r4 correctly provision its MP-IBGP 
session to r6 for support of both IPv4 and IPv4 VPN NLRI; note that failing to explicitly configure 
the default inet family along with the inet-vpn family disrupts the exiting IPv4 routing function-
ality because the resulting IBGP session supports only VPN NLRI.



Layer 3 VPNs (2547 bis) 715

With MP-IBGP now correctly configured between r4 and r6, you again display the contents 
of the c1 VRF at r4:

[edit routing-instances c1]

lab@r4# run show route table c1

c1.inet.0: 7 destinations, 7 routes (6 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.0.4/30      *[Direct/0] 02:19:55

                    > via fe-0/0/0.0

172.16.0.5/32      *[Local/0] 02:19:55

                      Local via fe-0/0/0.0

172.16.0.8/30      *[BGP/170] 00:04:39, localpref 100, from 10.0.9.6

                      AS path: I

                    > via so-0/1/1.0, label-switched-path r4-r6

[edit protocols bgp group int]
lab@r4# show
type internal;
local-address 10.0.3.4;
export nhs;
neighbor 10.0.6.1 {
    export r1;
}
neighbor 10.0.6.2 {
    export r2;
}
neighbor 10.0.3.3;
neighbor 10.0.3.5;
neighbor 10.0.9.6 {
    family inet {
        unicast;
    }
    family inet-vpn {
        unicast;
    }
}
neighbor 10.0.9.7;

Similar changes are needed at r6. Do not forget that the IBGP peering session between r6 and r7 
will ultimately need similar modifications. After committing the changes, MP-IBGP support for 
the inet and inet-vpn families is confirmed, as shown next:

[edit protocols bgp group int]
lab@r4# run show bgp neighbor 10.0.9.6 | match NLRI
  NLRI advertised by peer: inet-unicast inet-vpn-unicast
NLRI for this session: inet-unicast inet-vpn-unicast



716 Chapter 7 � VPNs

200.200.0.0/16     *[BGP/170] 01:26:38, MED 0, localpref 100

                      AS path: 65010 I

                    > to 172.16.0.6 via fe-0/0/0.0

200.200.1.0/24     *[BGP/170] 01:26:38, MED 0, localpref 100

                      AS path: 65010 I

                    > to 172.16.0.6 via fe-0/0/0.0

220.220.0.0/16     *[BGP/170] 00:04:39, localpref 100, from 10.0.9.6

                      AS path: I

                    > via so-0/1/1.0, label-switched-path r4-r6

The added highlights call out the presence of the 220.220/16 and 172.16.0.8/30 prefixes as 
BGP routes in r4’s c1 VRF. A show route advertising protocol command is issued to 
confirm that the 220.220/16 route is, in turn, correctly advertised by r4 to the C1 peer:

[edit protocols bgp group int]

lab@r4# run show route advertising-protocol bgp 172.16.0.6

[edit protocols bgp group int]

lab@r4#

Hmm, the results are not what you had hoped to see. Oddly, a show route receiving 
protocol command, when issued at C1, confirms the proper receipt of the 220.220/16 route 
from r4:

[edit protocols bgp group int]

lab@r4# run telnet routing-instance c1 172.16.0.6

Trying 172.16.0.6...

Connected to 172.16.0.6.

Escape character is '^]'.

c1 (ttyp0)

login: lab

Password:

Last login: Wed Jun  4 13:10:30 from 172.16.0.5

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@c1> show route receive-protocol bgp 172.16.0.5

inet.0: 121179 destinations, 121184 routes (121179 active, 0 holddown, 5 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 220.220.0.0/16          172.16.0.5                              65412 I

You may have noticed that the telnet session from r4 to C1 made use of the routing-instance 
switch to address the fact that r4’s fe-0/0/0 interface is no longer present in its main routing 



Layer 3 VPNs (2547 bis) 717

instance. The issue with the show route advertising protocol command relates to the fact 
that the EBGP session between r4 and C2 is currently defined twice: once in the c1 VRF (correctly) 
and again in the main routing instance (unnecessarily). The result is that r4 incorrectly indexes 
the 172.16.0.6 neighbor request against the main routing instance, which returns an empty 
display due to this EBGP session being in an idle state (placing r4’s fe-0/0/0 interface into the 
c1 VRF prevents its use by the main routing instance). This situation is shown here:

[edit protocols bgp group int]

lab@r4# run show bgp summary | match 172.16.0.6

172.16.0.6      65010      31880      30510       0       1       42:00 Idle

172.16.0.6      65010      26727         84       0       0       40:02 Establ

The unnecessary BGP neighbor definition is removed from r4 (not shown) and r6 to resolve 
this anomaly:

lab@r6# delete protocols bgp group c2

After the change is committed at r4, the show route advertising protocol command 
returns the expected results:

[edit routing-instances c1]

lab@r4# run show route advertising-protocol bgp 172.16.0.6

c1.inet.0: 7 destinations, 7 routes (6 active, 0 holddown, 1 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 172.16.0.8/30           Self                                    I

* 200.200.0.0/16          172.16.0.6                              65010 I

* 200.200.1.0/24          172.16.0.6                              65010 I

* 220.220.0.0/16          Self                                    I

The confirmation results observed thus far indicate that the C1–C2 VPN is working in 
accordance with all specified requirements excepting those relating to redundancy; recall that 
r7 has not yet had its c1 VRF configured. Hoping for the best, you telnet to the C2 router to 
perform end-to-end connectivity testing before bringing r7 into the mix:

[edit]

lab@r6# run telnet routing-instance c2 220.220.0.1

Trying 220.220.0.1...

Connected to 220.220.0.1.

Escape character is '^]'.

C2 (ttyp0)

login: lab

Password:

Last login: Wed Jun  4 13:10:39 from 172.16.0.5

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC



718 Chapter 7 � VPNs

lab@c2> ping 200.200.0.1

PING 200.200.0.1 (200.200.0.1): 56 data bytes

ping: sendto: No route to host

ping: sendto: No route to host

^C

--- 200.200.0.1 ping statistics ---

17 packets transmitted, 0 packets received, 100% packet loss

Noting the ping failure, you display the 200.200/16 route at C2:

lab@c2> show route 200.200/16

lab@c2>

The lack of a 200.200/16 route at C2 stems from the fact that r6 and C2 no longer peer with 
EBGP; the static routing on the r4-C2 VRF interface means that C2 can not dynamically learn 
any of the routes that are present in r6’s c2 VRF. The reason that you are permitted to define 
two static routes at the C2 peer should now be clear: these static routes are needed at C2 to 
direct traffic associated with 200.200/16 and 172.16.0.4/30 to r6. The static routes are added 
to C2 and the change is committed:

[edit routing-options]

lab@c2# set static route 200.200/16 next-hop 172.16.0.9

[edit routing-options]

lab@c2# set static route 172.16.0.4/30 next-hop 172.16.0.9

The definition of a static route for the r4–C1 VRF subnet (172.16.0.4/30) is critical to ensure 
that traffic can be originated and terminated on the VRF interfaces, which is a requirement in 
this example; C1, in contrast, learns the 172.16.0.8/30 route associated with the r6–C2 VRF 
interface through its EBGP session to r4. Once the static routes are committed, you repeat the 
end-to-end test:

lab@c2> ping 200.200.0.1 count 2

PING 200.200.0.1 (200.200.0.1): 56 data bytes

64 bytes from 200.200.0.1: icmp_seq=0 ttl=252 time=0.433 ms

64 bytes from 200.200.0.1: icmp_seq=1 ttl=252 time=0.331 ms

--- 200.200.0.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.331/0.382/0.433/0.051 ms

The pings succeed when sourced from C2’s VRF interface. Additional testing confirms that 
pings also succeed when sourced from C2’s loopback address, and when the traffic is targeted 
at C1’s VRF interface:

lab@c2> ping 200.200.0.1 count 2 source 220.220.0.1

PING 200.200.0.1 (200.200.0.1): 56 data bytes

64 bytes from 200.200.0.1: icmp_seq=0 ttl=252 time=0.438 ms

64 bytes from 200.200.0.1: icmp_seq=1 ttl=252 time=0.334 ms



Layer 3 VPNs (2547 bis) 719

--- 200.200.0.1 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.334/0.386/0.438/0.052 ms

lab@c2> ping 172.16.0.6 count 2 source 220.220.0.1

PING 172.16.0.6 (172.16.0.6): 56 data bytes

64 bytes from 172.16.0.6: icmp_seq=0 ttl=252 time=0.433 ms

64 bytes from 172.16.0.6: icmp_seq=1 ttl=252 time=0.325 ms

--- 172.16.0.6 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.325/0.379/0.433/0.054 ms

The results shown confirm that you have configured the required VPN connectivity between 
the C1 and C2 locations. Traceroute testing from the C1 site confirms the presence of MPLS 
forwarding by P routers:

lab@c1> traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  172.16.0.5 (172.16.0.5)  0.417 ms  0.294 ms  0.278 ms

 2  * * *

 3  10.0.2.13 (10.0.2.13)  0.297 ms  0.238 ms  0.243 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 4  220.220.0.1 (220.220.0.1)  0.331 ms  0.311 ms  0.301 ms

The time-out on the second hop is expected due to the fact that r5 does not carry any VPN 
routes, and so can not route the TTL expired message back to the 172.16.0.6 address used by 
C1 to source its traffic. It should be noted that an E-FPC equipped router copies the TTL value 
present in the IP header into both the inner and outer MPLS labels when handling traffic received 
from the attached CE. However, for traffic that is generated locally, an E-FPC PE sets the TTL 
in the outer MPLS label TTL to the maximum value (255) to avoid P router time-outs:

[edit routing-instances c1]

lab@r4# run traceroute routing-instance c1 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.2.13 (10.0.2.13)  0.778 ms  0.591 ms  0.527 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 2  220.220.0.1 (220.220.0.1)  0.591 ms  0.602 ms  0.553 ms

In contrast, an M-series router that is equipped with a standard FPC can not write the TTL 
of the received IP packet into both the outer and inner MPLS labels. This results in the outer 
label having a maximum TTL value for traffic received from the local CE and for traffic that is 
generated locally. This behavior is demonstrated here in the context of r6 and C2, where r6 
is not equipped with an E-FPC and C2 generates a traceroute to a C1 prefix:

lab@c2> traceroute 200.200.0.1

traceroute to 200.200.0.1 (200.200.0.1), 30 hops max, 40 byte packets



720 Chapter 7 � VPNs

 1  172.16.0.9 (172.16.0.9)  0.248 ms  0.157 ms  0.149 ms

 2  10.0.2.10 (10.0.2.10)  12.934 ms  0.542 ms  0.524 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 3  200.200.0.1 (200.200.0.1)  0.317 ms  0.299 ms  0.297 ms

The bottom line is that you should or should not expect to see time-outs for P-router hops 
when conducting end-to-end traceroute testing based on whether the ingress PE is or is not 
E-FPC equipped. With all aspects of the VPN configurations in effect at r4 and r6 confirmed, 
all that remains to complete the initial Layer 3 VPN scenario is the addition of VRF-related 
configuration at r7. As with r4 and r6, you should also remove the existing EBGP stanza for 
the C1 peer:

[edit protocols bgp]

lab@r7# delete group c1

To save space, the actual commands used to configure r7’s VRF are not shown. In this example, 
this author used a text editor to modify the VRF configuration in place at r4 to reflect the 
fe-0/3/2 VRF interface and 172.16.0.2 EBGP peering address needed at r7. The modified 
routing-instance stanza was then loaded into r7 using the load merge terminal command. 
The changes made to r7’s configuration in support of the initial Layer 3 VPN configuration 
stanza are shown here with highlights added:

[edit]

lab@r7# show routing-options

static {

    route 0.0.0.0/0 reject;

    route 10.0.200.0/24 {

        next-hop 10.0.1.102;

        no-readvertise;

    }

}

aggregate {

    route 10.0.0.0/16;

}

route-distinguisher-id 10.0.9.7;

autonomous-system 65412;

[edit]

lab@r7# show routing-instances

c1 {

    instance-type vrf;

    interface fe-0/3/2.0;

    vrf-target target:65412:420;

    protocols {



Layer 3 VPNs (2547 bis) 721

        bgp {

            group c1 {

                type external;

                peer-as 65010;

                neighbor 172.16.0.2;

            }

        }

    }

}

[edit]

lab@r7# show protocols bgp

group int {

    type internal;

    local-address 10.0.9.7;

    export nhs;

    neighbor 10.0.6.1;

    neighbor 10.0.6.2;

    neighbor 10.0.3.3;

    neighbor 10.0.3.4 {

        family inet {

            unicast;

        }

        family inet-vpn {

            unicast;

        }

    }

    neighbor 10.0.3.5;

    neighbor 10.0.9.6 {

        family inet {

            unicast;

        }

        family inet-vpn {

            unicast;

        }

    }

}

Adding the inet-vpn family to the r4 peer definition at r7 provides additional resiliency to 
failure that is not strictly required in this scenario. To back this up, you need to add the inet-vpn 
family to the peer definition for r7 at r4 (not shown). By enabling the advertisement of C1’s 
routes between r4 and r7, you achieve tolerance for the failure of the VRF interface at either 
r4 or r7.



722 Chapter 7 � VPNs

Do not forget to also adjust the r7 peering definition at r6 to add support for both the inet 
and inet-vpn families. If desired, you could add the inet-vpn and inet family declarations 
at the IBGP group level, because peers that do not support the VPN NLRI (for example, r5) will 
simply negotiate the NLRI that is supported during IBGP session establishment. For completeness’ 
sake, the changes made to r6’s configuration in support of the VPN configuration at r7 are shown 
here with highlights:

[edit]

lab@r6# show protocols bgp group int

type internal;

local-address 10.0.9.6;

export nhs;

neighbor 10.0.6.1;

neighbor 10.0.6.2;

neighbor 10.0.3.3;

neighbor 10.0.3.4 {

    family inet {

        unicast;

    }

    family inet-vpn {

        unicast;

    }

}

neighbor 10.0.3.5;

neighbor 10.0.9.7 {

    family inet {

        unicast;

    }

    family inet-vpn {

        unicast;

    }

}

The confirmation of r7’s VRF configuration proceeds in the manner previously shown for 
r4 and r6; you begin with verification of the EBGP session between r7 and C1:

[edit]

lab@r7# run show bgp summary instance c1

Groups: 1 Peers: 1 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

c1.inet.0              8          6          0          0          0          0

Peer               AS      InPkt     OutPkt    OutQ   Flaps Last Up/Dwn
   State|#Active/Received/Damped...

172.16.0.2      65010         34         35       0       0       15:30 Establ

   c1.inet.0: 3/3/0



Layer 3 VPNs (2547 bis) 723

The EBGP session is correctly established. Traceroute testing is performed to confirm
forwarding to both local and remote CE prefixes:

[edit]

lab@r7# run traceroute 200.200.0.1 routing-instance c1

traceroute to 200.200.0.1 (200.200.0.1), 30 hops max, 40 byte packets

 1  200.200.0.1 (200.200.0.1)  0.223 ms  0.142 ms  0.102 ms

[edit]

lab@r7# run traceroute 220.220.0.1 routing-instance c1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.8.5 (10.0.8.5)  0.402 ms  0.319 ms  0.325 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 2  * * *

 3  * *^C

The traceroute to the local CE’s prefix is successful, but the traceroute to the C2 prefix fails. 
The fact that traceroutes from C1 to C2 do succeed when sourced from C1’s loopback address 
should shed light on the remaining issue:

lab@c1> show route 220.220/16

inet.0: 11 destinations, 21 routes (11 active, 0 holddown, 5 hidden)

+ = Active Route, - = Last Active, * = Both

220.220.0.0/16     *[BGP/170] 00:18:04, localpref 100

                      AS path: 65412 I

                    > to 172.16.0.1 via fe-0/0/0.0

                    [BGP/170] 00:04:05, localpref 100

                      AS path: 65412 I

                    > to 172.16.0.5 via fe-0/0/1.0

The show route output confirms that C1 is currently forwarding traffic destined to C2 
through r7, and traceroute testing succeeds when the traffic is sourced from C1’s loopback 
address:

lab@c1> traceroute 220.220.0.1 source 200.200.0.1

traceroute to 220.220.0.1 (220.220.0.1) from 200.200.0.1, 30 hops max, 
   40 byte packets

 1  172.16.0.1 (172.16.0.1)  0.268 ms  0.261 ms  0.164 ms

 2  10.0.8.5 (10.0.8.5)  0.305 ms  0.272 ms  0.263 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 3  220.220.0.1 (220.220.0.1)  0.354 ms  0.338 ms  0.327 ms

As an additional hint, think about what address is used when traffic is sourced by r7’s c1 
routing instance. If you are starting to think that modifications are needed in the static route 



724 Chapter 7 � VPNs

definitions at C2 to accommodate the 172.16.0.0/30 address in use on the r7-C1 VRF interface, 
then you are spot-on! Being that only two static routes are permitted at C2, you alter the existing 
172.16.0.4/30 static route to summarize the 172.16.0.0/30 and 172.16.0.4/30 prefixes associated 
with both of site C1’s VRF links:

[edit routing-options static]

lab@c2# delete route 172.16.0.4/30

[edit routing-options static]

lab@c2# set route 172.16.0.0/29 next-hop 172.16.0.9

After the change is committed at C2, traceroute from r7 is successful:

[edit]

lab@r7# run traceroute 220.220.0.1 routing-instance c1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.8.5 (10.0.8.5)  0.428 ms  0.290 ms  0.242 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 2  220.220.0.1 (220.220.0.1)  0.339 ms  0.304 ms  0.283 ms

As a final check on the redundancy aspects of your configuration, you verify that r6 correctly 
displays two BGP routes for C1 prefixes; recall that a previous display showed that C1 cor-
rectly displays two BGP routes for the prefixes associated with the C2 location:

[edit]

lab@r6# run show route 200.200/16

c2.inet.0: 8 destinations, 10 routes (8 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.200.0.0/16     *[BGP/170] 00:06:59, MED 0, localpref 100, from 10.0.3.4

                      AS path: 65010 I

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r4

                    [BGP/170] 00:31:01, MED 0, localpref 100, from 10.0.9.7

                      AS path: 65010 I

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r7

200.200.1.0/24     *[BGP/170] 00:06:59, MED 0, localpref 100, from 10.0.3.4

                      AS path: 65010 I

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r4

                    [BGP/170] 00:31:01, MED 0, localpref 100, from 10.0.9.7

                      AS path: 65010 I

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r7



Layer 3 VPNs (2547 bis) 725

The results confirm that both r4 and r7 are advertising C1’s prefixes to r6, and also show 
that r6 has correctly installed these prefixes into the c2 VRF table. Although viewing a VPN’s 
forwarding table is generally not needed when all is working, this author has found that dis-
playing a VPN’s forwarding table can prove invaluable when troubleshooting problems in the 
MPLS forwarding plane. An example of the output provided by a show route forwarding-table 
vpn command is shown here for informational purposes:

[edit]

lab@r4# run show route forwarding-table vpn c1

Routing table: c1.inet

Internet:

Destination        Type RtRef Next hop          Type Index NhRef Netif

default            perm     0                   dscd    33     1

172.16.0.0/30      user     0                   indr   117     3

                              10.0.2.17         Push  100000     fe-0/0/3.0

172.16.0.4/30      intf     0                   rslv    68     1 fe-0/0/0.0

172.16.0.4/32      dest     0 172.16.0.4        recv    66     1 fe-0/0/0.0

172.16.0.5/32      intf     0 172.16.0.5        locl    67     2

172.16.0.5/32      dest     0 172.16.0.5        locl    67     2

172.16.0.6/32      dest     1 0:d0:b7:3f:b3:fb  ucst   118     5 fe-0/0/0.0

172.16.0.7/32      dest     0 172.16.0.7        bcst    65     1 fe-0/0/0.0

172.16.0.8/30      user     0                   indr   115     3

                                                Push 100003, Push 100001(top)
                                                   so-0/1/1.0

172.16.0.12/30     user     0                   indr   117     3

                              10.0.2.17         Push  100000     fe-0/0/3.0

200.200.0.0/16     user     0 172.16.0.6        ucst   118     5 fe-0/0/0.0

200.200.1.0/24     user     0 172.16.0.6        ucst   118     5 fe-0/0/0.0

220.220.0.0/16     user     0                   indr   115     3

                                                Push 100003, Push 100001(top)
                                                   so-0/1/1.0

224.0.0.0/4        perm     0                   mdsc    34     1

224.0.0.1/32       perm     0 224.0.0.1         mcst    30     1

255.255.255.255/32 perm     0                   bcst    31     1

Of particular interest are the forwarding table entries that show two labels. These entries 
represent VPN routes that have been learned from a remote PE through MP-IBGP. In these 
cases, the first label (bottom) represents the VRF label attached to the route by the advertising 
PE; when traffic is received, the remote PE associates this label with a local VRF interface. The 
second (top) label represents the MPLS transport label, which was assigned by RSVP in this 
example.



726 Chapter 7 � VPNs

The various output examples and the test results shown in the confirmation section indicate 
that you have configured a Layer 3 VPN that complies with all restrictions and operational 
requirements. Congratulations!

The use of vrf-target in this example resulted in a default VRF policy that 
advertised all active routes in the VRF, including the directly connected route 
for the PE-CE VRF interface. Because the PEs in this example had at least one 
active route (static or BGP) that pointed to the attached CE as a next hop, the 
PE was able to pre-populate its Layer 2 rewrite table with the MAC address 
associated with the attached CE. This, coupled with the automatic export of 
the PE-CE direct route, resulted in a situation that allowed traffic to originate 
and terminate on a multi-access PE-CE link. In many cases, you will have trou-
ble sourcing traffic from a multi-access PE-CE VRF interface unless specific 
steps are taken. Note that the inability to perform end-to-end ping and trace-
route testing with traffic sourced from the local VRF interface may not even 
represent a problem in a production network, or in a lab examination setting 
for that matter, depending on the specific circumstances at play. Generally 
speaking, you use the vt-interface or vrf-table-label configuration options 
to work around problems with the local origination and termination of VPN 
traffic when the JUNOS software version or configuration specifics do not 
yield the behavior observed in this scenario. Creative use of static routes 
and VRF interface subnetting is another workable, albeit brain-unfriendly 
workaround. Unfortunately, there are too many JUNOS software version–
related enhancements and configuration “what ifs” to allow a full exploration 
of this topic here. The reader is encouraged to consult the related JUNOS 
software documentation set for full coverage of the behavior associated with 
multi-access VRF interfaces and the options available to work around these 
issues. The related “Why the extra hop?” sidebar contains additional back-
ground information on this topic.

Why the Extra Hop?

You may have noticed that traceroutes destined to the remote PE’s VRF interface incur an
additional hop through the attached CE, as shown in this example taken from r6:

[edit]
lab@r6# run traceroute routing-instance c2 172.16.0.5
traceroute to 172.16.0.5 (172.16.0.5), 30 hops max, 40 byte packets
 1  10.0.2.6 (10.0.2.6)  0.681 ms  0.538 ms  0.475 ms
     MPLS Label=100009 CoS=0 TTL=1 S=1
 2  172.16.0.6 (172.16.0.6)  0.302 ms  0.276 ms  0.254 ms
 3  172.16.0.5 (172.16.0.5)  0.524 ms  0.509 ms  0.488 ms



Layer 3 VPNs (2547 bis) 727

PE-CE OSPF Routing

The primary goal of this configuration scenario is to verify that the JNCIE candidate is capable 
of configuring and troubleshooting a Layer 3 VPN that uses OSPF routing on the PE-CE links. 
Slight differences in the configuration requirements of this scenario have been added to facilitate 
the demonstration of additional Layer 3 VPN configuration options, some of which are not 
specific to PE-CE OSPF routing. The Layer 3 VPN topology for PE-CE OSPF routing is shown 
in Figure 7.5.

This behavior, which is expected, stems from the architecture of M-series and T-series routing 
platforms. Specifically, the IP II ASIC in the egress PE is normally used to index the value of 
the bottom (VRF) label to a corresponding VRF interface. Because VPN traffic arrives at the 
egress PE with an MPLS label, its pass through the IP II lookup function is based on the Layer 2 
label instead of an IP address. The IP II can not be used to process an MPLS label and an 
IP address in the same pass, and therefore IP address and IP packet–related functions, such 
as firewall filtering, are normally not available at the egress PE for VPN traffic. As a result, 
the PE router simply shoves the (now) native IP packet out the indexed VRF interface to the 
attached CE, which in this case quickly realizes that the packet is actually addressed to 
the “other end” of the link. The CE therefore returns the favor by sending the native IP packet 
back to the PE where it can now be processed as an IP packet by the IP II. This default behav-
ior is normally not a problem, as the vast majority of “real” traffic would wind up pointing 
to the VRF interface as a next hop anyway, and the extra hop for the exception traffic—in 
other words, traffic destined to the local PEs VRF interface address—does not break any-
thing per se.

There are cases where IP II processing of egress VPN traffic is desirable, such as when you 
need JUNOS software firewall filtering functionality at the egress PE or to accommodate the
handling of Layer 3 to Layer 2 address mappings needed on multi-access interfaces such 
as Ethernet. While not an issue in the initial Layer 3 VPN configuration scenario, certain
scenarios, such as when multiple CE devices share a common VRF subnet, require the ability 
to map IP to MAC addresses dynamically to achieve optimal routing from the PE to the local 
CE devices.

When IP II functionality is needed at the egress PE, consider using the vrf-table-label state-
ment when your PE’s core-facing interfaces are supported (only point-to-point, non-channelized 
core-facing interfaces were supported with this option at the time of this writing). When a 
Tunnel Services (TS) PIC is installed, you can loop egress VPN traffic back through the IP II for 
a second, Layer 3–based processing run, with the vt-interface configuration statement. The 
specifics of the JNCIE test bed used to develop this book prevent the use of vrf-table-label 
so its configuration, while very straightforward, can not be demonstrated.



728 Chapter 7 � VPNs

F I G U R E 7 . 5 L3 VPN with OSPF routing

Figure 7.5 shows that you must configure PE routers r4, r6, and r7 to support OSPF routing 
with their attached CEs in area 0. Also of note is that the CE devices have been reconfigured 
to run OSPF area 0 on their VRF interfaces and their loopback interfaces have been assigned to 
area 1 and area 2 for C1 and C2, respectively. Both CE routers have a policy in effect to redis-
tribute their /16 prefixes into OSPF. The pertinent portions of the CE router configurations 

M5M5

fe-0/0/3

OSPF
(Area 0)

OSPF (Area 1)

OSPF (Area 2)

OSPF
(Area 0)

OSPF
(Area 0)

fe-
0/3

/2
so-0/1/0

fe-0/1/3

fe-0/0/1

fe-
0/0

/0 fe-
0/1

/0

so
-0

/1/
1

17
2.1

6.0
.0/

30
172.16.0.4/30

fe-0/0/0

10.0.2.16/30

10.0.2.8/30 10.0.8.8/30

10.0.8.4/30

fe-0/3/3
fe-0/3/1.10

.18
r4 r7

r5

r6

.5

.9 .9

.6

.5

.9

.10

.17
.1

AS 65010
200.200/16

C1

M5M5 M5M5

AS 65020
220.220/16

C2

M5M5

172.16.0.8/30

Loopbacks

r4 = 10.0.3.4
r5 = 10.0.3.5
r6 = 10.0.9.6
r7 = 10.0.9.7
C1 = 200.200.0.1
C2 = 220.220.0.1



Layer 3 VPNs (2547 bis) 729

are shown here in the context of C2:

[edit]

lab@c2# show interfaces

fe-0/0/0 {

    unit 0 {

        family inet {

            address 172.16.0.10/30;

        }

    }
}

lo0 {

    unit 0 {

        family inet {

            address 220.220.0.1/32;

        }

    }
}

[edit]

lab@c2# show routing-options

    static {

        route 220.220.0.0/16 discard;

    }

[edit]

lab@c2# show protocols

ospf {

    export stat;

    area 0.0.0.0 {

        interface fe-0/0/0.0;

    }
    area 0.0.0.2 {

        interface lo0.0;

    }
}

[edit]

lab@c2# show policy-options

policy-statement stat {

    from protocol static;

    then accept;

}



730 Chapter 7 � VPNs

The key point regarding the configuration of the CE routers is that you can expect C2 to 
advertise the 172.16.0.8/30 route to PE r6 in a Type 1 (router) LSA while the 220.220.0.1 and 
220.220/16 prefixes are advertised with Type 3 (network summary) and Type 5 (AS External) 
LSAs, respectively. This behavior is confirmed by viewing the OSPF link-state database (LSDB) 
at C2 for area 0:

[edit]

lab@c2# run show ospf database area 0 detail

    OSPF link state database, area 0.0.0.0

 Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len

Router  *220.220.0.1      220.220.0.1      0x80000008   277  0x2  0xea26  36

  bits 0x3, link count 1

  id 172.16.0.8, data 255.255.255.252, Type Stub (3)

  TOS count 0, TOS 0 metric 1

Summary *220.220.0.1      220.220.0.1      0x80000005   277  0x2  0x17cc  28

  mask 255.255.255.255

  TOS 0x0, metric 0

    OSPF AS SCOPE link state database

 Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len

Extern  *220.220.0.0      220.220.0.1      0x80000004   277  0x2  0x9ac0  36

  mask 255.255.0.0

  Type 2, TOS 0x0, metric 0, fwd addr 0.0.0.0, tag 0.0.0.0

To complete the OSPF-based Layer 3 scenario, you must reconfigure the subset of routers 
shown earlier in Figure 7.5 according to these criteria:
� You must delete the existing routing instances on r4, r6, and r7 before you begin your 

configuration.
� Establish a L3 VPN providing connectivity between C1 and C2.
� You must support traffic that originates on VRF interfaces.
� Ensure that the VPN is not disrupted by the failure of r4 or r7, or by any internal link/interface 

failure.
� Your VPN configuration can not disrupt existing IPv4 routing and forwarding functionality.
� Ensure that the /32 route for each CE’s loopback interface is received as a Type 5 LSA by 

the remote CE device.
� Assign an ASN-based RD to each VRF.
� You may not use the vrf-target option.
� Ensure that r4 and r7 will never advertise routes received from C1 back to C1.
� Configure r6 to log a warning when the number of routes in C2’s VRF exceeds 100.

You should assume that both CE routers are correctly configured, and that you may access 
them for purposes of testing connectivity only. As with the static and BGP routing example, 
initial configuration will focus on r4 and r6. The redundancy provided by r7, and any issues 



Layer 3 VPNs (2547 bis) 731

relating to community tagging and route filtering, are addressed once initial VPN functionality 
is confirmed between r4 and r6.

MP-IBGP session support for the inet-vpn family between PE routers is left in 
place from the previous configuration scenario, as is the MPLS forwarding and 
control plane infrastructure from the preliminary setup task. The OSPF scenario 
therefore requires only the configuration of VRFs and any related policy. The 
actual JNCIE lab examination might not afford you the luxury of any pre-
configured parameters.

L3 VPN Configuration: OSPF Routing

Your configuration begins at r4 with the deletion of the VRFs that remain from the previous 
BGP and static routing scenario:

[edit]

lab@r4# delete routing-instances

[edit]

lab@r4#

It is suggested that you also delete the VRF instance at r6 and r7 at this time (not shown) and 
commit all changes before proceeding. You begin the OSPF-based VRF configuration at r6 by 
defining a VRF instance called c2-ospf; the initial VRF definition is shown here:

[edit routing-instances c2-ospf]

lab@r6# show

instance-type vrf;

interface fe-0/1/3.0;

route-distinguisher 65412:2;

vrf-import c2-import;

vrf-export c2-export;

protocols {

    ospf {

        domain-id 10.0.9.6;

        area 0.0.0.0 {

            interface all;

        }

    }

}

An RD that is configured within a VRF takes precedence over any automatically 
generated RD resulting from the use of route-distinguisher-id. This behavior 
means there is no need to remove the route-distinguisher-id statement that 
was added in the previous scenario.



732 Chapter 7 � VPNs

The display confirms that the RD has been manually assigned to the VRF instance in keeping 
with the restrictions in effect for this scenario; make sure that you assign a unique value for 
the RD associated with r4 and r7 when their VRFs are defined. The domain-id value con-
figured must also be unique at all PE routers to ensure that the Type 3 summary LSAs, which 
advertise the CE router’s loopback address, are correctly distributed to the remote PE as an 
AS external (LSA Type 5). When no domain ID is configured, or when the configured value 
matches, network summary LSAs are distributed to the remote CE as a network summary, 
which will result in exam point loss for this scenario. In this example, the domain ID is coded, 
based on the PE’s RID to guarantee uniqueness among all PE routers. For proper operation, 
your VRF export policy must attach the domain ID community to the routes being advertised 
to the remote PEs.

The prohibition against using the vrf-target option means that you need to manually 
define the associated VRF policy and RT community. The c2-ospf VRF references the c2-import 
and c2-export VRF policies that must also be defined. Lastly, note that the OSPF stanza in the 
c2-ospf VRF correctly places r6’s fe-0/1/3 interface into OSPF area 0.

The c2-import policy is displayed at r6:

[edit policy-options policy-statement c2-import]

lab@r6# show

term 1 {

    from {

        protocol bgp;

        community c1-c2-vpn;

    }

    then accept;

}

The highlighted portion calls out that the policy is written to match on BGP routes that 
contain the community named c1-c2-vpn. When a protocol-based match condition is included, 
you must match on the BGP protocol. This is because the PE routers exchange VPN routes 
through MP-BGP. In this example, the c1-c2-vpn community functions as the VPN’s RT. You 
must use care to ensure that a common RT (or the policy needed to match on different RTs) is 
in place at all PE routers; an explict value for the RT community is not specified in the scenario’s 
rules of engagement. A common RT will be defined on all PEs that serve the C1-C2 VPN in this 
example:

[edit policy-options]

lab@r6# set community c1-c2-vpn members target:65412:69

With the VRF import policy confirmed, you move on to the display of the c2-export policy, 
again at r6:

[edit policy-options policy-statement c2-export]

lab@r6# show

term 1 {

    from protocol ospf;

    then {



Layer 3 VPNs (2547 bis) 733

        community add c1-c2-vpn;

        community add domain;

        accept;

    }

}

term 2 {

    from {

        protocol direct;

        route-filter 172.16.0.8/30 exact;

    }

    then {

        community add c1-c2-vpn;

        accept;

    }

}

The key aspects of the c2-export policy are the OSPF and direct protocol matching conditions 
that result in the attachment of the c1-c2-vpn RT community to matching routes as they are 
advertised to remote PEs. The first term catches the routes learned from the C2 router through 
OSPF while the second term causes the direct route associated with r6’s VRF interface to be 
advertised. Because the PE router will have at least one OSPF route that points to C2 as the next 
hop, the direct route will be advertised with a VPN label; this behavior is critical to support the 
stipulation that your design must support VPN traffic that originates on the multi-access VRF 
interfaces. Also of significance is the attachment of an OSPF domain ID community, which is 
simply called domain in this example. The domain community will be compared to the locally 
configured domain ID value in the remote PE to determine how Type 3 LSAs (network summaries) 
should be presented to the attached CE. This scenario requires that network summaries be 
delivered as an AS external (Type 5), so you must ensure that the domain ID that is attached to 
the OSPF routes does not match the value configured in the remote PE. The Domain ID extended 
community is defined at r6 in a manner that is based on its loopback address to ensure uniqueness 
among PE routers:

[edit policy-options]

lab@r6# show community domain

members domain-id:10.0.9.6:0;

Note that the domain community is not attached to the direct route in this example. While 
attaching the community causes no harm, it also has no observable effect because the direct 
route will be identified as an external route, and no amount of domain ID configuration can 
change a Type 5 into a Type 3. The domain ID only functions to control how routes identified 
as a network summary are advertised to the local CE.

The final modification at r6 relates to the configuration of a prefix limit for the c2-ospf 
VRF that will generate log warnings when the total number of the routes in the VRF exceeds 100:

[edit routing-instances c2-ospf routing-options]

lab@r6# set maximum-routes 100 log-only



734 Chapter 7 � VPNs

The key to the maximum route requirement is the need to configure the maximum-routes 
option in the c2-ospf VRF as opposed to the main routing instance. The c2-ospf VRF is 
displayed for verification:

[edit routing-instances c2-ospf]

lab@r6# show

instance-type vrf;

interface fe-0/1/3.0;

route-distinguisher 65412:2;

vrf-import c2-import;

vrf-export c2-export;

routing-options {

    maximum-routes {

        100;

        log-only;

    }

}

protocols {

    ospf {

        domain-id 10.0.9.6;

        export bgp-ospf;

        area 0.0.0.0 {

            interface all;

        }

    }

}

After committing the changes at r6, a similar configuration is added to r4. The modified 
portions of r4’s configuration are shown next:

[edit]

lab@r4# show routing-instances

c1-ospf {

    instance-type vrf;

    interface fe-0/0/0.0;

    route-distinguisher 65412:1;

    vrf-import c1-import;

    vrf-export c1-export;

    protocols {

        ospf {

            domain-id 10.0.3.4;

            area 0.0.0.0 {



Layer 3 VPNs (2547 bis) 735

                interface all;

            }

        }

    }

}

Note that the RD and Domain ID values in r4’s c1-ospf VRF are unique when compared 
to the values in r6’s c2-ospf VRF. A matching RT community is defined at r4, as is a unique 
domain community:

[edit]

lab@r4# show policy-options community c1-c2-vpn

members target:65412:69;

[edit]

lab@r4# show policy-options community domain

members domain-id:10.0.3.4:0;

The VRF import and export policy statements on r4 are very similar to those shown for r6:

[edit]

lab@r4# show policy-options policy-statement c1-import

term 1 {

    from {

        protocol bgp;

        community c1-c2-vpn;

    }

    then accept;

}

[edit]

lab@r4# show policy-options policy-statement c1-export

term 1 {

    from protocol ospf;

    then {

        community add c1-c2-vpn;

        community add domain;

        accept;

    }

}

term 2 {

    from {

        protocol direct;

        route-filter 172.16.4.0/30 exact;



736 Chapter 7 � VPNs

    }

    then {

        community add c1-c2-vpn;

        accept;

    }

}

Make sure that you commit your changes on r4 before proceeding to the confirmation 
section.

Initial L3 VPN Confirmation: OSPF Routing

With the changes committed at r4 and r6, you proceed to initial verification so that any con-
figuration problems can be resolved before you make similar mistakes in r7’s configuration. 
Confirmation begins with the determination of the OSPF adjacency status at r4 and r6:

[edit]

lab@r4# run show ospf neighbor instance c1-ospf

  Address         Interface             State      ID              Pri  Dead

172.16.0.6       fe-0/0/0.0             Full      200.200.0.1      128   37

Although not shown, you can assume that r6 is also fully adjacent with C2. The next 
command displays the VRF table at PE router r4:

[edit]

lab@r4# run show route table c1-ospf

c1-ospf.inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.0.0/30      *[OSPF/10] 00:00:34, metric 2

                    > to 172.16.0.6 via fe-0/0/0.0

172.16.0.4/30      *[Direct/0] 02:29:32

                    > via fe-0/0/0.0

172.16.0.5/32      *[Local/0] 02:38:57

                      Local via fe-0/0/0.0

172.16.0.8/30      *[BGP/170] 00:28:54, localpref 100, from 10.0.9.6

                      AS path: I

                    > via so-0/1/1.0, label-switched-path r4-r6

200.200.0.0/16     *[OSPF/150] 00:29:03, metric 0, tag 0

                    > to 172.16.0.6 via fe-0/0/0.0

200.200.0.1/32     *[OSPF/10] 00:29:03, metric 1

                    > to 172.16.0.6 via fe-0/0/0.0

200.200.1.0/24     *[OSPF/150] 00:29:03, metric 0, tag 0

                    > to 172.16.0.6 via fe-0/0/0.0



Layer 3 VPNs (2547 bis) 737

220.220.0.0/16     *[BGP/170] 00:28:54, MED 0, localpref 100, from 10.0.9.6

                      AS path: I

                    > via so-0/1/1.0, label-switched-path r4-r6

220.220.0.1/32     *[BGP/170] 00:28:54, MED 1, localpref 100, from 10.0.9.6

                      AS path: I

                    > via so-0/1/1.0, label-switched-path r4-r6

224.0.0.5/32       *[OSPF/10] 02:38:58, metric 1

                      MultiRecv

The highlights call out that C2’s prefixes, as advertised by r6 through MP-IBGP, have 
been correctly installed in the c1-ospf VRF. The presence of these routes confirms that a 
matching RT (and support for VPN NLRI) has been correctly configured between r4 and r6. 
However, just as you start to crack a well-deserved beer, you notice that C2’s routes are not 
present at C1:

lab@c1> show route 220.220/16

lab@c1>

This is a serious problem. You decide to revisit r4 to display the contents of the OSPF 
database associated with the c1-ospf routing instance:

[edit]

lab@r4# run show ospf database instance c1-ospf

    OSPF link state database, area 0.0.0.0

 Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len

Router  *172.16.0.5       172.16.0.5       0x80000010     9  0x2  0x3209  36

Router   200.200.0.1      200.200.0.1      0x80000010     8  0x2  0xfecc  48

Network  172.16.0.6       200.200.0.1      0x8000000a     8  0x2  0x802a  32

Summary  200.200.0.1      200.200.0.1      0x80000009     8  0x2  0x5ad5  28

    OSPF AS SCOPE link state database

 Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len

Extern   200.200.0.0      200.200.0.1      0x80000008     8  0x2  0xddc9  36

Extern   200.200.1.0      200.200.0.1      0x80000007     8  0x2  0xd4d2  36

None of the routes associated with the C2 site are present in the OSPF database at r4, which 
explains why none of the routes are present in the attached C1 device. Although not shown, 
C2’s routes are reflected in the OSPF LSDB for the c2-ospf instance at r6. Based on these 
symptoms, can you identify the problem?

As a hint, consider that the routes are present as BGP routes in the c1-ospf VRF at r4, and 
that these routes are not present in the instance’s OSPF database at r4. This set of symptoms 
definitely indicates that the problem lies with the local PE router. As a final hint, think about 
the default export policy for OSPF, and consider the nature of the routes that you want the 
OSPF instance on r4 to advertise to the C1 device.



738 Chapter 7 � VPNs

If you are thinking that some form of OSPF export policy is needed on the PE routers to effect 
the redistribution of BGP routes into OSPF, then you are getting very hot! The highlights added 
to the following capture call out the changes required to redistribute the BGP routes, as learned 
from the remote PE, into the OSPF protocol. The changes shown for r4 are also needed at r6:

[edit]

lab@r4# show routing-instances c1-ospf protocols ospf

domain-id 10.0.3.4;

export bgp-ospf;

area 0.0.0.0 {

    interface all;

}

[edit]

lab@r4# show policy-options policy-statement bgp-ospf

term 1 {

    from protocol bgp;

    then accept;

}

When the changes are committed on both r4 and r6, the OSPF database for the c1-ospf 
VRF is again displayed at r4:

[edit]

lab@r4# run show ospf database instance c1-ospf

    OSPF link state database, area 0.0.0.0

 Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len

Router  *172.16.0.5       172.16.0.5       0x80000011    11  0x2  0x3602  36

Router   200.200.0.1      200.200.0.1      0x80000010    53  0x2  0xfecc  48

Network  172.16.0.6       200.200.0.1      0x8000000a    53  0x2  0x802a  32

Summary  200.200.0.1      200.200.0.1      0x80000009    53  0x2  0x5ad5  28

    OSPF AS SCOPE link state database

 Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len

Extern  *172.16.0.8       172.16.0.5       0x80000001     3  0x2  0xd722  36

Extern   200.200.0.0      200.200.0.1      0x80000008    53  0x2  0xddc9  36

Extern   200.200.1.0      200.200.0.1      0x80000007    53  0x2  0xd4d2  36

Extern  *220.220.0.0      172.16.0.5       0x80000001     3  0x2  0x2ed3  36

Extern  *220.220.0.1      172.16.0.5       0x80000001     3  0x2  0xaad5  36

The highlights call out the C2 routes that are now present in the c1-ospf routing instance’s 
link-state database, which confirms the operation of the bgp-ospf export policy is operating as 
designed. Note that both the 220.220/16 and the 220.220.0.1/32 prefixes are represented as AS 
externals (Type 5 LSAs) as required by this scenario’s restrictions. A configuration that does not 
result in mismatched OSPF domain IDs results in the 220.220.0.1 route being represented as a 



Layer 3 VPNs (2547 bis) 739

network summary (Type 3 LSA). These LSAs should now be present in the attached CE’s LSDB, 
and as a result, C1 should now have a route to C2 destinations:

lab@c1> show route 220.220/16

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

220.220.0.0/16     *[OSPF/150] 00:49:30, metric 0, tag 3489726340

                    > to 172.16.0.5 via fe-0/0/0.0

220.220.0.1/32     *[OSPF/150] 00:39:05, metric 2, tag 3489726340

                    > to 172.16.0.5 via fe-0/0/0.0

The routes are present, and are confirmed to be OSPF externals by virtue of the preference 
setting of 150. End-to-end connectivity, and the ability to generate traffic from the VRF interface, 
are now confirmed; note that the first traceroute is sourced from C1’s VRF interface while the 
second is sourced from its loopback address:

lab@c1> traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  172.16.0.5 (172.16.0.5)  0.398 ms  0.284 ms  0.276 ms

 2  * * *

 3  10.0.8.5 (10.0.8.5)  0.287 ms  0.238 ms  0.233 ms

     MPLS Label=100001 CoS=0 TTL=1 S=1

 4  220.220.0.1 (220.220.0.1)  0.646 ms  0.532 ms  0.528 ms

lab@c1> traceroute 220.220.0.1 source 200.200.0.1

traceroute to 220.220.0.1 (220.220.0.1) from 200.200.0.1, 30 hops max, 40 byte
   packets

 1  172.16.0.5 (172.16.0.5)  0.388 ms  0.281 ms  0.272 ms

 2  * * *

 3  10.0.8.5 (10.0.8.5)  0.276 ms  0.232 ms  0.230 ms

     MPLS Label=100001 CoS=0 TTL=1 S=1

 4  220.220.0.1 (220.220.0.1)  0.626 ms  0.532 ms  0.531 ms

As described in the previous scenario, the time-out on the second hop is expected when 
the ingress node is equipped with an E-FPC. The initial confirmation results indicate that the 
configuration in place at r4 and r6 is meeting all relevant stipulations.

Adding and Confirming Redundancy and Route Filtering

With initial OSPF connectivity confirmed between r4 and r6, you now address the redundancy 
requirements of the scenario by configuring r7 to support OSPF interaction with C1. The initial 
changes made to r7 are shown here:

[edit]

lab@r7# show routing-instances



740 Chapter 7 � VPNs

c1-ospf {

    instance-type vrf;

    interface fe-0/3/2.0;

    route-distinguisher 65412:1;

    vrf-import c1-import;

    vrf-export c1-export;

    protocols {

        ospf {

            domain-id 10.0.9.7;

            export bgp-ospf;

            area 0.0.0.0 {

                interface all;

            }

        }

    }

}

[edit]

lab@r7# show policy-options community vpn-c1-c2

members target:65412:420;

[edit]

lab@r7# show policy-options community domain

members domain-id:10.0.9.7:0;

[edit]

lab@r7# show policy-options policy-statement c1-import

term 1 {

    from {

        protocol bgp;

        community c1-c2-vpn;

    }

    then accept;

}

[edit]

lab@r7# show policy-options policy-statement c1-export

term 1 {

    from protocol ospf;

    then {

        community add c1-c2-vpn;



Layer 3 VPNs (2547 bis) 741

        community add domain;

        accept;

    }

}

term 2 {

    from {

        protocol direct;

        route-filter 172.16.0.0/30 exact;

    }

    then {

        community add c1-c2-vpn;

        accept;

    }

}

[edit]

lab@Tokyo# show policy-options policy-statement bgp-ospf

term filter_c1_routes {

    from community c1;

    then reject;

}

term 1 {

    from protocol bgp;

    then accept;

}

After committing the changes, you confirm redundancy with the verification that both r4 
and r7 are advertising C2’s routes as AS externals to C1:

lab@c1> show ospf database extern

    OSPF AS SCOPE link state database

 Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len

Extern   172.16.0.8       172.16.0.1       0x80000001   367  0x2  0xef0e  36

Extern   172.16.0.8       172.16.0.5       0x80000001   473  0x2  0xd722  36

Extern  *200.200.0.0      200.200.0.1      0x80000008   521  0x2  0xddc9  36

Extern  *200.200.1.0      200.200.0.1      0x80000007   521  0x2  0xd4d2  36

Extern   220.220.0.0      172.16.0.1       0x80000001   367  0x2  0x46bf  36

Extern   220.220.0.0      172.16.0.5       0x80000001   473  0x2  0x2ed3  36

Extern   220.220.0.1      172.16.0.1       0x80000001   367  0x2  0xc2c1  36

Extern   220.220.0.1      172.16.0.5       0x80000001   473  0x2  0xaad5  36

The duplicate entries for C2’s routes in this display confirm that both r4 and r7 are receiving 
VPN routes from r6, and that both PE routers are correctly redistributing the routes into OSPF 



742 Chapter 7 � VPNs

as Type 5 LSAs. Redundancy is also confirmed at r6 by observing that two sets of BGP routes 
exist for prefixes related to the C1 site:

[edit]

lab@r6# run show route table c2-ospf 200.200/16

c2-ospf.inet.0: 10 destinations, 15 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.200.0.0/16     *[BGP/170] 00:10:19, MED 0, localpref 100, from 10.0.3.4

                      AS path: I

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r4

                    [BGP/170] 00:07:47, MED 0, localpref 100, from 10.0.9.7

                      AS path: I

                    > to 10.0.8.6 via fe-0/1/0.0, label-switched-path r6-r7

The presence of two BGP routes in the c1-ospf VRF table, one from r4 and the other from r7, 
indicates that both r4 and r7 are correctly configured to redistribute the OSPF routes learned 
from the C1 device into MP-IBGP. A final confirmation check verifies that r7 has connectivity 
to the local and remote CE devices:

[edit]

lab@r7# run traceroute routing-instance c1-ospf 200.200.0.1

traceroute to 200.200.0.1 (200.200.0.1), 30 hops max, 40 byte packets

 1  200.200.0.1 (200.200.0.1)  0.379 ms  0.201 ms  0.116 ms

[edit]

lab@r7# run traceroute routing-instance c1-ospf 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  10.0.8.5 (10.0.8.5)  0.405 ms  0.301 ms  0.245 ms

     MPLS Label=100001 CoS=0 TTL=1 S=1

 2  220.220.0.1 (220.220.0.1)  0.664 ms  0.549 ms  0.525 ms

Both of the traceroutes initiated at r7 succeed, which confirms redundancy and brings you 
to the final requirement of this configuration example. You must now configure r4 and r7 in 
such a way that you can guarantee that neither router will re-advertise routes that originated at 
site C1 back to site C1. This requirement can be tricky because the default preference settings 
for OSPF externals and BGP routes currently result in the desired behavior, which may lead 
some candidates to assume that no added configuration is necessary. Currently, neither r4 nor r7 
is re-advertising routes that originate at site C1 back to C1 because both r4 and r5 prefer the 
OSPF external route, as learned from C1, to the BGP version of the route that is learned over 
the MP-IBGP session between the PE routers. This condition is shown here:

[edit]

lab@r7# run show route 200.200/16



Layer 3 VPNs (2547 bis) 743

c1-ospf.inet.0: 10 destinations, 15 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.200.0.0/16     *[OSPF/150] 00:04:54, metric 0, tag 0

                    > to 172.16.0.2 via fe0/3/2.0

                    [BGP/170] 00:04:43, MED 0, localpref 100, from 10.0.3.4

                      AS path: I

                    > to 10.0.2.18 via fe-0/3/3.0, label-switched-path r7-r4

However, without the addition of route filtering precautions, a temporary change in routing 
preference for OSPF externals at r4 results in the re-advertisement of the 200.200/16 routes 
back to C1; this behavior is a clear violation of the restrictions in effect for this scenario, and 
thereby shows that additional configuration is required:

[edit routing-instances c1-ospf protocols ospf]

lab@r4# set external-preference 175

[edit routing-instances c1-ospf protocols ospf]

lab@r4# commit

commit complete

[edit routing-instances c1-ospf protocols ospf]

lab@r4# run show route 200.200/16

c1-ospf.inet.0: 10 destinations, 15 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.200.0.0/16     *[BGP/170] 00:00:05, MED 0, localpref 100, from 10.0.9.7

                      AS path: I

                    > to 10.0.2.17 via fe-0/0/3.0, label-switched-path r4-r7

                    [OSPF/175] 00:00:05, metric 0, tag 0

                    > to 172.16.0.6 via fe-0/0/0.0

200.200.0.1/32     *[OSPF/10] 00:00:05, metric 1

                    > to 172.16.0.6 via fe-0/0/0.0

                    [BGP/170] 00:00:05, MED 1, localpref 100, from 10.0.9.7

                      AS path: I

                    > to 10.0.2.17 via fe-0/0/3.0, label-switched-path r4-r7

200.200.1.0/24     *[BGP/170] 00:00:05, MED 0, localpref 100, from 10.0.9.7

                      AS path: I

                    > to 10.0.2.17 via fe-0/0/3.0, label-switched-path r4-r7

                    [OSPF/175] 00:00:05, metric 0, tag 0

                    > to 172.16.0.6 via fe-0/0/0.0



744 Chapter 7 � VPNs

With the BGP version of the route now active at r4, the bgp-ospf export policy results in 
the route being incorrectly re-advertised back to C1:

lab@c1> show ospf database extern detail | match 200.200.0.0

Extern   200.200.0.0      172.16.0.5       0x80000001     3  0x2  0x2406  36

Extern  *200.200.0.0      200.200.0.1      0x80000006   889  0x2  0xe1c7  36

The best way to resolve this type of problem is to define a unique origin community that is 
associated with site C1 and attached to BGP updates using VRF export policy. Once the origin 
community is attached, you can then filter routes between the PE routers using VRF import policy, 
or from the attached CE using routing instance export policy. The community and VRF 
policy changes made to r4 to support community based filtering are shown here with highlights 
added to call out modifications to existing configuration stanzas:

[edit policy-options]

lab@r4# show community c1

members origin:65412:1;

Although you can filter on virtually any community value, an origin community is used in 
this example because it is in keeping with the community’s intended use. The modified VRF 
export policy is displayed here at r4:

[edit policy-options]

lab@r4# show policy-statement c1-export

term 1 {

    from protocol ospf;

    then {

        community add c1-c2-vpn;

        community add domain;

        community add c1;

        accept;

    }

}

term 2 {

    from {

        protocol direct;

        route-filter 172.16.0.4/30 exact;

    }

    then {

        community add c1-c2-vpn;

        accept;

    }

}



Layer 3 VPNs (2547 bis) 745

The change made to the c1-export policy ensures that the origin community is attached to 
the routes sent to remote PE routers. The presence of the c1 community has no effect at r6, 
because no policy changes relating to the c1 origin community are in effect there. It is critical 
to note that VRF import policy is not modified at r4 and r7 to reject routes with the c1 
community attached, because doing so would impact the redundancy requirements of the 
scenario. Your goal is to allow the advertisement of C1’s prefixes between the PE routers while 
also preventing the PE routers from re-advertising C1’s routes back to site C1. To achieve this 
behavior, you need to modify the bgp-ospf export policy at r4 and r7 as shown next:

[edit policy-options]

lab@r4# show policy-statement bgp-ospf

term filter_c1_routes {

    from community c1;

    then reject;

}

term 1 {

    from protocol bgp;

    then accept;

}

Note that the insert command is used to ensure that the c1-import policy’s original term 1 
is evaluated after the new filter_c1_routes term. After committing the changes, you can 
easily verify the results by examining the OSPF database at C1 to confirm that r4 is no longer 
re-advertising the 200.200/16 prefix back to C1. Note that the modified preference value for 
OSPF externals is still in effect at r4 at this time:

lab@c1> show ospf database extern detail | match 200.200.0.0

Extern   200.200.0.0      172.16.0.5       0x80000001  3600  0x2  0x2406  36

Extern  *200.200.0.0      200.200.0.1      0x80000006  1383  0x2  0xe1c7  36

Immediately after committing the policy changes at r4, you observe that the 200.200/16 
external LSA generated by r4 has its age set to 3600, which is the maximum age of an OSPF LSA. 
This is a good indication that the filtering changes now in effect at r4 are producing the desired 
behavior. A few moments later, the external LSA that was generated by r4 is flushed from the 
OSPF database:

lab@c1> show ospf database extern detail | match 200.200.0.0

Extern  *200.200.0.0      200.200.0.1      0x80000006  1395  0x2  0xe1c7  36

The output confirms that the only external LSA for the 200.200/16 route is the one generated 
locally by C1. Before proceeding, you should return r4’s preference values to their default 
settings and repeat the confirmation test by modifying the OSPF external preference in r7’s 
routing instance. Although the results are not shown here for brevity’s sake, you can assume 
that the same results are observed when the OSPF external preference is temporarily modified 
in r7’s c1-ospf instance.



746 Chapter 7 � VPNs

These results conclude the verification tasks for the Layer 3 VPN with OSPF routing 
scenario.

Layer 3 VPN Summary

Layer 3 VPNs are based on the concept of per-site routing tables, called VRFs, which house the 
routes associated with a given VPN in isolation from the routes associated with other VPNs and 
those in the main routing instance. Layer 3 VPNs based on the 2547 bis model make use of 
MP-BGP to advertise IPv4 and IPv6 VPN NLRI between PE routers. Each PE router installs the 
VPN routes into the VRF (or VRFs) identified by the attached route target community according 
to the associated VRF import policy. At export, VRF export policy attaches one or more RT 
communities for use by remote PEs upon receiving the route.

This section demonstrated the configuration of Layer 3 VPNs that were based on static, 
BGP, and OSPF routing on the PE-CE VRF links in JUNOS software. The section also dem-
onstrated recent features that simplify RD and VRF policy configuration, in addition to the 
manually configured alternatives. The examples in this section also demonstrated how VPN 
traffic can be sourced and destined to multi-access VRF interfaces when the appropriate VRF 
export and import policy is in effect and the PE has at least one route in the VRF that iden-
tifies the attached CE as the next hop. Although not demonstrated, the use of vt-interface 
and vrf-table-label, which provide IP II filtering (and ARP mapping) functions at the 
egress PE, were described.

Because many operational mode commands default to the main routing instance, you must 
remember to use the instance, routing-instance and vpn switches with the appropriate 
vpn-name argument when performing VPN operational mode analysis and troubleshooting. To 
be effective with Layer 3 VPNs, the JNCIE candidate must be able to quickly isolate and diagnose 
problems in the VPN forwarding plane (MPLS signaling and MPLS forwarding, double label 
push operations, and so on) and in the VPN control plane (MP-BGP, route targets, extended 
communities, VRF policy, and so on). Throughout this section, the reader was exposed to oper-
ational mode commands that are useful in determining the operational status of Layer 3 VPNs 
on Juniper Networks M-series and T-series platforms.

Layer 2 VPNs (Draft-Kompella
and Draft-Martini)
Layer 2 VPNs share many of the same concepts and terms as their Layer 3 counterparts, 
especially in the case of draft-Kompella solutions, because the control plane is based on the 
same MP-BGP signaling as is found in the 2547 bis model. The principal difference between 



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 747

Layer 3 and Layer 2 VPNs is that the PE and CE routers do not share a subnet and do not 
interact beyond the forwarding of frames based strictly on Layer 2 parameters.

In many ways, you can compare the interaction of the CE and PE devices in a Layer 2 VPN 
to the interaction of a host system and a transparent bridge. While the transparency of the PE 
routers and the service provider’s network has certain advantages, such as the ability to support 
non-routable protocols, there are some drawbacks. For example, the fact that the CE router 
does not interact at the IP layer with the PE router in a Layer 2 solution makes it very difficult 
to ascertain whether the local PE-CE link is correctly transporting traffic. In effect, you can 
either ping end-to-end between CE devices, in which case all is well, or you can not. In many 
cases, the provider will provision a second interface to the CE device for out of band (OoB) 
management and diagnostic purposes; often this second interface is manifest as a second logical 
unit on the physical device that is also used to provide Layer 2 VPN connectivity. The presence 
of a non-VRF interface can also be used to provide a CE device with Internet access when global 
IP addressing is in effect on the CE.

JUNOS software supports three different types of Layer 2 VPNs: Circuit Cross Connect 
(CCC), draft-Kompella, and draft-Martini. Of these, the draft-Kompella and draft-Martini 
solutions enjoy the greatest degree of interest due to their advantages in the scaling and 
provisioning arenas. Because CCC was a precursor to the full-blown Layer 2 VPN solutions 
that are now available, the configuration and testing of CCC connections is not covered in 
this chapter.

As of this writing, it is unclear which Layer 2 VPN standard will dominate in the industry. 
The draft-Kompella approach, being based on BGP signaling, is very similar to 2547 bis; providers 
that have deployed 2547 bis Layer 3 VPNs may well deploy a draft-Kompella solution due to 
the similarities in the way the two VPN technologies are configured and tested. The draft-
Kompella approach also offers the ability to pre-provision a VPN so that future site additions 
do not require changes to the configuration of PE routers that attach to existing sites. On the 
other hand, the draft-Martini approach makes use of LDP signaling, which can simplify network 
operations when LDP is used for MPLS signaling and Layer 3 VPNs are not being offered. This 
section provides configuration and testing scenarios for both Layer 2 VPN drafts.

Draft-Kompella

You begin with a draft-Kompella based Layer 2 VPN scenario to leverage the fact that the test 
bed currently has an RSVP-based MPLS infrastructure in place, and because the configuration 
is very similar to the Layer 3 VPN examples demonstrated previously. While draft-Kompella 
VPNs can operate over LDP signaled LSPs, the fact that LDP support is mandatory for draft-
Martini solutions results in the deployment of LDP in conjunction with the draft-Martini 
scenario.

Your draft-Kompella VPN scenario requires the configuration of a two-site Layer 2 VPN 
that supports CE-CE OSPF routing, as shown in Figure 7.6. Your configuration must also 
provide C1 with access to Internet routes.



748 Chapter 7 � VPNs

F I G U R E 7 . 6 Draft-Kompella Layer 2 VPN

Figure 7.6 shows that the CE devices have been reconfigured to support VLAN tagging on 
their VRF interfaces, with two logical interfaces defined at each site. In this example, logical unit 0 
is provisioned to provide OoB management (and Internet access) between the PE and CE devices 
while logical unit 600 is used to interconnect the two sites with a Layer 2 VPN. A key point 
in the figure is the fact that the two CE devices now share a logical IP subnet in the form of 
192.168.16/24, with CE1 having host ID 1 and CE 2 being assigned host ID 2. Note that both 
CE devices have also been configured to run OSPF area 0 on their VRF interface. The relevant 
portions of the CE device configuration are shown here in the context of C1:

[edit]

lab@c1# show interfaces

AS 65222
130.130/16

T1
220.220/16

C2

M5M5

M5M5

M5M5

r3

r5

172.16.0.12/30

10.0.2.4/30

fe-0/0/1

fe-0/3/1

fe-0/3/3fe-0/0/3

10.0.2.12/30

10.0.2.0/30

10.0.8.4/30

10.0.8.8/3010.0.2.8/30

so-0/2/0

so
-0/

1/1
so-0/1/0

so-0/1/0

at-0/1/0

at-0/2/1

.13

.14
.13

.9

.2

.5

.6

.9

.1

.9

.10

.17

fe-0/0/3
fe-0/1/1

fe-0/0/2

fe-
0/0

/0
fe-

0/1
/0

fe-0/1/3.0

Non-VRF
Interface

L2 VRF
Interface

OSPF
Area 0

172.16.0.8/30192.168.16.0/24
fe-0/1/3.600

.5

10.0.2.16/30

192.168.16.0/24

172.16.0.4/30

.18
fe-0/0/0.0.600

fe-0/0/0.0
.5

.1

.6 .10

.2

r6

r4

r7

200.200/16

C1

M5M5

M5M5

Loopbacks

r3 = 10.0.3.3
r4 = 10.0.3.4
r5 = 10.0.3.5
r6 = 10.0.9.6
r7 = 10.0.9.7
C1 = 200.200.0.1
C2 = 220.220.0.1
T1 = 130.130.0.1



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 749

fe-0/0/0 {

    vlan-tagging;

    unit 0 {

        vlan-id 1;

        family inet {

            address 172.16.0.6/30;

        }

    }

    unit 600 {

        vlan-id 600;

        family inet {

            address 192.168.16.1/24;

        }

    }

}

lo0 {

    unit 0 {

        family inet {

            address 200.200.0.1/32;

        }

    }

}

[edit]

lab@c1# show protocols

ospf {

    export stat;

    area 0.0.0.0 {

        interface fe-0/0/0.600;

    }

}

[edit]

lab@c1# show routing-options

    static {

        route 200.200.0.0/16 discard;

        route 200.200.1.0/24 reject;

    }

[edit]

lab@c2# show policy-options

policy-statement stat {



750 Chapter 7 � VPNs

    from protocol static;

    then accept;

}

To complete the first Layer 2 VPN scenario, you must configure the subset of routers shown 
earlier in Figure 7.6 according to these criteria:
� Delete the routing instance configuration in place at r4, r6, and r7. If desired, you may also 

delete any VRF policy and related community definitions from the previous Layer 3 scenario.
� Add a second pair of LSPs between r4 and r6 with a 10Mbps bandwidth reservation.
� Without using LDP, establish a L2 VPN providing connectivity between C1 and C2.
� Configure PE routers r4 and r6 to be compatible with the attached CE devices, including 

the VRF and non-VRF interfaces.
� Your VPN configuration can not disrupt existing IPv4 routing and forwarding functionality 

within your AS.
� Map the VPN traffic flowing between C1 and C2 to the LSP with reserved bandwidth; you 

must not change the default LSP metrics to achieve this goal.
� You may add a single static route to the configuration of r4 and C1 to facilitate Internet 

access when packets are sourced from C1’s 200.200/16 net block.
� You must not use the vrf-target option.

Draft-Kompella Configuration

Although not explicitly stated in the objectives, the restriction on LDP use mandates a draft-
Kompella VPN solution. A less-than-prepared JNCIE candidate might miss this point and wind 
up incorrectly provisioning a draft-Martini solution. This scenario is complicated by the need 
to map Layer 2 VPN traffic to a specific LSP and by the need to provide Internet access to site C1. 
Once again, you decide to concentrate on establishing basic Layer 2 VPN connectivity before 
you worry about LSP mapping and Internet access.

You begin your draft-Kompella Layer 2 VPN configuration at r4 with the removal of the 
existing VRF and VRF-related policy configuration. Although not shown, similar commands 
are also entered on r6 and r7:

[edit]

lab@r4# delete routing-instances

[edit]

lab@r4# delete policy-options policy-statement c1-import

[edit]

lab@r4# delete policy-options policy-statement c1-export

[edit]

lab@r4# delete policy-options community c1-c2-vpn



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 751

[edit]

lab@r4# delete policy-options community domain

The next set of commands adds VLAN tagging support on r4’s fe-0/0/0 interface and 
provisions the interface for Layer 2 VPN support:

[edit interfaces fe-0/0/0]

lab@r4# set vlan-tagging

[edit interfaces fe-0/0/0]

lab@r4# set encapsulation vlan-ccc

Note that vlan-tagging and vlan-ccc encapsulation must be specified at the physical 
device level; candidates often forget to add a ccc encapsulation at the device level and later 
experience forwarding plan problems! The next series of statements defines the interface’s 
logical units and associates them with the correct VLAN IDs:

[edit interfaces fe-0/0/0]

lab@r4# set unit 0 vlan-id 1

[edit interfaces fe-0/0/0]

lab@r4# set unit 600 vlan-id 600

[edit interfaces fe-0/0/0]

lab@r4# set unit 600 encapsulation vlan-ccc

Because VLAN ID 0 is reserved for tagging priority frames, the first available VLAN ID is 
assigned to the interface’s existing logical unit 0; if desired, you could reassign the logical unit 
to match the assigned VLAN ID, but this is purely an aesthetic matter. Assigning a VLAN ID 
of 1 is also required to be compatible with the interface configuration of the C1 device. The VRF 
and non-VRF interface configuration is shown at r4 for confirmation:

[edit interfaces fe-0/0/0]

lab@r4# show

vlan-tagging;

encapsulation vlan-ccc;

unit 0 {

    vlan-id 1;

    family inet {

        address 172.16.0.5/30;

    }

}

unit 600 {

    encapsulation vlan-ccc;

    vlan-id 600;

}



752 Chapter 7 � VPNs

The logical unit that is associated with the Layer 2 VPN has no protocol families or addressing 
configured. It is also worth pointing out that you must have matched VLAN IDs at opposite 
ends of the Layer 2 VPN unless translational cross connect (TCC) is in use. TCC is also known 
as Layer 2.5 IP–only interworking because it is a Layer 2 VPN solution that supports IP traffic 
only, due to the striping of Layer 2 framing at ingress. In this example, VLAN ID 600 is specified 
at both ends to accommodate this behavior.

With the VRF interface configured at r4, you move onto the definition of the Layer 2 VPN’s 
VRF table. In this example, the route-distinguisher-id statement, which was left over 
from a previous Layer 3 VPN configuration, is used to create the RD for the c1-c2-l2 routing 
instance:

[edit]

lab@r4# edit routing-instances c1-c2-l2

[edit routing-instances c1-c2-l2]

lab@r4# set instance-type l2vpn

[edit routing-instances c1-c2-l2]

lab@r4# set interface fe-0/0/0.600

Note that the c1-c2-vpn instance type is correctly configured for Layer 2 VPN operation 
with the l2vpn keyword. Because your restrictions prevent the use of the vrf-target feature, 
you must explicitly associate the Layer 2 routing instance with VRF import and export policy:

[edit routing-instances c1-c2-l2]

lab@r4# set vrf-import c1-c2-import

[edit routing-instances c1-c2-l2]

lab@r4# set vrf-export c1-c2-export

The Layer 2 routing instance’s configuration is completed with the definition of the local 
parameters associated with local site C1:

[edit routing-instances c1-c2-l2]

lab@r4# set protocols l2vpn encapsulation-type ethernet-vlan

[edit routing-instances c1-c2-l2]

lab@r4# set protocols l2vpn site c1 site-identifier 1

[edit routing-instances c1-c2-l2]

lab@r4# set protocols l2vpn site c1 interface fe-0/0/0.600

The resulting Layer 2 VRF is displayed for visual inspection:

[edit routing-instances c1-c2-l2]

lab@r4# show

instance-type l2vpn;



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 753

interface fe-0/0/0.600;

vrf-import c1-c2-import;

vrf-export c1-c2-export;

protocols {

    l2vpn {

        encapsulation-type ethernet-vlan;

        site c1 {

            site-identifier 1;

            interface fe-0/0/0.600;

        }

    }

}

In this example, C1 has been assigned a site identifier of 1 because an explicit site ID value was 
not specified and this number just “makes sense” considering that the PE connects to CE device C1. 
The site ID assignment must be unique among all sites that make up a single Layer 2 VPN. For com-
pleteness’ sake, the pre-existing route-distinguisher-id configuration is also displayed:

[edit]

lab@r4# show routing-options route-distinguisher-id

route-distinguisher-id 10.0.3.4;

Before you can commit your changes on r4, you must define the VRF import and export 
policy and the related RT community. You begin with the definition of the RT:

[edit policy-options]

lab@r4# set community c1-c2-rt members target:65412:7

No specific RT value is specified in your criteria. The value of 7 was chosen in this case 
because of the “mystic” qualities historically associated with that number; after all, you need all 
the help you can get with this VPN stuff. The c1-c2-import and c1-c2-export policies are 
now displayed. The similarities between these policies and the ones deployed in the previous 
Layer 3 VPN examples should be obvious:

[edit policy-options]

lab@r4# show policy-statement c1-c2-import

term 1 {

    from {

        protocol bgp;

        community c1-c2-rt;

    }

    then accept;

}

[edit policy-options]

lab@r4# show policy-statement c1-c2-export



754 Chapter 7 � VPNs

term 1 {

    then {

        community add c1-c2-rt;

        accept;

    }

}

The principal difference between the Layer 2 and Layer 3 VRF policies lies in the omission 
of a protocol-based match condition in the export policy. Because a Layer 2 VPN is protocol 
agnostic, routes are not housed in the local VRF. Instead, the VRF houses information relating 
to the local site that is communicated to remote PEs to allow them to compute the labels that 
are be used when sending or receiving traffic to and from that site. With the VRF interface, the 
Layer 2 VRF, and the related VRF policy defined, you commit your changes at r4 and move on 
to make similar changes at r6. The modifications made to its configuration in support of the 
draft-Kompella Layer 2 VPN scenario are shown next:

[edit]

lab@r6# show routing-instances

c1-c2-l2 {

    instance-type l2vpn;

    interface fe-0/1/3.600;

    vrf-import c1-c2-import;

    vrf-export c1-c2-export;

    protocols {

        l2vpn {

            encapsulation-type ethernet-vlan;

            site 2 {

                site-identifier 2;

                interface fe-0/1/3.600;

            }

        }

    }

}

Note that, as with r4’s configuration, the interface declaration at r6 correctly specifies the 
logical unit value of 600. r6’s VRF policy is identical to that in place at r4 and is shown here 
for completeness:

[edit]

lab@r6# show policy-options community c1-c2-rt

members target:65412:7;

[edit]

lab@r6# show policy-options policy-statement c1-c2-import

term 1 {



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 755

    from {

        protocol bgp;

        community c1-c2-rt;

    }

    then accept;

}

[edit]

lab@r6# show policy-options policy-statement c1-c2-export

term 1 {

    then {

        community add c1-c2-rt;

        accept;

    }

}

The VRF interface at r6 is configured to use the same VLAN ID as site C1. This point is 
significant because the translation of VLAN IDs requires a TCC type of encapsulation:

[edit]

lab@r6# show interfaces fe-0/1/3

vlan-tagging;

encapsulation vlan-ccc;

unit 0 {

    vlan-id 1;

    family inet {

        address 172.16.0.9/30;

    }

}

unit 600 {

    encapsulation vlan-ccc;

    vlan-id 600;

}

You decide to test the waters by committing the changes at r4; this approach allows you 
to test baseline L2 VPN connectivity so that you can determine if and where your preliminary 
VPN configuration may require additional tweaking. Any remaining configuration criteria can 
be dealt with after initial functionality is confirmed.

Initial L2 VPN Confirmation: Draft-Kompella

Confirming the operation of a Layer 2 VPN is made difficult by the inability to use PE-CE pings, 
or the operation of a PE-CE routing protocol, to validate the local PE-CE configuration and 
VRF interface. Because this example makes use of a non-VRF logical unit on the PE-CE link to 
facilitate OoB management between the PE and CE devices, you can conduct PE-CE ping testing 
and telnet to the CE device. Without the non-VRF interface, you are limited to PE-to-PE and 



756 Chapter 7 � VPNs

CE-to-CE types of testing. You begin by verifying the functionality of the OOB network 
between R6 and C2:

[edit]

lab@r6# run ping 172.16.0.10 count 2

PING 172.16.0.10 (172.16.0.10): 56 data bytes

64 bytes from 172.16.0.10: icmp_seq=0 ttl=255 time=0.604 ms

64 bytes from 172.16.0.10: icmp_seq=1 ttl=255 time=0.455 ms

--- 172.16.0.10 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.455/0.529/0.604/0.075 ms

The successful ping confirms the overall operational status of the VRF interface device (fe-0/1/3) 
and provides good indication that the OoB aspects of the PE router’s configuration is compatible 
with the configuration present in the CE device. You can assume that ping testing conducted over 
the OoB network associated with C1 also succeeds (not shown). Before attempting any end-to-end 
testing between the CE devices, you display the state of Layer 2 VPN connection on r6:

[edit]

lab@r6# run show l2vpn connections

L2VPN Connections:

Legend for connection status (St)   Legend for interface status

OR -- out of range                  Up -- operational

EI -- encapsulation invalid         Dn -- down

EM -- encapsulation mismatch        NP -- no present

CM -- control-word mismatch         DS -- disabled

CN -- circuit not present           WE -- wrong encapsulation

OL -- no outgoing label             UN -- uninitialized

Dn -- down

VC-Dn -- Virtual circuit down

WE -- intf encaps != instance encaps

-> -- only outbound conn is up

<- -- only inbound  conn is up

Up -- operational

XX -- unknown

Instance: c1-c2-l2

Local site: 2 (2)

L2VPN Connections:

. . .

No L2VPN connections found.



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 757

Hmmm, the output, or more correctly the lack thereof, does not bode well for the end-to-
end operation of the C1-C2 VPN. A VPN troubleshooting task is greatly simplified when 
you can correctly isolate the problem to the VPN’s control or forwarding plane. Because this 
display indicates that no L2VPN connection exists, you can safely eliminate the forwarding 
plane as a likely cause for this problem; after all, there is no need to forward VPN traffic 
when there is no VPN! Knowing that a draft-Kompella VPN makes use of MP-BGP signaling 
to communicate Layer 2 VPN site information and VPN membership (via the RT), you 
decide to analyze the BGP session status between r4 and r6 to see if you can spot what 
is wrong:

[edit]

lab@r4# run show bgp summary

Groups: 3 Peers: 6 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

inet.0                 0          0          0          0          0          0

bgp.l3vpn.0            0          0          0          0          0          0

bgp.l2vpn.0            0          0          0          0          0          0

Peer         AS  InPkt  OutPkt  OutQ  Flaps Last Up/Dwn State|#Active/Received/
                                                                       Damped...

10.0.3.3  65412    449     451     0      0     3:44:31 Establ

  inet.0: 0/0/0

. . .

10.0.9.6  65412     35      36     0      0       16:37 Establ

  inet.0: 0/0/0

  bgp.l3vpn.0: 0/0/0

. . .

The edited capture confirms that the MP-IBGP session between r4 and r6 is established, 
which is a good sign. However, you happen to notice that the session does not indicate support 
for the l2vpn family! Without support for Layer 2 VPN NLRI, the PE routers can not exchange 
information relating to their local site, and this would definitely account for the symptom you 
are seeing. Recognizing the issue, you add the l2vpn family to the MP-IBGP session between r4 
and r6. Note that the change shown here for r4 is also needed at r6:

[edit]

lab@r4# show protocols bgp group int neighbor 10.0.9.6

family inet {

    unicast;

}

family inet-vpn {

    unicast;

}

family l2vpn {

    unicast;

}



758 Chapter 7 � VPNs

After committing the changes, you confirm the correct NLRI support for draft-
Kompella VPNs:

[edit]

lab@r4# run show bgp neighbor 10.0.9.6 | match NLRI

  NLRI advertised by peer: inet-unicast inet-vpn-unicast l2vpn

  NLRI for this session: inet-unicast inet-vpn-unicast l2vpn

With l2vpn NLRI now being exchanged between the PE routers, you expect to see that a 
Layer 2 VPN connection has been formed:

[edit]

lab@r6# run show l2vpn connections

L2VPN Connections:

Legend for connection status (St)   Legend for interface status

OR -- out of range                  Up -- operational

EI -- encapsulation invalid         Dn -- down

EM -- encapsulation mismatch        NP -- no present

CM -- control-word mismatch         DS -- disabled

CN -- circuit not present           WE -- wrong encapsulation

OL -- no outgoing label             UN -- uninitialized

Dn -- down

VC-Dn -- Virtual circuit down

WE -- intf encaps != instance encaps

-> -- only outbound conn is up

<- -- only inbound  conn is up

Up -- operational

XX -- unknown

Instance: c1-c2-l2

Local site: 2 (2)

    connection-site           Type  St     Time last up          # Up trans

    1                         rmt   Up     Jun  6 19:57:12 2003           1

      Local interface: fe-0/1/3.600, Status: Up, Encapsulation: VLAN

      Remote PE: 10.0.3.4, Negotiated control-word: Yes (Null)

      Incoming label: 800000, Outgoing label: 800001

Great! The display confirms that a Layer 2 VPN connection is now in place at r6, and it 
shows the connection status as Up. The output also shows the VPN labels associated with this 
L2 VPN connection that terminates at site 1. The draft-Kompella model uses draft-Martini 
encapsulation in the forwarding plane. Here you can see that a null Martini control word is 
added to the VPN traffic by default; this can be optioned off to interoperate with JUNOS soft-
ware versions prior to 5.6, which do not support the Martini control word. You can confirm 



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 759

the L2 VPN NLRI being exchanged between PE routers with a show route advertising-
protocol command:

[edit]

lab@r6# run show route advertising-protocol bgp 10.0.3.4 detail

inet.0: 37 destinations, 41 routes (37 active, 0 holddown, 0 hidden)

* 192.168.0.0/24 (2 entries, 1 announced)

 BGP group int type Internal

     Nexthop: 10.0.8.1

     MED: 2

     Localpref: 100

     AS path: I

 Communities:

. . .

c1-c2-l2.l2vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

* 10.0.9.6:1:2:1/96 (1 entry, 1 announced)

 BGP group int type Internal

     Route Distinguisher: 10.0.9.6:1

     Label-base : 800000, range : 1, status-vector : 0x0

     Nexthop: Self

     Localpref: 100

     AS path: I

 Communities: target:65412:7 Layer2-info: encaps:VLAN, control flags:2, mtu: 0

The highlighted portion of the edited capture confirms that r6 is advertising the L2 VPN 
site information for C2 to the PE router that connects to site C1. Note that the NLRI is 
96 bits in length and comprises the local PE’s 8-byte RD concatenated with a 2-byte site-ID 
and a 1-byte value that codes the label offset. The final confirmation of the L2 VPN’s oper-
ational status involves end-to-end testing from the CE devices. You begin with traceroute 
testing conducted at the C2 location; note that the routing-instance switch is not required 
when establishing telnet sessions to the CE device because the OoB interface is not associated 
with any VRFs:

[edit]

lab@r6# run telnet 172.16.0.10

Trying 172.16.0.10...

Connected to 172.16.0.10.

Escape character is '^]'.

c2 (ttyp1)



760 Chapter 7 � VPNs

login: lab

Password:

Last login: Fri Jun  6 20:47:50 from 10.0.1.100

--- JUNOS 5.2R2.3 built 2002-03-23 02:44:36 UTC

lab@c2> traceroute 192.168.16.1

traceroute to 192.168.16.1 (192.168.16.1), 30 hops max, 40 byte packets

 1  192.168.16.1 (192.168.16.1)  0.356 ms  0.271 ms  0.262 ms

The traceroute to the remote CE’s VRF interface address is successful, and the display shows 
the single hop that is expected between CE devices in a Layer 2 VPN. Next, the OSPF adjacency 
status between the C1 and C2 devices is confirmed:

lab@c2> show ospf neighbor

  Address         Interface                State      ID               Pri  Dead

192.168.16.1     fe-0/0/0.600               Full      200.200.0.1      128   33

lab@c2> show route protocol ospf

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.200.0.0/16     *[OSPF/150] 00:17:10, metric 0, tag 0

                    > to 192.168.16.1 via fe-0/0/0.600

200.200.0.1/32     *[OSPF/10] 00:17:10, metric 1

                    > to 192.168.16.1 via fe-0/0/0.600

200.200.1.0/24     *[OSPF/150] 00:17:10, metric 0, tag 0

                    > to 192.168.16.1 via fe-0/0/0.600

224.0.0.5/32       *[OSPF/10] 04:11:58, metric 1

The results confirm proper OSPF adjacency formation across the provider’s network and the 
presence of OSPF routes associated with the remote VPN site. Final verification comes with 
traceroute testing performed between CE loopback addresses:

lab@c2> traceroute 200.200.0.1 source 220.220.0.1

traceroute to 200.200.0.1 (200.200.0.1) from 220.220.0.1, 30 hops max, 40 byte
   packets

 1  200.200.0.1 (200.200.0.1)  0.374 ms  0.269 ms  0.259 ms

The results obtained in this section confirm that you have successfully established baseline 
Layer 2 VPN connectivity between C1 and C2. Subsequent sections address the scenario’s 
remaining requirements.

MAPPING L2 VPN TRAFFIC TO AN LSP

To meet the traffic mapping aspects of this example, you need to define a second set of RSVP 
signaled LSPs between r4 and r6, and make the necessary policy changes to ensure that the 



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 761

L2 VPN traffic is mapped to the correct LSP. Policy-based LSP mapping is required here because 
you may not change the default LSP metrics to effect the use of one LSP over another. Note that 
the techniques shown in this section are equally applicable to Layer 3 VPNs. You begin by defin-
ing the new LSP at r4 and r6 (not shown). The modified MPLS stanza at r4 is displayed next:

[edit protocols mpls]

lab@r4# show

label-switched-path r4-r6 {

    to 10.0.9.6;

    no-cspf;

}

label-switched-path r4-r7 {

    to 10.0.9.7;

    no-cspf;

}

label-switched-path r4-r6-prime {

    to 10.0.9.6;

    bandwidth 10m;

    no-cspf;

}

interface all;

interface fxp0.0 {

    disable;

}

After the changes are committed, the successful establishment of the new LSPs is confirmed 
at r6:

lab@r6# run show rsvp session

Ingress RSVP: 3 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.3.4        10.0.9.6        Up     0  1 FF       -   100000 r6-r4

10.0.3.4        10.0.9.6        Up     0  1 FF       -   100004 r6-r4-prime

10.0.9.7        10.0.9.6        Up     0  1 FF       -   100000 r6-r7

Total 3 displayed, Up 3, Down 0

Egress RSVP: 3 sessions

To              From            State Rt Style Labelin Labelout LSPname

10.0.9.6        10.0.3.4        Up     0  1 FF       3        - r4-r6

10.0.9.6        10.0.3.4        Up     0  1 FF       3        - r4-r6-prime

10.0.9.6        10.0.9.7        Up     0  1 FF       3        - r7-r6

Total 3 displayed, Up 3, Down 0

Transit RSVP: 0 sessions

Total 0 displayed, Up 0, Down 0



762 Chapter 7 � VPNs

With the LSPs correctly established, you display the current L2 VPN to LSP mapping so that 
you may better judge the effects of your subsequent policy-based mapping configuration:

[edit protocols mpls]

lab@r6# run show route table mpls.0

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0                  *[MPLS/0] 04:24:45, metric 1

                      Receive

1                  *[MPLS/0] 04:24:45, metric 1

                      Receive

2                  *[MPLS/0] 04:24:45, metric 1

                      Receive

800000             *[L2VPN/7] 00:31:46

                    > via fe-0/1/3.600, Pop       Offset: 4

fe-0/1/3.600       *[L2VPN/7] 00:31:46

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r4

                      to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r4-
                         prime

The display confirms that the L2 VPN’s traffic is currently being forwarded over the original 
LSP with no bandwidth reservation. Because the LSPs have identical metrics, the default VPN 
to LSP mapping will be random, which is why you must define a policy to ensure that VPN traffic 
is deterministically mapped to the desired LSP. In this example, the mapping policy is based on 
the presence of a particular RT community. The completed policy is shown at r6; a similar 
policy is also created at r4 (not shown):

[edit policy-options]

lab@r6# show policy-statement mapping

term 1 {

    from community c1-c2-rt;

    then {

        install-nexthop lsp r6-r4-prime;

        accept;

    }

}

term 2 {

    then accept;

}

The first term in the mapping policy matches on the specified community with an action of 
installing the r6-r4-prime LSP as the next hop; the accept action in term 1 is critical for 
proper operation, because without a terminating action in this term the L2 NLRI falls through 
to the second term, which matches everything. Because the second term does not have a 



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 763

mapping action, traffic hitting term 2 will be subjected to the default load-balancing behavior. 
You must now apply the mapping policy to the main routing instance’s forwarding table; note 
that many JNCIE candidates incorrectly apply their policy to the VRF’s routing instance, where 
it has absolutely no effect:

[edit routing-options]

lab@r6# set forwarding-table export mapping

After the changes are committed, the desired VPN to LSP mapping is confirmed at r6:

[edit routing-options]

lab@r6# run show route table mpls.0

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0                  *[MPLS/0] 04:34:26, metric 1

                      Receive

1                  *[MPLS/0] 04:34:26, metric 1

                      Receive

2                  *[MPLS/0] 04:34:26, metric 1

                      Receive

800000             *[L2VPN/7] 00:41:27

                    > via fe-0/1/3.600, Pop       Offset: 4

fe-0/1/3.600       *[L2VPN/7] 00:41:27

                      to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r4

                    > to 10.0.2.14 via fe-0/1/1.0, label-switched-path r6-r4-
                       prime

The display confirms that the L2 VPN traffic is now correctly mapped to the r6-r4-prime 
LSP. Similar results are also observed at r4:

[edit]

lab@r4# run show route table mpls.0

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0                  *[MPLS/0] 04:36:25, metric 1

                      Receive

1                  *[MPLS/0] 04:36:25, metric 1

                      Receive

2                  *[MPLS/0] 04:36:25, metric 1

                      Receive

800001             *[L2VPN/7] 00:43:22

                    > via fe-0/0/0.600, Pop       Offset: 4



764 Chapter 7 � VPNs

fe-0/0/0.600       *[L2VPN/7] 00:43:22

                      via so-0/1/0.100, label-switched-path r4-r6

                    > via so-0/1/0.100, label-switched-path r4-r6-prime

PROVIDING INTERNET ACCESS FROM A NON-VRF INTERFACE

Because the CE devices already have a non-VRF interface provisioned, providing C1 with the 
required access to Internet routes is somewhat trivial. To obtain the desired behavior, you must 
add a static default route to C1 that directs matching packets out the non-VRF interface to r4. 
You also need to define a static route for C1’s 200.200/16 net block in the main routing instance 
at r4, and ensure that this route is redistributed into IBGP so that internal and external BGP 
peers can route packets back to C1. The lack of Internet connectivity at C1 is confirmed before 
the static route is added:

[edit]

lab@c1# run show route 130.130.0.1

[edit]

lab@c1#

The static default route is now added to C1 that points to r4’s non-VRF interface as the 
next hop:

[edit routing-options]

lab@c1# set static route 0.0.0.0/0 next-hop 172.16.0.5

A similar static route is added to r4, and the IBGP export policy at r4 is modified to effect 
advertisement of the 200.200/16 route:

[edit]

lab@r4# show routing-options static

route 10.0.200.0/24 {

    next-hop 10.0.1.102;

    no-readvertise;

}

route 200.200.0.0/16 next-hop 172.16.0.6;

[edit]

lab@r4# show policy-options policy-statement nhs

term 1 {

    from {

        protocol bgp;

        neighbor 172.16.0.6;

    }

    then {

        next-hop self;

    }



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 765

}

term 2 {

    from {

        protocol static;

        route-filter 200.200.0.0/16 exact;

    }

    then {

        next-hop self;

        accept;

    }

}

Note that you must take care to correctly set the next hop when advertising the
200.200/16 route from r4; by default the BGP next hop is set to match the static route’s 
172.16.0.6 next hop, which results in the route being hidden because the 172.16.0.4/30 prefix 
is not carried within your IGP. After the changes are committed, Internet access is confirmed 
from C1:

lab@c1> show route 130.130.0.0

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[Static/5] 00:38:49

                    > to 172.16.0.5 via fe-0/0/0.0

lab@c1> traceroute 130.130.0.1 source 200.200.0.1

traceroute to 130.130.0.1 (130.130.0.1) from 200.200.0.1, 30 hops max, 40 byte
   packets

 1  172.16.0.5 (172.16.0.5)  0.406 ms  0.295 ms  0.276 ms

 2  10.0.2.5 (10.0.2.5)  0.342 ms  0.294 ms  0.297 ms

 3  130.130.0.1 (130.130.0.1)  0.261 ms  0.228 ms  0.224 ms

The traceroute to T1 destinations succeeds, and therefore confirms that C1 has the required 
Internet access for traffic sourced from the 200.200/16 net block. Sourcing the traffic from C1’s 
172.16.0.6 address will result in failures because this prefix is not carried in your IGP or advertised 
to EBGP peers. The scenario’s criteria do not specify if site C2 should also have Internet access. 
C2 should not have Internet access at this time even though the static default route at C1 is being 
redistributed into OSPF:

[edit]

lab@c2# run show route protocol ospf

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both



766 Chapter 7 � VPNs

0.0.0.0/0          *[OSPF/150] 00:02:28, metric 0, tag 0

                    > to 192.168.16.1 via fe-0/0/0.600

200.200.0.0/16     *[OSPF/150] 00:02:28, metric 0, tag 0

                    > to 192.168.16.1 via fe-0/0/0.600

200.200.0.1/32     *[OSPF/10] 00:02:28, metric 1

                    > to 192.168.16.1 via fe-0/0/0.600

200.200.1.0/24     *[OSPF/150] 00:02:28, metric 0, tag 0

                    > to 192.168.16.1 via fe-0/0/0.600

224.0.0.5/32       *[OSPF/10] 00:30:05, metric 1

Internet access is a problem for C2 because none of the routers in the test bed have a route 
back to the 220.220/16 net block associated with the traffic that the C2 site generates. You 
could add a 220.220/16 static route to r4, and adjust its nhs export policy to advertise the route 
to its IBGP peers to provide C2 with Internet access quite easily, however. Note that in this case 
traffic from C2 to the Internet will have to bounce off of C1 in a hub-and-spoke fashion.

These results confirm that your draft-Kompella Layer 2 VPN configuration meets all 
provided restrictions and specified behaviors. Good job!

Draft-Martini

Your draft-Martini VPN scenario requires that you replicate the existing Layer 2 connectivity 
between C1 and C2 using a draft-Martini solution. The topology details are identical to those 
specified for the draft-Kompella scenario. Refer back to Figure 7.6 for details as needed.

To complete the draft-Martini VPN scenario, you must reconfigure the subset of routers 
shown in Figure 7.6 according to these criteria:
� Delete the routing instance configuration in place at r4 and r6. If desired, you can also 

delete any VRF policy and related community definitions left over from the previous Layer 2 
VPN scenario.

� Delete the RSVP stanza and LSP definitions at r4 and r6.
� Establish an L2 VPN providing connectivity between C1 and C2 without adding a 

routing-instance stanza to r4 or r6.
� Your VPN configuration can not disrupt existing IPv4 routing and forwarding functionality.
� Your configuration must tolerate the failure of either SONET interface at r4.

Draft-Martini Configuration

Although not explicitly stated in the objectives, the restriction on adding a routing-instance 
stanza to the PE routers imposes a draft-Martini VPN solution. You begin your draft-Martini 
Layer 2 VPN configuration at r4 with the removal of the existing VPN and VRF-related policy 
configuration. Although not shown, similar commands are also entered on r6:

[edit]

lab@r4# delete routing-instances

[edit]

lab@r4# delete policy-options policy-statement c1-c2-import



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 767

[edit]

lab@r4# delete policy-options policy-statement c1-c2-export

[edit]

lab@r4# delete policy-options community c1-c2-rt

[edit]

lab@r4# delete policy-options policy-statement mapping

[edit]

lab@r4# delete routing-options forwarding-table export

If desired, you can also remove the 200.200/16 static route definition and the related nhs 
policy changes from r4 (not shown). RSVP signaling support is now removed from r4 and r6 
(not shown):

[edit]

lab@r4# delete protocols rsvp

Note that you are now beginning your draft-Martini scenario with a PE-CE VPN interface 
configuration that is left in place from the previous draft-Kompella scenario. Also note that the 
VPN test bed has MPLS processing and mpls family support on your core-facing interfaces from 
the preliminary configuration scenario. This means that your configuration tasks will be limited 
to LDP (with extended neighbor discovery support) and the definition of the Layer 2 circuit that 
interconnects sites C1 and C2. You begin with the configuration of the ldp stanza on r4:

[edit protocols ldp]

lab@r4# set interface lo0

[edit protocols ldp]

lab@r4# set interface so-0/1/0.100

[edit protocols ldp]

lab@r4# set interface so-0/1/1

You must run LDP on the router’s lo0 interface for LDP extended neighbor discovery to 
function correctly. Extended neighbor discovery is required to support draft-Martini signaling. 
LDP is also enabled on both of r4’s core-facing interfaces to support the stated redundancy 
requirements; an interface all statement could have been used in this example. The 
completed ldp stanza is displayed at r4:

[edit protocols ldp]

lab@r4# show

interface so-0/1/0.100;

interface so-0/1/1.0;

interface lo0.0;

A similar LDP configuration must be added to r6, and to a subset of the routers in the test 
bed to ensure that your design can tolerate the failure of either PoS interface at r4. In this example, 



768 Chapter 7 � VPNs

you decide that adding LDP support to r3 and r5 meets the level of redundancy required. The 
LDP stanza for r5 is shown here:

[edit]

lab@r5# show protocols ldp

interface fe-0/0/0.0;

interface so-0/1/0.0;

interface at-0/2/1.0;

You do not need to enable LDP on r5’s lo0 interface because r5’s role as a P router in this 
topology means that it has no need for draft-Martini signaling, and therefore no need for extended 
neighbor discovery. Enabling LDP on r5’s at-0/2/1 interface is necessary to ensure the required 
redundancy in the direction of r6 to r4; LDP support on the ATM link between r3 and r5 
permits the LSP to be routed arround the failure if the PoS link between r3 and r4 should fail. 
A similar LDP configuration is added to r3:

[edit]

lab@r3# show protocols ldp

interface fe-0/0/3.0;

interface at-0/1/0.0;

interface so-0/2/0.100;

With the VPN’s control plane provisioned, the configuration of the l2circuit that will 
actually interconnect the two sites rises to the top of your configuration heap. You begin 
l2circuit definition on r6:

[edit protocols l2circuit]

lab@r6# set neighbor 10.0.3.4 interface fe-0/1/3.600 virtual-circuit-id 12

The completed L2 circuit definition is displayed:

[edit protocols l2circuit]

lab@r6# show

neighbor 10.0.3.4 {

    interface fe-0/1/3.600 {

        virtual-circuit-id 12;

    }
}

A similar l2circuit configuration is added to r4. For proper operation, you must ensure 
that both ends of the Layer 2 circuit use the same circuit-id value; in this case, the value 12 
is intended to code “site 1 and site 2,” but any unique value can be specified. The l2circuit 
definition at r4 is shown next:

[edit protocols l2circuit]

lab@r4# show

neighbor 10.0.9.6 {

    interface fe-0/0/0.600 {

        virtual-circuit-id 12;

    }
}



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 769

L2 VPN Confirmation: Draft-Martini

You begin confirmation of the draft-Martini VPN with verification that the LDP-based control 
(and forwarding) plane is operational. Extended neighbor discovery, and the presence of LSPs 
between PE router loopback addresses, is confirmed at r4:

[edit protocols l2circuit]

lab@r4# run show ldp neighbor

Address            Interface          Label space ID         Hold time

10.0.9.6           lo0.0              10.0.9.6:0               13

10.0.2.5           so-0/1/0.100       10.0.3.3:0               10

10.0.2.9           so-0/1/1.0         10.0.3.5:0               12

LDP extended neighbor discovery is verified by the presence of r6’s loopback address in the 
list of LDP neighbors at r4. The presence of LDP signaled LSPs is verified next:

[edit protocols l2circuit]

lab@r4# run show route table inet.3

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.3/32        *[LDP/9] 00:10:06, metric 1

                    > via so-0/1/0.100

10.0.3.5/32        *[LDP/9] 00:17:12, metric 1

                    > via so-0/1/1.0

10.0.9.6/32        *[LDP/9] 00:10:06, metric 1

                    > via so-0/1/0.100, Push 100022

                      via so-0/1/1.0, Push 100229

The highlights call out the presence of LDP signaled LSPs that are associated with the loopback 
address of the egress PE router (r6). The presence of two equal-cost next hops for this LSP indicates 
that you have met the stated redundancy, at least in the direction of r4 to r6. LSP establishment 
in the r6 to r4 direction is now verified at r6:

[edit protocols l2circuit]

lab@r6# run show route 10.0.3.4

inet.0: 121296 destinations, 121301 routes (121296 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.4/32        *[IS-IS/18] 00:15:35, metric 20

                    > to 10.0.2.14 via fe-0/1/1.0

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.4/32        *[LDP/9] 00:16:36, metric 1

                    > to 10.0.2.14 via fe-0/1/1.0, Push 100025



770 Chapter 7 � VPNs

The output shows that an LSP to r4 has been successfully established, and also indicates that 
r6’s IGP route to the egress PE’s loopback address is via the L2 interface that links it to r3. This 
is expected, considering that the 10.0.3.4 Level 2 prefix is not being leaked into r6’s Level 1 area 
in the IS-IS baseline topology. The final redundancy check is performed at r3 with confirmation 
that the LSP can reroute around failures of its so-0/2/0 interface:

[edit]

lab@r3# run show route 10.0.3.4

inet.0: 121352 destinations, 121361 routes (121352 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.4/32        *[IS-IS/18] 00:19:44, metric 10

                    > to 10.0.2.6 via so-0/2/0.100

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.4/32        *[LDP/9] 00:19:15, metric 1

                    > via so-0/2/0.100

The outputs shows that r3’s current IGP route to 10.0.3.4, and therefore the path of the LDP 
signaled LSP that egresses at this address, is currently routed over the 10.0.2.4/30 subnet. By 
deactivating r3’s so-0/2/0 interface, LSP failover can be verified:

[edit]

lab@r3# deactivate interfaces so-0/2/0

[edit]

lab@r3# commit

commit complete

[edit]

lab@r3# run show route 10.0.3.4

inet.0: 121352 destinations, 121361 routes (121352 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.4/32        *[IS-IS/18] 00:02:20, metric 20

                    > to 10.0.2.1 via at-0/1/0.0

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.4/32        *[LDP/9] 00:02:18, metric 1

                    > via at-0/1/0.0, Push 100226



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 771

The display confirms that you have met the stated redundancy requirements by virtue of the 
LSP failing over to the ATM link connecting r3 and r5. Do not forget to activate r3’s so-0/2/0 
interface once you are satisfied with your network’s redundancy behavior!

With the LDP control plane confirmed, you move into verification of the VPN control plane 
with a display of l2circuit status at r6:

[edit protocols l2circuit]

lab@r6# run show l2circuit connections

Layer-2 Circuit Connections:

Legend for connection status (St)   Legend for interface status

EI -- encapsulation invalid         Up -- operational

MM -- mtu mismatch                  Dn -- down

EM -- encapsulation mismatch        NP -- no present

CM -- control-word mismatch         DS -- disabled

OL -- no outgoing label             WE -- wrong encapsulation

Dn -- down                          UN -- uninitialized

VC-Dn -- Virtual circuit Down

Up -- operational

XX -- unknown

Neighbor: 10.0.3.4

    Interface                 Type  St     Time last up          # Up trans

    fe-0/1/3.600 (vc 12)      rmt   Up     Jun  7 19:27:39 2003           1

      Local interface: fe-0/1/3.600, Status: Up, Encapsulation: VLAN

      Remote PE: 10.0.3.4, Negotiated control-word: Yes (Null)

      Incoming label: 100014, Outgoing label: 100005

The output, which is very similar to that shown for draft-Kompella based l2vpn connections, 
indicates that the Layer 2 circuit has been correctly signaled. The even better news is that r4 
also indicates successful establishment of the l2circuit at this time:

[edit protocols l2circuit]

lab@r4# run show l2circuit connections

Layer-2 Circuit Connections:

Legend for connection status (St)   Legend for interface status

EI -- encapsulation invalid         Up -- operational

MM -- mtu mismatch                  Dn -- down

EM -- encapsulation mismatch        NP -- no present

CM -- control-word mismatch         DS -- disabled

OL -- no outgoing label             WE -- wrong encapsulation

Dn -- down                          UN -- uninitialized

VC-Dn -- Virtual circuit Down

Up -- operational

XX -- unknown



772 Chapter 7 � VPNs

Neighbor: 10.0.9.6

    Interface                 Type  St     Time last up          # Up trans

    fe-0/0/0.600 (vc 12)      rmt   Up     Jun  7 18:37:38 2003           1

      Local interface: fe-0/0/0.600, Status: Up, Encapsulation: VLAN

      Remote PE: 10.0.9.6, Negotiated control-word: Yes (Null)

All results observed thus far indicate that your draft-Martini Layer 2 VPN is operational. 
Confirmation of the VPN forwarding plane comes with end-to-end testing between CE devices 
and the determination of proper OSPF adjacency formation:

[edit]

lab@r4# run telnet 172.16.0.6

Trying 172.16.0.6...

Connected to 172.16.0.6.

Escape character is '^]'.

c1 (ttyp0)

login: lab

Password:

Last login: Sat Jun  7 10:39:53 on ttyd0

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@c1> show ospf neighbor

  Address         Interface             State      ID              Pri  Dead

192.168.16.2     fe-0/0/0.600           Full      220.220.0.1      128   39

The presence of an OSPF adjacency provides a strong indication that the l2circuit is 
operating properly. The presence of OSPF learned routes associated with the remote C2 device 
is another indication that all is well:

lab@c1> show route protocol ospf

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

220.220.0.0/16     *[OSPF/150] 00:01:58, metric 0, tag 0

                    > to 192.168.16.2 via fe-0/0/1.600

220.220.0.1/32     *[OSPF/10] 00:01:58, metric 1

                    > to 192.168.16.2 via fe-0/0/1.600

224.0.0.5/32       *[OSPF/10] 00:16:36, metric 1

                      MultiRecv

Note that the C1 device still has the default route that was added to support Internet access 
in the previous draft-Kompella scenario; its presence causes no harm here. The ability to conduct 
traceroute testing to the VPN interface and the loopback address of the remote CE device 



Layer 2 VPNs (Draft-Kompella and Draft-Martini) 773

provides final confirmation that your draft-Martini Layer 2 VPN is fully operational in the 
forwarding plane:

lab@c1> traceroute 220.220.0.1

traceroute to 220.220.0.1 (220.220.0.1), 30 hops max, 40 byte packets

 1  220.220.0.1 (220.220.0.1)  0.379 ms  0.281 ms  0.269 ms

lab@c1> traceroute 192.168.16.1

traceroute to 192.168.16.1 (192.168.16.1), 30 hops max, 40 byte packets

 1  192.168.16.1 (192.168.16.1)  0.439 ms  0.248 ms  0.226 ms

Proper VPN forwarding combined with previous confirmation of MPLS and VPN signaling 
means that you have met all stated requirements for the draft-Martini Layer 2 VPN configuration 
challenge. Good work!

Layer 2 VPN Summary

Layer 2 VPNs based on the draft-Kompella model are configured and tested in much the same 
way as 2547 bis Layer 3 VPNs. MP-BGP is used to signal VPN membership and you must 
configure VRFs along with all the trappings in the form of route distinguishers, route targets, 
and so on. Draft-Martini Layer 2 VPNs, on the other hand, rely on LDP-based signaling; do not 
make use of RTs, RDs, or VRF policy; and require configuration at the edit protocols 
l2circuit hierarchy as opposed to the edit routing-instances hierarchy.

Regardless of what type of Layer 2 VPN is deployed, the nature of the technology results in 
the appearance of a direct link between the attached CE devices, much as you would expect with 
a transparent bridge, or the virtual circuit connections associated with ATM or Frame Relay 
technologies. This behavior has several advantages, such as eliminating customer routes from 
the service provider’s PE routers, and the ability to support non-IP protocols. The drawbacks 
to Layer 2 VPNs tend to relate to fault isolation because the lack of IP and routing protocol 
interaction between the CE and PE devices makes it difficult to determine whether there are 
hardware or configuration problems on the local VRF interface.

This section demonstrated the configuration of Layer 2 VPNs in JUNOS software using both 
draft-Kompella and draft-Martini solutions. In the case of draft-Kompella, the use of forwarding 
table export policy to effect the mapping of L2 VPN traffic to a particular LSP, and non-VRF 
interface based Internet access, was also demonstrated. It bears stressing that the configuration 
techniques demonstrated to support VPN-to-LSP mapping and Internet access can be used for 
Layer 3 VPNs.

The configuration and verification of translational cross connect (TCC), which is also 
known as “Layer 2.5 IP-Only Interworking,” was not demonstrated in the chapter body. TCC 
is supported in CCC, draft-Kompella, and draft-Martini based VPNs to allow for interworking 
between dissimilar access technologies (or differing VLAN IDs, which are normally required to 
be the same at both ends of a L2 VPN). Having to interconnect a Frame Relay–based CE device 
to another site that uses ATM is a classic application for TCC. Because the Fast Ethernet interfaces 
and the JUNOS software release 5.6 code that is deployed in this VPN test bed do not support 
a mix of TCC and non-TCC families on a VLAN-tagged interface, the use of TCC eliminates 
your ability to access the CE devices from the PE router using a non-VRF interface based OoB 



774 Chapter 7 � VPNs

network. The need for candidate access to the CE devices combined with the specifics of this 
author’s test bed is the primary reason that a TCC scenario was not included in this chapter:

[edit interfaces fe-0/0/0]

lab@r4# show

vlan-tagging;

encapsulation extended-vlan-tcc;

unit 0 {

    vlan-id 1;

    family inet {

        address 10.0.5.1/32;

    }

}

unit 600 {

    encapsulation vlan-ccc;

    vlan-id 600;

    family tcc;

}

[edit interfaces fe-0/0/3]

lab@r4# commit check

[edit interfaces fe-0/0/3 unit 0]

  'family'

     Only the TCC family is allowed on TCC interfaces

error: configuration check-out failed

To be effective with Layer 2 VPNs the candidate must be able to quickly isolate and diagnose 
problems in the VPN forwarding plane (MPLS signaling, and MPLS forwarding, double label 
push operations, and so on) and in the VPN control plane (MP-BGP, route targets, extended 
communities, VRF policy, or LDP with targeted hellos). Throughout this section, the reader was 
exposed to operational mode commands that are useful in determining the operational status of 
Layer 2 VPNs based on either the Kompella or Martini drafts.

Summary
JNCIE candidates should be prepared to configure a variety of provider-provisioned VPN solutions 
in their lab exam. Successful candidates will be fluent with BGP and LDP-based VPN solu-
tions, and will possess a keen grasp of the differences between a Layer 3 and a Layer 2 VPN model.

This chapter provided configuration scenarios and verification techniques for Layer 3 VPNs 
based on the 2547 bis model. Although RSVP signaled LSPs were used to support the VPN’s 
forwarding plane, the LSPs could have been signaled with LDP. Recent enhancements, such as 
the vrf-target and route-distinguisher-id statement, which make the provisioning of 
BGP signaled VPNs simpler, were demonstrated along with the far more manual alternatives.



Case Study: VPNs 775

The chapter went on to demonstrate the configuration and testing of Layer 2 VPNs based on 
draft-Martini and draft-Kompella. Configuration and testing of draft-Kompella solutions 
follows many of the same procedures used for Layer 3 VPNs based on 2547 bis; the similarities 
between 2547 bis and draft-Kompella provide operational benefits when a given provider plans 
to support both Layer 2 and Layer 3 VPN offerings. In contrast, the draft-Martini solution is 
usually considered to be far easier to configure because draft-Martini VPNs do not make use of 
BGP-based signaling, and therefore have no concept of RDs, RTs, and VRF policy.

Case Study: VPNs
The chapter case study approximates a JNCIE-level provider-provisioned VPN scenario. You 
will be performing your VPN case study using the OSPF baseline configuration that was 
discovered and documented in the body of Chapter 1. The OSPF baseline topology is shown 
in Figure 7.7 for reference purposes.

F I G U R E 7 . 7 OSPF discovery findings

OSPF
Passive

OSPF
Passive

OSPF
Passive

OSPF
Passive

Area 1: stub,
default route

Area 0

IS-IS Level 1
Area 0002

r2 r4

r7

r6

Data
Center

r5

r3
r1

Area 2:
NSSA, no

default route,
corrected

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

M5M5

(1
92

.1
68

.0
-3

)

Loopback addresses have not been assigned to specific areas (lo0 address advertised in Router LSA in all areas).

Passive OSPF interfaces on P1 and data center segments.

No authentication or route summarization in effect; summaries (LSA type 3) allowed in all areas.

Data center router running IS-IS, Level 1. r6 and r7 compatibly configured and adjacent.

Redistribution of 192.168.0/24 through 192.168.3/24 into OSPF from IS-IS by both r6 and r7.

Adjustment to IS-IS level 1 external preference to ensure r6 and r7 always prefer IS-IS Level 1 externals over
OSPF externals.

All adjacencies up and full reachability confirmed.

Sub-optimal routing detected at the data center router for some locations, and when r3 and r4 forward to
some Area 2 addresses. This is the result of random nexthop choice for its default route and Area 2 topology
specifics. Considered to be working as designed; no action taken.

Redistribution of OSPF default route to data center from both r6 and r7 was broken. Fixed with default-metric
command on r3, r4, and r5.

Notes:



776 Chapter 7 � VPNs

You should load and commit the baseline OSPF configuration and confirm that your baseline 
network’s OSPF IGP and IBGP peerings are operational before beginning the case study. Problems 
are not expected in the baseline network at this stage, but it never hurts to verify your starting 
point in a journey such as this. Note that due to configuration changes in the peripheral routers, 
you should expect to find that no EBGP sessions are established with the OSPF baseline 
configuration in place.

Refer to the case study criteria listing and the case study topology that is shown in Figure 7.8 
for the information needed to complete the VPN case study. It is expected that a JNCIE candidate 
will be able to complete this case study in approximately two hours with no major operational 
problems in the finished work.

Sample configurations from all routers are provided at the end of the case study for comparison 
with your own configurations. Because multiple solutions may be possible for a given aspect of 
the case study, differences in your own solution are not automatically indicative of a mistake. 
Because you are graded on the overall functionality of your network along with its conformance 
to the specified criteria, the output from key operational mode commands is also included to 
allow an operational comparison of your network and that of a known good example.

To complete this case study, your network must be configured to meet the following criteria:
� For VPN A:

� You may not alter the exiting BGP stanzas on r4 and r6.
� Ensure that C1 and C2 exchange their respective routes using RIP V2.
� You may not configure RIP V2 on r3, r5, or r7.
� You can access the C1 and C2 devices for testing purposes only; you must not modify 

their configuration.
� You must have connectivity between C1 and C2.
� Your VPN must not disrupt or alter the flow of IPv4 packets within your network.

� For VPN B:
� Ensure that C3 and C4 exchange their respective routes using EBGP.
� The failure of either r1 or r2 can not disable VPN B.
� You must count all ICMP traffic that egresses r3’s fe-0/0/2 interface.
� You must have connectivity between C3 and C4.
� You must support traffic that originates or terminates on the multi-access VRF

interfaces.
� Ensure that the loopback addresses of the PE routers are reachable from the customer 

sites, and from within the VRF instances, without altering loopback address reachability 
for P routers.

� Your VPN must not disrupt or alter the flow of IPv4 packets within your network.

You should assume that the customer site routers are correctly configured to advertise their 
respective routes using the protocols identified in Figure 7.8. Please refer back to Chapter 1, 
or to your IGP discovery notes, for specifics on the OSPF baseline network as needed. Note 
that the data center router, and its IS-IS based route redistribution, are not involved in the VPN 
case study.



Case Study: VPNs 777

F I G U R E 7 . 8 MPLS case study topology

AS
 6

52
22

13
0.

13
0/

16
22

0.
22

0/
16

20
0.

20
0/

16
C1

VP
N 

A

.2
54

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

M
5

fe
-0

/0
/1

fe
-0

/0
/0

r1 r2

Lo
op

ba
ck

s

r3

r5

fe-
0/0

/3

fe
-0

/0
/0

r1
 =

 1
0.

0.
6.

1
r2

 =
 1

0.
0.

6.
2

r3
 =

 1
0.

0.
3.

3
r4

 =
 1

0.
0.

3.
4

r5
 =

 1
0.

0.
3.

5
r6

 =
 1

0.
0.

9.
6

r7
 =

 1
0.

0.
9.

7

fe
-0

/0
/1

fe
-0

/0
/1

fe
-0

/0
/2

10.0.5/24

10.0.4.4/30

fe
-0

/0
/3

fe
-0

/0
/0

10
.0

.4
.1

2/
30

17
2.

16
.0

.1
2/

30
EB

GP

EB
GP

EB
GP

AS
 6

52
22

12
0.

12
0/

16
10

.0
.2

.4
/3

0

fe
-0

/0
/1

fe-0/0/0.0

fe
-0

/3
/1

fe
-0

/3
/3

fe
-0

/0
/310

.0
.2

.1
2/

30

10
.0

.2
.0

/3
0

10
.0

.8
.4

/3
0

10
.0

.8
.8

/3
0

10
.0

.2
.8

/3
0

so
-0

/2
/0

so
-0/

1/1
so

-0
/1

/0

so
-0

/1
/0

at-
0/

1/
0

at-
0/

2/
1

.1
.1

4
.1

3.1
3

.1
4

.1
3

.9

.2

.5

.6

.9

.1

.9

.1
0 .1

7

fe
-0

/0
/3

fe
-0

/0
/2

fe-
0/0

/0
fe-

0/1
/0

fe
-0

/1
/1

fe
-0

/1
/3

.0
19

2.
16

8.
32

.0
/2

4

VL
AN

 7
00

RI
P 

v2

VL
AN

 1

17
2.

16
.0

.8
/3

0

.1
.5

.1
8

.2
.1

0
.9

10
.0

.4
.8

/3
0

10
.0

.2
.1

6/
30

19
2.

16
8.

32
.0

/2
4

17
2.

16
.0

.4
/3

0

VL
AN

 1

10
.0.

4.1
6/3

0fe-
0/0/1

fe-
0/0/2

10.0.4.0/30
fe-

0/0
/2

.2
.1

7

.1
8

.5

.1

.6
.1

0

.2
.5

r6

r4
r7

C1
 =

 2
00

.2
00

.0
.1

C2
 =

 2
20

.2
20

.0
.1

C3
 =

 1
30

.1
30

.0
.1

C4
 =

 1
20

.1
20

.0
.1

C4
VP

N 
B

C3
VP

N 
B

C2
VP

N 
A

.6

M
5

M
5

M
5

M
5



778 Chapter 7 � VPNs

VPN Case Study Analysis

Each configuration requirement for the VPN case study is matched to one or more valid router 
configurations and, where applicable, the commands that are used to confirm whether your 
network is operating within the specified case study guidelines. You begin with the grouping of 
Layer 2 VPN criteria:
� For VPN A:

� You may not alter the existing BGP stanzas on r4 and r6.
� Ensure that C1 and C2 exchange their respective routes using RIP V2.
� You may not configure RIP V2 on r3, r5, or r7.
� You can access the C1 and C2 devices for testing purposes only; you must not modify 

their configuration.
� You must have connectivity between C1 and C2.
� Your VPN must not disrupt or alter the flow of IPv4 packets within your network.

Although the words “Layer 2” are entirely absent from the criteria listing, you know that 
some form of L2 VPN solution is required by virtue of C1 and C2 sharing a common IP sub-
net, and by the indications that you must run a RIP V2 routing protocol between C1 and C2 
without enabling RIP on the PE routers. You must now decide which type of Layer 2 VPN you 
will deploy; in some cases the choice of draft-Kompella vs. draft-Martini will be left to the 
JNCIE candidate’s discretion. In this example, the prohibition against modifying the existing 
BGP stanzas on r4 and r6 compels you to configure a draft-Martini solution because a draft-
Kompella VPN can not function without the addition of the l2vpn family to the IBGP session 
between r4 and r6.

You begin with the interface configuration changes needed at r4 and r6 to establish OoB 
connectivity to the VPN A devices. You also configure a logical unit that will support the Layer 2 
VPN connection between the C1 and C2 routers. The changes made to r4 are shown here with 
added highlights:

[edit interfaces fe-0/0/0]

lab@r4# show

vlan-tagging;

encapsulation vlan-ccc;

unit 0 {

    vlan-id 1;

    family inet {

        address 172.16.0.5/30;

    }

}

unit 700 {

    encapsulation vlan-ccc;

    vlan-id 700;

    family ccc;

}



Case Study: VPNs 779

The choice of logical unit numbers is not critical on the PE router, but you must configure 
compatible VLAN IDs for the logical units that support the OoB and Layer 2 VPN. Figure 7.8 
specifies the VLAN ID at both sites for the OoB network, but the VLAN ID used to support the 
VPN is only specified on the r6-C2 link. This “extra rope” is designed to verify if the JNCIE 
candidate knows that matching VLAN IDs are required for draft-Martini VPNs because the 
TCC family is currently supported only for CCC and draft-Kompella types of connections. 
Although not shown, similar configuration changes are made to fe-0/1/3 interface at r6. After 
committing the changes, OoB connectivity is confirmed:

[edit interfaces fe-0/1/3]

lab@r6# run ping 172.16.0.10

PING 172.16.0.10 (172.16.0.10): 56 data bytes

64 bytes from 172.16.0.10: icmp_seq=0 ttl=255 time=0.625 ms

64 bytes from 172.16.0.10: icmp_seq=1 ttl=255 time=0.523 ms

^C

--- 172.16.0.10 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.523/0.574/0.625/0.051 ms

The next step in getting VPN A operational involves the configuration of the VPN’s forwarding 
plane. You only need to enable MPLS forwarding on a subnet of the routers and interfaces in 
the JNCIE test bed to support VPN A, because no redundancy requirements have been posed. 
In this example, MPLS forwarding support is added to those interfaces on r4, r5, and r6 that 
constitute what appears to be the most direct path between PE routers r4 and r6.

The changes made to r6 are shown with highlights added:

[edit]

lab@r6# show protocols mpls

interface fe-0/1/0.0;

[edit]

lab@r6# show interfaces fe-0/1/0

unit 0 {

    family inet {

        address 10.0.8.5/30;

    }

    family mpls;

}

Similar changes are needed at r4 and r5. The changes made to r5 are shown:

[edit]

lab@r5# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.8.6/30;

    }



780 Chapter 7 � VPNs

    family mpls;

}

[edit]

lab@r5# show interfaces so-0/1/0

encapsulation ppp;

unit 0 {

    family inet {

        address 10.0.2.9/30;

    }

    family mpls;

}

[edit]

lab@r5# show protocols mpls

interface fe-0/0/0.0;

interface so-0/1/0.0;

With the forwarding plane configured, you address the VPN’s control plane by configuring 
LDP to operate on the interfaces at r4, r5, and r6 with mpls family support. LDP must be 
enabled on the loopback interfaces of the PE routers to support the extended neighbor discovery 
required in a draft-Martini VPN. The changes made to r4 are shown next:

[edit]

lab@r4# show protocols ldp

interface so-0/1/1.0;

interface lo0.0;

Similar changes are needed at r5 and r6. The changes made to r5 are also displayed:

[edit]

lab@r5# show protocols ldp

interface fe-0/0/0.0;

interface so-0/1/0.0;

Although it causes no harm, including LDP support on r5’s lo0 interface is not necessary 
because it has no need for extended LDP neighbor discovery. After committing the changes, you 
confirm the MPLS forwarding and control plane. You start with confirmation that the expected 
interfaces are enabled for MPLS processing and labeled packet handling:

[edit]

lab@r5# run show mpls interface

Interface        State       Administrative groups

fe-0/0/0.0       Up         <none>

so-0/1/0.0       Up         <none>



Case Study: VPNs 781

The sample display from r5 indicates MPLS support has been correctly configured on the 
interfaces that connect it to r4 and r6. LDP neighbor discovery and session establishment are 
confirmed next, also at r5:

[edit]

lab@r5# run show ldp neighbor

Address            Interface          Label space ID         Hold time

10.0.8.5           fe-0/0/0.0         10.0.9.6:0               12

10.0.2.10          so-0/1/0.0         10.0.3.4:0               11

[edit]

lab@r5# run show ldp session

  Address           State        Connection     Hold time

10.0.3.4            Operational  Open             20

10.0.9.6            Operational  Open             20

The displays confirm that r5’s LDP instance sees r4 and r6 as neighbors, and that LDP 
sessions have been correctly established between r5 and its LDP neighbors. Even though the 
output indicates that LDP signaling is operational, you decide to confirm the successful 
establishment of the LSPs needed between the L2 VPN PE routers. You begin at r6:

[edit]

lab@r6# run show route table inet.3

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.4/32        *[LDP/9] 00:15:10, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0, Push 100004

10.0.3.5/32        *[LDP/9] 00:16:42, metric 1

                    > to 10.0.8.6 via fe-0/1/0.0

The display confirms successful establishment of LDP signaled LSPs that egress at r4 and r5. 
However, the display at r4 indicates a problem of some sort:

[edit]

lab@r4# run show route table inet.3

inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.5/32        *[LDP/9] 00:16:33, metric 1

                    > via so-0/1/1.0

Hmm, for some reason r4 has not established an LSP to the loopback address of r6. To correct 
this problem, the JNCIE candidate must understand LDP signaling and LDP’s dependency on 



782 Chapter 7 � VPNs

tracking the IGP’s preferred path to the LSP’s egress point. The problem in this case is that r4 
prefers the intra-area OSPF route to 10.0.9.6, as learned in r7’s router LSA, over the summary 
version being advertised into the backbone area from r3 and r5:

[edit]

lab@r4# run show route 10.0.9.6

inet.0: 121371 destinations, 121373 routes (121371 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.9.6/32        *[OSPF/10] 00:24:07, metric 3

                    > to 10.0.2.17 via fe-0/0/3.0

You now realize that, as with the chapter body, the specifics of the IGP topology results in 
asymmetric routing between the PE routers:

[edit]

lab@r4# run traceroute 10.0.9.6

traceroute to 10.0.9.6 (10.0.9.6), 30 hops max, 40 byte packets

 1  10.0.2.17 (10.0.2.17)  0.775 ms  0.544 ms  0.412 ms

 2  10.0.8.9 (10.0.8.9)  0.715 ms  0.630 ms  0.591 ms

 3  10.0.9.6 (10.0.9.6)  0.820 ms  0.789 ms  0.765 ms

[edit]

lab@r6# run traceroute 10.0.3.4

traceroute to 10.0.3.4 (10.0.3.4), 30 hops max, 40 byte packets

 1  10.0.8.6 (10.0.8.6)  0.731 ms  0.576 ms  0.521 ms

 2  10.0.3.4 (10.0.3.4)  0.849 ms  0.748 ms  0.716 ms

Given the restrictions on altering the flow of IPv4 packets within the test bed, resolving this 
problem by reconfiguring the OSPF area boundaries, say by making r5 function as an internal 
area 2 router, or by disabling OSPF on the link between r4 and r7, are not really viable options. 
Given these circumstances, your best bet is to simply enable MPLS forwarding and LSP signaling 
support on r7 so that an LDP signaled LSP can be established along the existing IGP route from 
r4 to 10.0.9.6. This solution results in no significant changes to your IGP or the manner in 
which IPv4 packets are being forwarded. The changes made to r7 are shown next with added 
highlights:

[edit]

lab@r7# show interfaces fe-0/3/1

unit 0 {

    family inet {

        address 10.0.8.10/30;

    }

    family mpls;

}



Case Study: VPNs 783

[edit]

lab@r7# show interfaces fe-0/3/3

unit 0 {

    family inet {

        address 10.0.2.17/30;

    }

    family mpls;

}

[edit]

lab@r7# show protocols ldp

interface fe-0/3/1.0;

interface fe-0/3/3.0;

[edit]

lab@r7# show protocols mpls

interface fe-0/3/1.0;

interface fe-0/3/3.0;

Do not forget to add the mpls family to the Fast Ethernet interfaces that connect r4 and r5 
to r7; you also need to enable MPLS processing and LDP support on these interfaces. After 
committing the changes at r4, r5, and r7, the inet.3 table is again displayed at r4:

[edit]

lab@r4# run show route table inet.3

inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.5/32        *[LDP/9] 00:33:38, metric 1

                    > via so-0/1/1.0

10.0.9.6/32        *[LDP/9] 00:03:03, metric 1

                    > to 10.0.2.17 via fe-0/0/3.0, Push 100002

10.0.9.7/32        *[LDP/9] 00:03:35, metric 1

                    > to 10.0.2.17 via fe-0/0/3.0

The highlight calls out the presence of an LSP from r4 to r6’s loopback address, which has 
been successfully established through r7 (and r5). In this example, the specific nature of the 
underlying IGP results in asymmetric routing between the PE routers. This is not a problem, but 
is a behavior worth noting to avoid confusion and surprises down the road. With the MPLS and 
LDP infrastructure now in place, all that remains to complete the Layer 2 component of the 
VPN case study is to define the l2circuit between PE routers r4 and r6. The changes made 
to r4 are shown here:

[edit protocols l2circuit]

lab@r4# show



784 Chapter 7 � VPNs

neighbor 10.0.9.6 {

    interface fe-0/0/0.700 {

        virtual-circuit-id 700;

    }

}

A similar configuration is also added to r6. The key aspects of the l2circuit configuration 
are the correct specification of the egress PE’s loopback address, the listing of the VPN interface 
along with the correct logical unit, and a virtual circuit ID value that is identical at both ends. 
After committing the l2circuit configuration at both PE routers, LDP extended neighbor 
discovery is verified at r6:

[edit protocols l2circuit]

lab@r6# run show ldp neighbor

Address            Interface          Label space ID         Hold time

10.0.3.4           lo0.0              10.0.3.4:0               14

10.0.8.6           fe-0/1/0.0         10.0.3.5:0               13

The display confirms that extended neighbor discovery is operational between r4 and r6; the 
status of the l2circuit is now displayed, again at r6:

[edit protocols l2circuit]

lab@r6# run show l2circuit connections

Layer-2 Circuit Connections:

Legend for connection status (St)   Legend for interface status

EI -- encapsulation invalid         Up -- operational

MM -- mtu mismatch                  Dn -- down

EM -- encapsulation mismatch        NP -- no present

CM -- control-word mismatch         DS -- disabled

OL -- no outgoing label             WE -- wrong encapsulation

Dn -- down                          UN -- uninitialized

VC-Dn -- Virtual circuit Down

Up -- operational

XX -- unknown

Neighbor: 10.0.3.4

    Interface                 Type  St     Time last up          # Up trans

    fe-0/1/3.700 (vc 700)     rmt   Up     Jun 19 17:44:41 2003           1

      Local interface: fe-0/1/3.700, Status: Up, Encapsulation: VLAN

      Remote PE: 10.0.3.4, Negotiated control-word: Yes (Null)

      Incoming label: 100007, Outgoing label: 100007

The display confirms correct establishment of the l2circuit. The final confirmation comes 
with end-to-end testing and verification of RIP route exchange between C1 and C2:

[edit protocols l2circuit]

lab@r4# run telnet 172.16.0.6



Case Study: VPNs 785

Trying 172.16.0.6...

Connected to 172.16.0.6.

Escape character is '^]'.

c1 (ttyp0)

login: lab

Password:

Last login: Thu Jun 19 10:50:34 from 172.16.0.5

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@c1> show route protocol rip

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

220.220.0.0/16     *[RIP/100] 00:01:28, metric 2, tag 0

                    > to 192.168.32.2 via fe-0/0/0.700

224.0.0.9/32       *[RIP/100] 00:02:09, metric 1

                      MultiRecv

The presence of the 220.220/16 prefix as a RIP route on the C1 device is a very good sign that 
the Layer 2 VPN is operational. Traceroute testing conducted at C1 with packets sourced from the 
200.200.0.1 address provides the final proof that the draft-Martini based Layer 2 VPN between 
C1 and C2 is fully operational:

lab@c1> traceroute 220.220.0.1 source 200.200.0.1

traceroute to 220.220.0.1 (220.220.0.1) from 200.200.0.1, 30 hops max, 40 byte
   packets

 1  220.220.0.1 (220.220.0.1)  0.443 ms  0.327 ms  0.316 ms

With the Layer 2 VPN aspects of the case study dealt with in a resoundingly successful 
fashion, you begin the Layer 3 aspects of the case study by addressing a subset of Layer 3 VPN 
criteria that functions to establish baseline connectivity between C3 and C4:
� For VPN B:

� Ensure that C3 and C4 exchange their respective routes using EBGP.
� You must have connectivity between C3 and C4.
� You must support traffic that originates or terminates on the multi-access VRF 

interfaces.
� Your VPN must not disrupt or alter the flow of IPv4 packets within your network.

As with the Layer 2 scenario, the wording “Layer 3 VPN” is nowhere to be found in the 
scenario’s requirement listing. The indication that a Layer 3 VPN solution is required comes 
with the lack of a common IP subnet between the C3 and C4 devices, and by the details of 



786 Chapter 7 � VPNs

Figure 7.8 that show the CE device’s BGP sessions terminating at the local PE routers. This 
scenario requires redundant VRF configuration at r1 and r2, and is made complex by the need 
to perform firewall-filtering functions on VPN traffic that egresses at r3.

You have the option of using either LDP or RSVP-based signaling, given that none of your 
restrictions preclude, or require, any particular signaling protocol. Because LDP signaling is 
already in effect in portions of the test bed, you decide to begin the Layer 3 VPN scenario by 
adding MPLS and LDP support to r1, r2, and r3. The changes made to r3 are shown next 
with added highlights:

[edit]

lab@r3# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.4.13/30;

    }

    family mpls;

}

[edit]

lab@r3# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.4.1/30;

    }

    family mpls;

}

[edit]

lab@r3# show protocols mpls

interface fe-0/0/0.0;

interface fe-0/0/1.0;

[edit]

lab@r3# show protocols ldp

interface fe-0/0/0.0;

interface fe-0/0/1.0;

Note that enabling LDP on the router’s loopback interface (to support extended neighbor 
discovery) is not necessary because the Layer 3 VPN’s signaling protocol is based on MP-BGP. 
Although not shown, r2 is configured to support MPLS and LDP signaling in a manner that is 
similar to the changes shown here for r1:

[edit]

lab@r1# show interfaces fe-0/0/1



Case Study: VPNs 787

unit 0 {

    family inet {

        address 10.0.4.14/30;

    }

    family mpls;

}

[edit]

lab@r1# show protocols ldp

interface fe-0/0/1.0;

[edit]

lab@r1# show protocols mpls

interface fe-0/0/1.0;

You are required to configure redundancy for the failure of either r1 or r2, not for the failure 
of individual links. Therefore there is no need to enable LDP and MPLS support on r1’s Fast 
Ethernet links to r2 or r4. After committing the MPLS and LDP changes, LSP establishment is 
verified at r3:

[edit]

lab@r3# run show route table inet.3

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.6.1/32        *[LDP/9] 00:05:24, metric 1

                    > to 10.0.4.14 via fe-0/0/0.0

10.0.6.2/32        *[LDP/9] 00:00:09, metric 1

                    > to 10.0.4.2 via fe-0/0/1.0

Although not shown, you may assume that both r1 and r2 confirm establishment of an LDP 
signaled LSP that egresses at r3’s loopback address. With the MPLS forwarding and control 
infrastructure in place, you move on to the configuration of the Layer 3 VPN. You decide to 
initially concentrate on r1 and r3; once all other aspects of the VPN are confirmed, it will be 
easy to replicate the working configuration from r1 to r2 to meet the stated redundancy 
requirements. You begin actual Layer 3 VPN configuration at r1 by defining the c4 VRF. The 
completed VRF is shown next:

[edit routing-instances c4]

lab@r1# show

instance-type vrf;

interface fe-0/0/0.0;

route-distinguisher 10.0.6.1:1;

vrf-target target:65412:100;



788 Chapter 7 � VPNs

protocols {

    bgp {

        group c4 {

            type external;

            peer-as 65222;

            neighbor 10.0.5.254;

        }

    }

}

Because the vrf-target option is not prohibited in this example, its use is highly recommended 
because it greatly simplifies the VRF policy and route target-related aspects of the VRF’s 
configuration. The protocols portion of the c4 VRF correctly defines the EBGP peering 
session to C4, including its new AS number of 65222. However, when you attempt to commit 
your changes, you receive the following error:

[edit routing-instances c4]

lab@r1# commit

[edit protocols ospf area 0.0.0.1 interface fe-0/0/0.0]

  interface fe-0/0/0.0

  duplicate intf or intf not configured in this instance

error: configuration check-out failed

This problem is easily rectified by removing the pre-existing reference to the fe-0/0/0 VRF 
interface in the main OSPF instance:

[edit]

lab@r1# delete protocols ospf area 1 interface fe-0/0/0

[edit]

lab@r1# commit

commit complete

With the VRF and PE-CE routing protocol configured, you add the inet-vpn protocol family 
to the IBGP session between r1 and r3 to support the exchange of labeled routes between the 
PE routers. The changes are displayed next with added highlights:

[edit]

lab@r1# show protocols bgp group int

type internal;

local-address 10.0.6.1;

neighbor 10.0.6.2;

neighbor 10.0.3.3 {

    family inet {

        unicast;

    }



Case Study: VPNs 789

    family inet-vpn {

        unicast;

    }

}

neighbor 10.0.3.4;

neighbor 10.0.3.5;

neighbor 10.0.9.6;

neighbor 10.0.9.7;

In this example, MP-BGP protocol family support is only modified on the peering session 
associated with r3. It does not cause any harm to apply this change to all IBGP peers, but it will 
result in the temporary tear-down of the established IBGP sessions. The inet family is also 
explicitly configured to prevent disruption to any IPv4 traffic that may rely on the IBGP session 
between r1 and r3. After committing the changes at r1, the EBGP peering session to C4 is 
quickly verified:

[edit]

lab@r1# run show bgp summary instance c4

Groups: 1 Peers: 1 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

C4.inet.0              1          1          0          0          0          0

Peer               AS       InPkt     OutPkt    OutQ  Flaps Last Up/Dwn
   State|#Active/Received/Damped...

10.0.5.254      65222         27         29       0       0       12:35 Establ

   c4.inet.0: 1/1/0

[edit]

lab@r1# run show route table c4

c4.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[Direct/0] 00:12:44

                    > via fe-0/0/0.0

10.0.5.1/32        *[Local/0] 00:12:44

                      Local via fe-0/0/0.0

120.120.0.0/16     *[BGP/170] 00:12:40, MED 0, localpref 100

                      AS path: 65222 I

                    > to 10.0.5.254 via fe-0/0/0.0

The EBGP session between r1 and C4 is established, and a display of the c4 instance’s VRF 
confirms the presence of the 120.120/16 prefix as learned though BGP. The displays indicate 
that r1 is correctly configured for Layer 3 VPN interaction with its attached CE device. Additional 
confirmation will have to wait until r3 has its VRF and MP-IBGP configuration in place. With 



790 Chapter 7 � VPNs

your attention now focused on r3, you begin modifying its configuration by adding inet-vpn 
family support to the IBGP peering sessions associated with r1 and r2:

[edit protocols bgp group int]

lab@r3# show

type internal;

local-address 10.0.3.3;

export nhs;

neighbor 10.0.6.1 {

    family inet {

        unicast;

    }

    family inet-vpn {

        unicast;

    }

}

neighbor 10.0.6.2 {

    family inet {

        unicast;

    }

    family inet-vpn {

        unicast;

    }

}

neighbor 10.0.3.4;

neighbor 10.0.3.5;

neighbor 10.0.9.6;

neighbor 10.0.9.7;

The VRF-related changes that are made to r3 to support initial Layer 3 VPN connectivity are 
shown next:

[edit routing-instances c3]

lab@r3# show

instance-type vrf;

interface fe-0/0/2.0;

route-distinguisher 10.0.3.3:1;

vrf-target target:65412:100;

protocols {

    bgp {

        group c3 {

            type external;

            peer-as 65222;



Case Study: VPNs 791

            neighbor 172.16.0.14;

        }

    }

}

Note that the c3 VRF at r3 also makes use of the vrf-target option, and that a matching 
route target community has been configured. After committing the changes at r3, support for 
the inet and inet-vpn families is verified on the MP-IBGP session between r1 and r3:

[edit routing-instances c3]

lab@r3# run show bgp neighbor 10.0.6.1 | match NLRI

  NLRI advertised by peer: inet-unicast inet-vpn-unicast

  NLRI for this session: inet-unicast inet-vpn-unicast

The display confirms that both r3 and r1 are correctly configured to support the required 
address families. You move on to verify the BGP interaction between r3 and C3:

[edit routing-instances c3]

lab@r3# run show bgp summary instance c3

Groups: 1 Peers: 1 Down peers: 0

Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending

c3.inet.0              3          3          0          0          0          0

Peer               AS      InPkt     OutPkt    OutQ   Flaps Last Up/Dwn
   State|#Active/Received/Damped...

172.16.0.14     65222         18         20       0       2        6:30 Establ

   c3.inet.0: 1/1/0

The summary display confirms EBGP session establishment between r3 and C3, and also 
shows that a single prefix has been received and installed in the c3 VRF. The c3 VRF is displayed 
to determine what routes have been received from local CE and the remote PE devices:

[edit routing-instances c3]

lab@r3# run show route table c3

c3.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[BGP/170] 00:11:17, localpref 100, from 10.0.6.1

                      AS path: I

                    > to 10.0.4.14 via fe-0/0/0.0, Push 100001

120.120.0.0/16     *[BGP/170] 00:11:17, MED 0, localpref 100, from 10.0.6.1

                      AS path: 65222 I

                    > to 10.0.4.14 via fe-0/0/0.0, Push 100001

130.130.0.0/16     *[BGP/170] 00:06:33, MED 0, localpref 100

                      AS path: 65222 I

                    > to 172.16.0.14 via fe-0/0/2.0



792 Chapter 7 � VPNs

172.16.0.12/30     *[Direct/0] 00:06:43

                    > via fe-0/0/2.0

172.16.0.13/32     *[Local/0] 00:11:28

                      Local via fe-0/0/2.0

The output confirms the presence of the 130.130/16 prefix, which is learned from the EBGP 
session to C3. Also present in the c3 VRF are the 120.120/16 and the 10.0.5/24 prefixes, as 
advertised by PE router r1. The presence of these routes in the c3 VRF, and their association 
with LSP-based next hops, indicates that labeled VPN route exchange between the PE routers 
is working, and that MPLS LSPs are available to accommodate the forwarding of VPN traffic. 
Because the routes learned from the remote PE are BGP routes, and because the default BGP 
policy is to advertise active BGP routes to EBGP peers, you expect to find that r3 is advertising 
C4’s routes to C3 with no policy additions or modifications required. This behavior is in 
contrast to that seen in the PE-CE OSPF routing example in the chapter body, where policy was 
required to effect the redistribution of BGP into OSPF.

However, before you can issue a successful show route advertising-protocol bgp 
172.16.0.14 command to confirm the expected behavior, you must remove the pre-existing 
(and now duplicate) EBGP peering definition from the main routing instance of r3:

[edit]

lab@r3# delete protocols bgp group ext

[edit]

lab@r3# commit

commit complete

[edit]

lab@r3# run show route advertising-protocol bgp 172.16.0.14

c3.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 10.0.5.0/24             Self                                    I

* 120.120.0.0/16          Self                                    65222 I

* 130.130.0.0/16          172.16.0.14                             65222 I

As predicted, the routes associated with the C4 router are being correctly advertised to the 
C3. Similar results are observed at r1 after removing the redundant EBGP peering definition 
from its main routing instance:

[edit]

lab@r1# delete protocols bgp group p1

[edit]

lab@r1# commit

commit complete



Case Study: VPNs 793

[edit]

lab@r1# run show route advertising-protocol bgp 10.0.5.254

c4.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 120.120.0.0/16          10.0.5.254                              65222 I

* 130.130.0.0/16          Self                                    65222 I

* 172.16.0.12/30          Self                                    I

The 130.130/16 and VRF interface routes associated with C3 are correctly being advertised 
to C4. This is starting to seem too easy, so you decide to conduct some quick end-to-end testing 
before moving on to the remaining criteria:

[edit]

lab@r1# run telnet routing-instance c4 10.0.5.254

Trying 10.0.5.254...

Connected to 10.0.5.254.

Escape character is '^]'.

c4 (ttyp1)

login: lab

Password:

Last login: Sun Jun 29 19:07:59 from 10.0.5.1

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@c4> show route protocol bgp

inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.0.12/30     *[BGP/170] 00:22:51, localpref 100

                      AS path: 65412 I

                    > to 10.0.5.1 via fe-0/0/0.0

Hmm, the display is puzzling because a previous command confirmed that r1 is advertising 
both the 130.130/16 and the 172.16.0.12/30 prefixes to C4. Yet for some reason, C4 is not 
displaying the 130.130/16 route. Also of note is the indication that no hidden routes exist at C4. 
Seeing that one of the routes is present, and that the other is not, you start to wonder “what is 
different about these routes?”

Upon re-examination of the contents of the c4 VRF on r1 (as shown previously), you notice 
that the 130.130/16 route has an AS path of 65222 while the 172.16.0.12/30 route has a null 



794 Chapter 7 � VPNs

AS path. Seeing this, the true nature of the problem dawns upon you; C3 and C4 have the same AS 
number, and JUNOS software immediately discards (not hides) any route that fails AS path 
sanity checks! You can test this theory by setting the keep-all option in the CE device’s BGP 
stanza, because this option causes routes with AS path sanity problems to be retained in the 
Adj-RIB-in, albeit as a hidden route.

You can not resolve this problem by configuring support for AS path loops under [edit 
routing-options autonomous-system loops] because your restrictions prevent configuration 
changes in the peripheral routers. The only viable solution for resolving the AS loop problem is 
to deploy the as-override feature at both PE routers. This option tells the PE to replace the 
last AS number in the AS path with an extra copy of the PE’s AS number when the route is sent 
to the attached CE device. You configure r3 to perform as-override and commit the change; 
a similar change is also made at r1 (not shown):

[edit routing-instances c3]

lab@r3# set protocols bgp group c3 as-override

To confirm the fix, you telnet to a CE device and inspect its routing table for BGP routes:

[edit routing-instances c3]

lab@r3# run telnet routing-instance c3 172.16.0.14

Trying 172.16.0.14...

Connected to 172.16.0.14.

Escape character is '^]'.

C3 (ttyp1)

login: lab

Password:

Last login: Tue Apr  4 14:48:11 from 172.16.0.13

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@C3> show route protocol bgp

inet.0: 9 destinations, 10 routes (9 active, 0 holddown, 1 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[BGP/170] 00:02:13, localpref 100

                      AS path: 65412 I

                    > to 172.16.0.13 via fe-0/0/0.0

120.120.0.0/16     *[BGP/170] 00:02:13, localpref 100

                      AS path: 65412 65412 I

                    > to 172.16.0.13 via fe-0/0/0.0

The 120.120/16 route associated with C4 is now present, and the AS path clearly 
shows the effects of the as-override knob. While at C3 you decide to conduct some



Case Study: VPNs 795

end-to-end connectivity testing:

lab@C3> traceroute 120.120.0.1

traceroute to 120.120.0.1 (120.120.0.1), 30 hops max, 40 byte packets

 1  172.16.0.13 (172.16.0.13)  0.396 ms  0.296 ms  0.273 ms

 2  10.0.4.14 (10.0.4.14)  0.239 ms  0.211 ms  0.208 ms

     MPLS Label=100002 CoS=0 TTL=1 S=1

 3  120.120.0.1 (120.120.0.1)  0.296 ms  0.277 ms  0.276 ms

lab@C3> traceroute 120.120.0.1 source 130.130.0.1

traceroute to 120.120.0.1 (120.120.0.1) from 130.130.0.1, 30 hops max, 40 byte
   packets

 1  172.16.0.13 (172.16.0.13)  0.384 ms  0.290 ms  0.275 ms

 2  10.0.4.14 (10.0.4.14)  0.220 ms  0.211 ms  0.207 ms

     MPLS Label=100002 CoS=0 TTL=1 S=1

 3  120.120.0.1 (120.120.0.1)  0.293 ms  0.275 ms  0.272 ms

Both traceroute tests succeed, which confirms that you have established basic end-to-end 
connectivity for VPN B. The ability to support traffic originating on a multi-access VRF 
interface is confirmed with the first trace route test. With basic Layer 3 VPN functionality 
confirmed, you move on to address the next case study requirement:
� For VPN B

� The failure of either r1 or r2 can not disable VPN B.

You need to configure r2 with similar VRF and MP-IBGP settings to achieve the redundancy 
required by this criterion; this is a good time for a load merge terminal operation after you 
edit the route distinguisher value for use at r2. The initial changes made to r2 are shown next 
using the CLI’s compare function:

[edit]

lab@r2# show | compare rollback 1

[edit protocols bgp group int neighbor 10.0.3.3]

+      family inet {

+          unicast;

+      }

+      family inet-vpn {

+          unicast;

+      }

 [edit protocols bgp]

-    group p1 {

-        type external;

-        export ebgp-out;

-        neighbor 10.0.5.254 {

-            peer-as 65050;

-        }

-    }



796 Chapter 7 � VPNs

The changes indicate that the required address families have been added to r2, and that the 
pre-existing p1 peering definition has been removed from the main routing instance. This 
portion of the display shows that r2’s fe-0/0/0 interface has been removed from the main OSPF 
routing instance:

[edit protocols ospf area 0.0.0.1]

-     interface fe-0/0/0.0 {

-         passive;

-     }

And the final portion of the display confirms the addition of a c4 VRF to r2; note that the 
RD has been uniquely set based on r2’s router ID while the RT is set to the same value in use 
at r1 and r3:

[edit]

+  routing-instances {

+      c4 {

+          instance-type vrf;

+          interface fe-0/0/0.0;

+          route-distinguisher 10.0.6.2:1;

+          vrf-target target:65412:100;

+          protocols {

+              bgp {

+                  group c4 {

+                      type external;

+                      peer-as 65222;

+                      as-override;

+                      neighbor 10.0.5.254;

+                  }

+              }

+          }

+      }

+  }

After the changes are committed, the presence of C3 and C4 routes in r2’s c4 VRF provides 
good indication that r2 is configured properly:

lab@r2> show route table c4

c4.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.5.0/24        *[Direct/0] 00:32:36

                    > via fe-0/0/0.0

10.0.5.2/32        *[Local/0] 00:32:36

                      Local via fe-0/0/0.0



Case Study: VPNs 797

120.120.0.0/16     *[BGP/170] 00:32:32, MED 0, localpref 100

                      AS path: 65222 I

                    > to 10.0.5.254 via fe-0/0/0.0

130.130.0.0/16     *[BGP/170] 00:02:15, MED 0, localpref 100, from 10.0.3.3

                      AS path: 65222 I

                    > to 10.0.4.1 via fe-0/0/2.0, Push 100012

172.16.0.12/30     *[BGP/170] 00:02:15, localpref 100, from 10.0.3.3

                      AS path: I

                    > to 10.0.4.1 via fe-0/0/2.0, Push 100012

A quick traceroute or two confirms that MPLS forwarding from r2 to C3 is functional:

lab@r2> traceroute routing-instance c4 172.16.0.14

traceroute to 172.16.0.14 (172.16.0.14), 30 hops max, 40 byte packets

 1  10.0.4.1 (10.0.4.1)  0.678 ms  0.504 ms  0.474 ms

     MPLS Label=100012 CoS=0 TTL=1 S=1

 2  172.16.0.14 (172.16.0.14)  0.246 ms  0.229 ms  0.214 ms

lab@r2> traceroute routing-instance c4 130.130.0.1

traceroute to 130.130.0.1 (130.130.0.1), 30 hops max, 40 byte packets

 1  10.0.4.1 (10.0.4.1)  0.708 ms  0.507 ms  0.461 ms

     MPLS Label=100012 CoS=0 TTL=1 S=1

 2  130.130.0.1 (130.130.0.1)  0.239 ms  0.231 ms  0.213 ms

The final redundancy test verifies that VPN connectivity is not permanently impacted by the 
failure of r1 or r2. You start with a traceroute from C4 to determine the current forwarding 
path for traffic flowing from C4 to C3:

[edit routing-instances c4]

lab@r2# run telnet routing-instance c4 10.0.5.254

Trying 10.0.5.254...

Connected to 10.0.5.254.

Escape character is '^]'.

C4 (ttyp1)

login: lab

Password:

Last login: Tue Apr  4 14:48:11 from 172.16.0.13

--- JUNOS 5.6R2.4 built 2003-02-14 23:22:39 UTC

lab@c4> traceroute 130.130.0.1

traceroute to 130.130.0.1 (130.130.0.1), 30 hops max, 40 byte packets



798 Chapter 7 � VPNs

 1  10.0.5.1 (10.0.5.1)  0.385 ms  0.205 ms  0.237 ms

 2  10.0.4.13 (10.0.4.13)  0.632 ms  0.515 ms  0.507 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 3  130.130.0.1 (130.130.0.1)  0.331 ms  0.287 ms  0.277 ms

Noting that r1 is currently the first hop in the traceroute, you temporarily deactivate r1’s 
protocols stanza:

[edit]

lab@r1# deactivate protocols

[edit]

lab@r1# commit

commit complete

After a few moments, the traceroute test is repeated:

lab@c4> traceroute 130.130.0.1

traceroute to 130.130.0.1 (130.130.0.1), 30 hops max, 40 byte packets

 1  10.0.5.2 (10.0.5.2)  0.270 ms  0.263 ms  0.152 ms

 2  10.0.4.1 (10.0.4.1)  0.621 ms  0.515 ms  0.767 ms

     MPLS Label=100003 CoS=0 TTL=1 S=1

 3  130.130.0.1 (130.130.0.1)  0.320 ms  0.283 ms  0.279 ms

The presence of r2 in the first hop, coupled with the successful competition of the traceroute, 
confirms that you have met the stated redundancy requirements. Do not forget to activate the 
protocols stanza on r1 before proceeding! With Layer 3 VPN redundancy verified, you move 
on to the next case study requirement:
� For VPN B:

� Ensure that the loopback addresses of the PE routers are reachable from the customer 
sites, and from within the VRF instances, without altering loopback address reachability 
for P routers.

This requirement can not be accomplished with a non-VRF interface that is used to provide 
a CE with “Internet” access because the requirements stipulate that the PE router’s loopback 
address must also be reachable from within the VRF. Simply placing the router’s loopback interface 
into the VRF instance makes the corresponding address unreachable for P routers. While it may 
be possible in some JUNOS software releases to achieve your goal with RIB group configurations 
and/or static routes with receive next hops, the most expedient solution is to assign a new 
logical unit to the PE’s loopback interface and include the new logical interface in the VRF. The 
changes made to r3 are shown next with highlights:

[edit]

lab@r3# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.3.3/32;



Case Study: VPNs 799

    }

}

unit 1 {

    family inet {

        address 10.0.3.3/32;

    }

}

[edit]

lab@r3# show routing-instances

c3 {

    instance-type vrf;

    interface fe-0/0/2.0;

    interface lo0.1;

    route-distinguisher 10.0.3.3:1;

    vrf-target target:65412:100;

    protocols {

        bgp {

            group c3 {

                type external;

                peer-as 65222;

                as-override;

                neighbor 172.16.0.14;

            }

        }

    }

}

After committing the change, you will find that the loopback addresses of the local and 
remote PE routers are present in the VRF at r1 and r2:

[edit]

lab@r1# run show route table c4 10.0.3.3

c4.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.3/32        *[BGP/170] 00:08:55, localpref 100, from 10.0.3.3

                      AS path: I

                    > to 10.0.4.13 via fe-0/0/1.0, Push 100000

[edit]

lab@r1# run show route table c4 10.0.6.1



800 Chapter 7 � VPNs

c4.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.6.1/32        *[Direct/0] 00:09:00

                    > via lo0.1

However, the loopback address of r2 is missing from r1’s VRF:

[edit]

lab@r1# run show route table c4 10.0.6.2

[edit]

lab@r1#

This condition can be corrected by adding inet-vpn family support to the IBGP session 
between r1 and r2, or by making r3 a route reflector. The latter approach is taken here to 
demonstrate VPN route reflection. The highlighted changes are made to r3’s configuration; 
note that route reflection is enabled at the neighbor level to minimize the impact on the other 
routers in the test bed:

[edit protocols bgp group int]

lab@r3# show

type internal;

local-address 10.0.3.3;

export nhs;

neighbor 10.0.6.1 {

    family inet {

        unicast;

    }

    family inet-vpn {

        unicast;

    }

    cluster 10.0.3.3;

}

neighbor 10.0.6.2 {

    family inet {

        unicast;

    }

    family inet-vpn {

        unicast;

    }

    cluster 10.0.3.3;

}

neighbor 10.0.3.4;

neighbor 10.0.3.5;



Case Study: VPNs 801

neighbor 10.0.9.6;

neighbor 10.0.9.7;

However, the lack of LSP forwarding capability between r1 and r2 results in r2’s loopback 
address being hidden at r1:

[edit]

lab@r1# run show route table c4 10.0.6.2 hidden detail

c4.inet.0: 8 destinations, 10 routes (7 active, 0 holddown, 3 hidden)

10.0.6.2/32 (1 entry, 0 announced)

         BGP    Preference: 170/-101

                Route Distinguisher: 10.0.6.2:1

                Next hop type: Unusable

                State: <Secondary Hidden Int Ext>

                Local AS: 65412 Peer AS: 65412

                Age: 4:20

                Task: BGP_65412.10.0.3.3+1365

                AS path: I (Originator) Cluster list:  10.0.3.3

                AS path:  Originator ID: 10.0.6.2

                Communities: target:65412:100

                VPN Label: 100003

                Localpref: 100

                Router ID: 10.0.3.3

The route is hidden because it can not be resolved through an LSP in the inet.3 routing 
table. Adding LDP and MPLS support to the Fast Ethernet link connecting r1 and r2 resolves 
the issue. Modifications similar to those shown here for r1 are also needed at r2:

[edit]

lab@r1# set interfaces fe-0/0/2 unit 0 family mpls

[edit]

lab@r1# set protocols ldp interface fe-0/0/2

[edit]

lab@r1# set protocols mpls interface fe-0/0/2

With the changes committed, the loopback addresses of all three PE routers are confirmed in 
the VRF tables of all PE routers:

[edit]

lab@r2# run show route table c4 10.0.3.3

c4.inet.0: 8 destinations, 10 routes (8 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both



802 Chapter 7 � VPNs

10.0.3.3/32        *[BGP/170] 00:01:28, localpref 100, from 10.0.3.3

                      AS path: I

                    > to 10.0.4.1 via fe-0/0/2.0, Push 100000

[edit]

lab@r2# run show route table c4 10.0.6/24

c4.inet.0: 8 destinations, 10 routes (8 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.6.1/32        *[BGP/170] 00:01:18, localpref 100, from 10.0.3.3

                      AS path: I

                    > to 10.0.4.5 via fe-0/0/3.0, Push 100003

10.0.6.2/32        *[Direct/0] 00:20:51

                    > via lo0.1

Although the loopback addresses are present in the VRFs, you need to create and apply a 
routing-instance export policy to effect the advertisement of the direct routes to the attached 
CE routers; without such a policy, only loopback addresses learned through BGP are advertised:

[edit]

lab@r1# run show route advertising-protocol bgp 10.0.5.254 10.0.6/24

c4.inet.0: 8 destinations, 10 routes (8 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

* 10.0.6.2/32             Self                                    I

The changes shown here are for r3. Similar changes are required on r1 and r2.

[edit]

lab@r3# show policy-options policy-statement send-lo0

term 1 {

    from {

        protocol direct;

        route-filter 10.0.3.3/32 exact;

    }

    then accept;

}

[edit]

lab@r3# show routing-instances c3 protocols bgp

group c3 {

    type external;

    export send-lo0;



Case Study: VPNs 803

    peer-as 65222;

    as-override;

    neighbor 172.16.0.14;

}

Proper operation is confirmed when all three loopback addresses are present at both CE 
devices, which is now the case for C4 and C3 (not shown):

lab@c4> show route protocol bgp 10.0.3.3

inet.0: 11 destinations, 16 routes (11 active, 0 holddown, 2 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.3.3/32        *[BGP/170] 00:32:35, localpref 100

                      AS path: 65412 I

                    > to 10.0.5.1 via fe-0/0/0.0

                    [BGP/170] 00:32:31, localpref 100

                      AS path: 65412 I

                    > to 10.0.5.2 via fe-0/0/0.0

lab@c4> show route protocol bgp 10.0.6/24

inet.0: 11 destinations, 16 routes (11 active, 0 holddown, 2 hidden)

+ = Active Route, - = Last Active, * = Both

10.0.6.1/32        *[BGP/170] 00:25:03, localpref 100

                      AS path: 65412 I

                    > to 10.0.5.2 via fe-0/0/0.0

10.0.6.2/32        *[BGP/170] 00:25:14, localpref 100

                      AS path: 65412 I

                    > to 10.0.5.1 via fe-0/0/0.0

Traceroute testing at r1 from the main routing instance, and from the c4 instance, confirms 
loopback address reachability from within the VRF and also confirms that loopback reach-
ability remains unchanged for P routers, which rely on the main instance for loopback reachability:

[edit]

lab@r1# run traceroute 10.0.3.3

traceroute to 10.0.3.3 (10.0.3.3), 30 hops max, 40 byte packets

 1  10.0.3.3 (10.0.3.3)  0.482 ms  0.396 ms  0.346 ms

[edit]

lab@r1# run traceroute 10.0.3.3 routing-instance c4

traceroute to 10.0.3.3 (10.0.3.3), 30 hops max, 40 byte packets



804 Chapter 7 � VPNs

 1  10.0.3.3 (10.0.3.3)  0.679 ms  0.508 ms  0.462 ms

     MPLS Label=100000 CoS=0 TTL=1 S=1

 2  10.0.3.3 (10.0.3.3)  0.467 ms  0.453 ms  0.424 ms

The results shown thus far indicate that you have met all behavior requirements and 
configuration restrictions, save one. This brings you face to face with the final case study 
requirement for VPN B:
� For VPN B:

� You must count all ICMP traffic that egresses r3’s fe-0/0/2 interface.

The specified behavior requires that you make IP II functionality available at r3 for egress 
VPN traffic. Both the vrf-table-label and vt-interface options provide IP II functionality 
at the egress of a Layer 3 VPN, and both options have restrictions as to when they can be used. 
The JUNOS software release 5.6 deployed in the test bed supports vrf-table-label only when 
the PE router’s core-facing interfaces are point-to-point. The presence of core-facing Ethernet 
interfaces at r3 therefore eliminates the vrf-table-label option. The use of a vt-interface 
requires that the PE routers have a Tunnel Services (TS) PIC installed, which as luck would have 
it, happens to be the case with r3:

[edit]

lab@r3# run show chassis fpc pic-status

Slot 0 Online

  PIC 0    4x F/E, 100 BASE-TX

  PIC 1    2x OC-3 ATM, MM

  PIC 2    4x OC-3 SONET, MM

  PIC 3    1x Tunnel

You begin by adding the vt-interface to the c3 VRF table at r3:

[edit routing-instances c3]

lab@r3# set interface vt-0/3/0

In this example, the vt-interface defaults to logical unit 0 because no unit number was 
specified. Use care to ensure that each additional VRF uses a unique vt-interface unit 
number for proper operation. The modified VRF table is displayed next with added highlights:

[edit routing-instances c3]

lab@r3# show

instance-type vrf;

interface fe-0/0/2.0;

interface vt-0/3/0.0;

route-distinguisher 10.0.3.3:1;

vrf-target target:65412:100;

protocols {

    bgp {

        group c3 {

            type external;



Case Study: VPNs 805

            peer-as 65222;

            as-override;

            neighbor 172.16.0.14;

        }

    }

}

Before the vt-interface can operate within the VRF, you must configure the inet family 
on the corresponding logical unit, as shown here:

[edit interfaces vt-0/3/0]

lab@r3# show

unit 0 {

    family inet;

}

After committing the changes, you will see that vt-interface status is displayed:

lab@r3> show interfaces vt-0/3/0

Physical interface: vt-0/3/0, Enabled, Physical link is Up

  Interface index: 26, SNMP ifIndex: 37

  Type: Loopback, Link-level type: Virtual-loopback-tunnel, MTU: Unlimited,
     Speed: 800mbps

  Device flags   : Present Running

  Interface flags: SNMP-Traps

  Input rate     : 0 bps (0 pps)

  Output rate    : 0 bps (0 pps)

  Logical interface vt-0/3/0.0 (Index 13) (SNMP ifIndex 39)

    Flags: Point-To-Point SNMP-Traps Encapsulation: Virtual-loopback-tunnel

    Bandwidth: 0

    Protocol inet, MTU: Unlimited

      Flags: None

The output indicates the vt-interface is operational. You move forward on the final task 
by defining a simple firewall filter that counts ICMP packets:

[edit]

lab@r3# show firewall

filter c3 {

    term 1 {

        from {

            protocol icmp;

        }

        then count vpnb-icmp;

    }



806 Chapter 7 � VPNs

    term 2 {

        then accept;

    }

}

The c3 filter is then applied in the output direction of r3’s VRF interface:

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        filter {

            output c3;

        }

        address 172.16.0.13/30;

    }

}

After committing the changes, clear the firewall counters and display the vpnb-icmp 
counter:

lab@r3> clear firewall all

lab@r3> show firewall

Filter: c3

Counters:

Name                                                Bytes              Packets

vpnb-icmp                                               0                    0

The display confirms that the current vpnb-icmp counter value is zero. You now generate 
100 test packets from C4:

lab@c4> ping 130.130.0.1 rapid count 100

PING 130.130.0.1 (130.130.0.1): 56 data bytes

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
   !!!!!!!!!!!!!!!!!!!!

--- 130.130.0.1 ping statistics ---

100 packets transmitted, 100 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.279/0.286/0.463/0.024 ms

lab@c4>

And the results are verified at r3:

lab@r3> show firewall

Filter: c3

Counters:

Name                                                Bytes              Packets

vpnb-icmp                                            8400                  100



Case Study: VPNs 807

The vpnb-icmp counter displays the exact number of ICMP packets generated during the 
test. This confirms that your vt-interface and firewall-related configuration is working as 
designed. Congratulations are now in order, because you have met all requirements posed in the 
VPN case study!

VPN Case Study Configurations

The changes needed in the OSPF baseline network topology to complete the VPN case study are 
listed in Listings 7.1 through 7.7 for all routers in the test bed, with highlights added.

Listing 7.1: VPN Case Study Configuration for r1

[edit]

lab@r1# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.4.14/30;

    }

    family mpls;

}

[edit]

lab@r1# show interfaces fe-0/0/2

unit 0 {

    family inet {

        address 10.0.4.5/30;

    }

    family mpls;

}

[edit]

lab@r1# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.6.1/32;

    }

}

unit 1 {

    family inet {

        address 10.0.6.1/32;

    }

}

[edit]

lab@r1# show protocols



808 Chapter 7 � VPNs

mpls {

    interface fe-0/0/1.0;

    interface fe-0/0/2.0;

}

bgp {

    group int {

        type internal;

        local-address 10.0.6.1;

        neighbor 10.0.6.2;

        neighbor 10.0.3.3 {

            family inet {

                unicast;

            }

            family inet-vpn {

                unicast;

            }

        }

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

}

ospf {

    area 0.0.0.1 {

        stub;

        interface fe-0/0/1.0;

        interface fe-0/0/2.0;

        interface fe-0/0/3.0;

    }

}

ldp {

    interface fe-0/0/1.0;

    interface fe-0/0/2.0;

}

[edit]

lab@r1# show routing-instances

c4 {

    instance-type vrf;

    interface fe-0/0/1.0;

    interface lo0.1;

    route-distinguisher 10.0.6.1:1;



Case Study: VPNs 809

    vrf-target target:65412:100;

    protocols {

        bgp {

            group c4 {

                type external;

                peer-as 65222;

                as-override;

                neighbor 10.0.5.254;

            }

        }

    }

}

The following items were deleted from r1’s OSPF baseline configuration to complete the 
VPN case study:

[edit protocols bgp]

-    group p1 {

-        type external;

-        export ebgp-out;

-        neighbor 10.0.5.254 {

-            peer-as 65050;

-        }

-    }

[edit protocols ospf area 0.0.0.1]

-     interface fe-0/0/0.0 {

-         passive;

-     }

Listing 7.2: VPN Case Study Configuration for r2

[edit]

lab@r2# show interfaces fe-0/0/2

unit 0 {

    family inet {

        address 10.0.4.2/30;

    }

    family mpls;

}

[edit]

lab@r2# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 10.0.4.6/30;

    }



810 Chapter 7 � VPNs

    family mpls;

}

[edit]

lab@r2# show interfaces lo0

unit 0 {

    family inet {

        address 10.0.6.2/32;

    }

}

unit 1 {

    family inet {

        address 10.0.6.2/32;

    }

}

[edit]

lab@r2# show protocols

mpls {

    interface fe-0/0/2.0;

    interface fe-0/0/3.0;

}

bgp {

    group int {

        type internal;

        local-address 10.0.6.2;

        neighbor 10.0.6.1;

        neighbor 10.0.3.3 {

            family inet {

                unicast;

            }

            family inet-vpn {

                unicast;

            }

        }

        neighbor 10.0.3.4;

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

}

ospf {



Case Study: VPNs 811

    area 0.0.0.1 {

        stub;

        interface fe-0/0/1.0;

        interface fe-0/0/2.0;

        interface fe-0/0/3.0;

    }

}

ldp {

    interface fe-0/0/2.0;

    interface fe-0/0/3.0;

}

[edit]

lab@r2# show routing-instances

c4 {

    instance-type vrf;

    interface fe-0/0/0.0;

    interface lo0.1;

    route-distinguisher 10.0.6.2:1;

    vrf-target target:65412:100;

    protocols {

        bgp {

            group c4 {

                type external;

                peer-as 65222;

                as-override;

                neighbor 10.0.5.254;

            }

        }

    }

}

The following items were deleted from r2’s OSPF baseline configuration to complete the 
VPN case study:

[edit protocols bgp]

-    group p1 {

-        type external;

-        export ebgp-out;

-        neighbor 10.0.5.254 {

-            peer-as 65050;

-        }

-    }



812 Chapter 7 � VPNs

[edit protocols ospf area 0.0.0.1]

-     interface fe-0/0/0.0 {

-         passive;

-     }

Listing 7.3: VPN Case Study Configuration for r3

[edit]

lab@r3# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.4.13/30;

    }

    family mpls;

}

[edit]

lab@r3# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.4.1/30;

    }

    family mpls;

}

[edit]

lab@r3# show interfaces fe-0/0/2

unit 0 {

    family inet {

        filter {

            output c3;

        }

        address 172.16.0.13/30;

    }

}

[edit]

lab@r3# show interfaces vt-0/3/0

unit 0 {

    family inet;

}

[edit]

lab@r3# show interfaces lo0

unit 0 {

    family inet {



Case Study: VPNs 813

        address 10.0.3.3/32;

    }

}

unit 1 {

    family inet {

        address 10.0.3.3/32;

    }

}

[edit]

lab@r3# show protocols

mpls {

    interface fe-0/0/0.0;

    interface fe-0/0/1.0;

}

bgp {

    advertise-inactive;

    group int {

        type internal;

        local-address 10.0.3.3;

        export nhs;

        neighbor 10.0.6.1 {

            family inet {

                unicast;

            }

            family inet-vpn {

                unicast;

            }

            cluster 10.0.3.3;

        }

        neighbor 10.0.6.2 {

            family inet {

                unicast;

            }

            family inet-vpn {

                unicast;

            }

            cluster 10.0.3.3;

        }

        neighbor 10.0.3.4;



814 Chapter 7 � VPNs

        neighbor 10.0.3.5;

        neighbor 10.0.9.6;

        neighbor 10.0.9.7;

    }

}

ospf {

    area 0.0.0.1 {

        stub default-metric 10;

        interface fe-0/0/0.0;

        interface fe-0/0/1.0;

    }

    area 0.0.0.0 {

        interface so-0/2/0.100;

        interface at-0/1/0.0;

    }

    area 0.0.0.2 {

        nssa {

            default-lsa default-metric 10;

        }

        interface fe-0/0/3.0;

    }

}

ldp {

    interface fe-0/0/0.0;

    interface fe-0/0/1.0;

}

[edit]

lab@r3# show policy-options policy-statement send-lo0

term 1 {

    from {

        protocol direct;

        route-filter 10.0.3.3/32 exact;

    }

    then accept;

}

[edit]

lab@r3# show firewall

filter c3 {

    term 1 {

        from {

            protocol icmp;



Case Study: VPNs 815

        }

        then count vpnb-icmp;

    }

    term 2 {

        then accept;

    }

}

[edit]

lab@r3# show routing-instances

c3 {

    instance-type vrf;

    interface fe-0/0/2.0;

    interface vt-0/3/0.0;

    interface lo0.1;

    route-distinguisher 10.0.3.3:1;

    vrf-target target:65412:100;

    protocols {

        bgp {

            group c3 {

                type external;

                peer-as 65222;

                as-override;

                neighbor 172.16.0.14;

            }

        }

    }

}

The following items were deleted from r3’s OSPF baseline configuration to complete the 
VPN case study:

[edit protocols bgp]

-    group ext {

-        import ebgp-in;

-        export ebgp-out;

-        neighbor 172.16.0.14 {

-            peer-as 65222;

-        }

-    }

Listing 7.4: VPN Case Study Configuration for r4

[edit]

lab@r4# show interfaces fe-0/0/0



816 Chapter 7 � VPNs

vlan-tagging;

encapsulation vlan-ccc;

unit 0 {

    vlan-id 1;

    family inet {

        address 172.16.0.5/30;

    }

}

unit 700 {

    encapsulation vlan-ccc;

    vlan-id 700;

    family ccc;

}

[edit]

lab@r4# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 10.0.2.18/30;

    }

    family mpls;

}

[edit]

lab@r4# show interfaces so-0/1/1

encapsulation ppp;

unit 0 {

    family inet {

        address 10.0.2.10/30;

    }

    family mpls;

}

[edit]

lab@r4# show protocols mpls

interface so-0/1/1.0;

interface fe-0/0/3.0;

[edit]

lab@r4# show protocols ldp

interface fe-0/0/3.0;

interface so-0/1/1.0;

interface lo0.0;



Case Study: VPNs 817

[edit]

lab@r4# show protocols l2circuit

neighbor 10.0.9.6 {

    interface fe-0/0/0.700 {

        virtual-circuit-id 700;

    }

}

Note that the c1 EBGP peer group definition from the OSPF baseline configuration is no 
longer needed at r4. It was not deleted because it caused no operational impact.

Listing 7.5: VPN Case Study Configuration for r5

[edit]

lab@r5# show interfaces fe-0/0/0

unit 0 {

    family inet {

        address 10.0.8.6/30;

    }

    family mpls;

}

[edit]

lab@r5# show interfaces fe-0/0/1

unit 0 {

    family inet {

        address 10.0.8.9/30;

    }

    family mpls;

}

[edit]

lab@r5# show interfaces so-0/1/0

encapsulation ppp;

unit 0 {

    family inet {

        address 10.0.2.9/30;

    }

    family mpls;

}

[edit]

lab@r5# show protocols mpls

interface fe-0/0/0.0;



818 Chapter 7 � VPNs

interface so-0/1/0.0;

interface fe-0/0/1.0;

[edit]

lab@r5# show protocols ldp

interface fe-0/0/0.0;

interface fe-0/0/1.0;

interface so-0/1/0.0;

Listing 7.6: VPN Case Study Configuration for r6

[edit]

lab@r6# show interfaces fe-0/1/0

unit 0 {

    family inet {

        address 10.0.8.5/30;

    }

    family mpls;

}

[edit]

lab@r6# show interfaces fe-0/1/3

vlan-tagging;

encapsulation vlan-ccc;

unit 0 {

    vlan-id 1;

    family inet {

        address 172.16.0.9/30;

    }

}

unit 700 {

    encapsulation vlan-ccc;

    vlan-id 700;

    family ccc;

}

[edit]

lab@r6# show protocols mpls

interface fe-0/1/0.0;

[edit]

lab@r6# show protocols ldp

interface fe-0/1/0.0;

interface lo0.0;



Case Study: VPNs 819

[edit]

lab@r6# show protocols l2circuit

neighbor 10.0.3.4 {

    interface fe-0/1/3.700 {

        virtual-circuit-id 700;

    }

}

Note that the c2 EBGP peer group definition from the OSPF baseline configuration is no 
longer needed at r6. It was not deleted because it resulted in no operational impact.

Listing 7.7: VPN Case Study Configuration for r7

[edit]

lab@r7# show interfaces fe-0/3/1

unit 0 {

    family inet {

        address 10.0.8.10/30;

    }

    family mpls;

}

[edit]

lab@r7# show interfaces fe-0/3/3

unit 0 {

    family inet {

        address 10.0.2.17/30;

    }

    family mpls;

}

[edit]

lab@r7# show protocols mpls

interface fe-0/3/1.0;

interface fe-0/3/3.0;

[edit]

lab@r7# show protocols ldp

interface fe-0/3/1.0;

interface fe-0/3/3.0;

Note that the c1 EBGP peer group definition from the OSPF baseline configuration is no 
longer needed at r7. It was left in place because it caused no operational impact.



820 Chapter 7 � VPNs

Spot the Issues: Review Questions
1. Using the Layer 2 VPN topology from the case study, you are finding that sometimes telnet 

sessions between C1 and C2 seem to “hang,” as shown below. Do you have any idea what might 
be causing this problem?

lab@c1> telnet 220.220.0.1

Trying 220.220.0.1...

Connected to 220.220.0.1.

Escape character is '^]'.

c2 (ttyp1)

login: lab

Password:

Last login: Fri Jun 20 23:05:38 from 172.16.0.9

--- JUNOS 5.2R2.3 built 2002-03-23 02:44:36 UTC

lab@c2> show route 200.200/16

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

200.200.0.0/16     *[RIP/100] 00:04:51, metric 2

                    > to 192.168.32.1 via fe-0/0/0.700

200.200.1.0/24     *[RIP/100] 00:04:51, metric 2

                    > to 192.168.32.1 via fe-0/0/0.700

lab@c2> show configuration | no-more

<session hangs>

Ctrl-d

telnet> quit

Connection closed.

2. Can you spot the problem in the case study configuration of r3? The c3 VRF contains all the 
expected routes, but VRF pings and traceroutes initiated at r3 to C4 destinations fail.

[edit]

lab@r3# show routing-instances

c3 {

    instance-type vrf;



Spot the Issues: Review Questions 821

    interface fe-0/0/2.0;

    interface lo0.1;

    route-distinguisher 10.0.3.3:1;

    vrf-target target:65412:100;

    vrf-table-label;

    protocols {

        bgp {

            group c3 {

                type external;

                peer-as 65222;

                as-override;

                neighbor 172.16.0.14;

            }

        }

    }

}

[edit]

lab@r3# show interfaces fe-0/0/3

unit 0 {

    family inet {

        address 10.0.2.14/30;

    }

}

[edit]

lab@r3# show firewall

filter c3 {

    term 1 {

        from {

            protocol icmp;

        }

        then {

            count vpnb-icmp;

            next term;

        }

    }

    term 2 {

        then accept;

    }

}



822 Chapter 7 � VPNs

3. In the case study topology, you observe that r2 is advertising C4 routes to r3, but r3 does not 
display the receipt of these routes, even when the all switch is used. Any ideas on what might 
cause the symptoms shown here?

lab@r2> show route advertising-protocol bgp 10.0.3.3 120.120/16 detail

c4.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

* 120.120.0.0/16 (1 entry, 1 announced)

 BGP group int type Internal

     Route Distinguisher: 10.0.6.2:1

     VPN Label: 100004

     Nexthop: Self

     MED: 0

     Localpref: 100

     AS path: 65222 I

 Communities: target:64512:100

[edit]

lab@r3# run show route receive-protocol bgp 10.0.6.2 all

inet.0: 29 destinations, 31 routes (29 active, 0 holddown, 0 hidden)

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

c3.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)

mpls.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)

bgp.l3vpn.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

[edit]

lab@r3#

4. r4 is configured for a Layer 3 VPN with OSPF-based PE-CE routing as in the topology shown 
earlier in Figure 7.5. You notice that r4 is not sending C2’s routes, as learned from r6, to C1. 
Can you spot the problem in its configuration?

[edit]

lab@r4# show routing-instances

c1-ospf {

    instance-type vrf;

    interface fe-0/0/0.0;



Spot the Issues: Review Questions 823

    route-distinguisher 65412:1;

    vrf-import c1-import;

    vrf-export c1-export;

    protocols {

        ospf {

            domain-id 10.0.3.4;

            export bgp-ospf;

            area 0.0.0.0 {

                interface all;

            }

        }

    }

}

[edit]

lab@r4# show policy-options policy-statement bgp-ospf

term 1 {

    from protocol ospf;

    then accept;

}

[edit]

lab@r4# show policy-options policy-statement c1-import

term 1 {

    from {

        protocol bgp;

        community c1-c2-vpn;

    }

    then accept;

}

[edit]

lab@r4# show policy-options policy-statement c1-export

term 1 {

    from protocol ospf;

    then {

        community add c1-c2-vpn;

        community add domain;

        accept;

    }

}



824 Chapter 7 � VPNs

term 2 {

    from {

        protocol direct;

        route-filter 172.16.0.4/30 exact;

    }

    then {

        community add c1-c2-vpn;

        accept;

    }

}

5. What changes are required to r5’s configuration to make it function as a route reflector for the 
Layer 3 VPN deployed in the case study?



Spot the Issues: Answers to Review Questions 825

Spot the Issues: Answers to Review 
Questions
1. The issue here relates to the default MTU on the Fast Ethernet core interfaces in the network’s 

core, and the fact that this MTU is not large enough to accommodate the overhead that results 
when the PE encapsulates the customer’s VLAN tagged Ethernet frame inside of another Ethernet 
frame while also adding two MPLS labels and a 4-byte Martini control word.

The default Fast Ethernet MPLS MTU setting is 1488, which is designed to accommodate the 
addition of up to three MPLS labels (12 bytes) without producing jumbo frames; the largest 
IP packet that can be generated by the CE device is therefore 1462 bytes, which yields 1442 bytes 
of transport and application layer data when a default IP header length is in effect. When the CE 
adds the 14 bytes of Ethernet encapsulation and the 4-byte VLAN tag, the total frame length 
becomes 1480 bytes. When these 1480 byte frames are received by the PE router, the addition 
of the 4-byte Martini control word, and the 4-byte VC label brings the total MPLS family 
protocol data unit size to the 1488-byte MTU limit. Unlike a Layer 3 VPN, Layer 2 VPNs can 
not perform fragmentation. In this example, the TCP-based telnet session appears to hang when 
the application generates IP packets that exceed the 1462-byte limit described earlier. This MTU 
problem did not occur in the chapter’s body, or in the case study, because the CE devices for 
VPN A were configured with an IP MTU of 1462 bytes on their Layer 2 VPN interfaces. Another 
workaround is to increase the MTU on your Fast Ethernet core interfaces to enable “Jumbo” 
frames. By default, SONET interfaces support a device MTU of 4474, which is plenty large 
enough to support Layer 2 VPN customers that are Fast Ethernet attached with default MTUs 
in effect.

2. The problem relates to the use of the vrf-table-label option on a router whose core-facing 
interfaces are not point-to-point. The 5.6 release of JUNOS software does not support the 
vrf-table-label option when the PE’s core interfaces are multi-point, such as in the case of 
Fast Ethernet. Given the specifics of the current test bed, you must use the vt-interface option 
(in conjunction with a TS PIC) to obtain IP II functionality at the egress PE.

3. The most likely cause for a control plane problem such as this is mismatched route targets. Note that 
routes with at least one matching RT are installed in the l3vpn.bgp table, as well as in any matching 
VRFs. When the received RT does not match at least one VRF, the route is not retained in the
Adj-RIB-in, and therefore the all switch has no effect on the output of the show route receive-
protocol command. When you suspect that mismatched RTs are the problem, you might want 
to temporarily enable the keep-all option (which is on by default for a route reflector), because 
this results in the router retaining routes that do not match any locally configured RTs:

[edit]

lab@r3# set protocols bgp keep all

[edit]

lab@r3# commit

commit complete



826 Chapter 7 � VPNs

[edit]

lab@r3# run clear bgp neighbor 10.0.6.2 soft-inbound

[edit]

lab@r3# run show route receive-protocol bgp 10.0.6.2

inet.0: 29 destinations, 31 routes (29 active, 0 holddown, 0 hidden)

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

c3.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)

mpls.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)

bgp.l3vpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)

  Prefix                  Nexthop              MED     Lclpref    AS path

  10.0.6.2:1:10.0.5.0/24

*                         10.0.6.2                     100        I

  10.0.6.2:1:10.0.6.2/32

*                         10.0.6.2                     100        I

  10.0.6.2:1:120.120.0.0/16

*                         10.0.6.2             0       100        65222 I

In this example, the problem is caused by the configuration of an erroneous RT at r2. The actual 
RT community can be viewed by including the detail switch. 

4. The problem lies in the OSPF-based match condition in the first term of the bgp-ospf policy. 
Recall that the routes received from r6 are learned though BGP, and that the default OSPF 
export policy does not redistribute BGP routes into OSPF. This type of routing instance export 
policy is not needed when the PE-CE link runs BGP because the default BGP export policy 
accepts active BGP routes. To correct the problem, change the firm term to match on the BGP 
protocol as shown next:

[edit]

lab@r4# show policy-options policy-statement bgp-ospf

term 1 {

    from protocol bgp;

    then accept;

}



Spot the Issues: Answers to Review Questions 827

5. You need to add a cluster ID to its int peer group and add support for the inet-vpn and l2vpn 
families:

[edit protocols bgp group int]

lab@r5# show

type internal;

local-address 10.0.3.5;

family inet {

    unicast;

}

family inet-vpn {

    unicast;

}

family l2vpn {

    unicast;

}

cluster 10.0.3.5;

neighbor 10.0.6.1;

neighbor 10.0.6.2;

neighbor 10.0.3.3;

neighbor 10.0.3.4;

neighbor 10.0.9.6;

neighbor 10.0.9.7;

A VPN route reflector does not require any target community or explicit VRF policy configuration 
because the keep-all option is enabled automatically when acting as a route reflector. Even 
though the route reflector is not actually in the VPN’s forwarding path, it hides routes that can-
not be resolved through the inet.3 routing table. You therefore also need to add LDP support 
to r5’s at-0/2/1 interface, and ensure that r1 thorough r4 are appropriately configured with LDP 
support to allow the establishment of LDP signaled LSPs from r5 to the loopback address of 
all PE routers r1, r2, and r3. Once so configured, you can remove the IBGP peering statements 
that currently provide a full IBGP mesh between r1 through r3. 





 

Index

 

Note to the Reader:

 

 Throughout this index 

 

boldfaced

 

 page numbers indicate primary discussions of 
a topic. 

 

Italicized

 

 page numbers indicate illustrations.

 

A

 

accept action
for firewall filters, 321

ICMP policing, 308
RE, 285
transit, 301

for LSP-to-prefix mapping, 189
for multifield classification, 626

accept-all action
for firewall filters, 321

Filter Based Forwarding, 326
transit, 302

for traffic sampling, 331
access-log term, 353–354
activate label-switched-path

command, 211
activate protocols dvmrp command, 428
active prefixes for MPLS

case study, 234
installing, 

 

177–178

 

for routing table integration, 172
verifying, 

 

178–179

 

actual bandwidth for CSPF, 162
adaptive keyword for MPLS

case study, 238–239
for secondary paths, 198

addresses
families, 

 

625

 

IPv6, 

 

510–513

 

, 

 

512

 

assigning, 

 

513–515

 

and neighbor discovery, 

 

522

 

verifying, 

 

515–520

 

adjacencies
with firewall filters, 280
in IGP discovery, 8, 73
in IS-IS routing protocol, 5

adjust-interval setting, 222
administration groups for CSPF, 163
advertise-inactive option

in EBGP, 29–30, 33
in IBGP, 23

advertisements, router
configuring, 

 

515

 

verifying, 

 

520–521

 

AF (Assured Forwarding), 624
affinities for CSPF, 163
aggregate routes

for EBGP, 26–27, 30, 545
for IBGP, 560
for IGP, 77–78, 80
for MPLS, 245–246

aggressive setting for preemption, 208
all keyword in MPLS, 130
announce messages, Auto-RP, 456
Any-Cast technique

with MSDP
configuring, 

 

465–470

 

, 

 

466

 

verifying, 

 

470–472

 

in PIM-SM, 430
AnyCast group, 510
applying firewall filters

RE, 

 

286–299

 

transit, 

 

303–307

 

ASNs (Autonomous System Numbers),
21, 700

Assured Forwarding (AF), 624
auto-bandwidth feature for MPLS, 220
Auto-RP for PIM SM, 430

configuring, 

 

455–459

 

, 

 

455

 

verifying, 

 

459–463

 

automatic bandwidth reservations, 

 

220–223

 

automatic prefix installation, 179
Autonomous System Numbers (ASNs),

21, 700

 

B

 

BA (behavior aggregate) classification,
624, 631

configuring, 

 

631–634

 

verifying, 

 

634–635

 

backwards routing, 441



 

830

 

bandwidth – case studies

 

bandwidth
reservations

in CSPF, 162
in MPLS, 

 

220–223

 

for secondary paths, 195
bandwidth-limit option, 364
bandwidth-percent option, 364
baseline configurations

IS-IS network, 

 

82

 

r1, 

 

82–86

 

r2, 

 

86–90

 

r3, 

 

90–96

 

r4, 

 

96–102

 

r5, 

 

102–106

 

r6, 

 

106–111

 

r7, 

 

111–116

 

MPLS, 

 

141–148

 

, 

 

142

 

OSPF network, 37
in MPLS case study, 

 

224–247

 

, 

 

224

 

r1, 

 

37–40

 

r2, 

 

40–44

 

r3, 

 

44–49

 

r4, 

 

49–53

 

r5, 

 

53–57

 

r6, 

 

57–61

 

r7, 

 

62–66

 

BE (Best Effort) forwarding, 624
BE traffic, schedulers for

configuring, 

 

651–655

 

verifying, 

 

655–659

 

behavior aggregate (BA) classification,
624, 631

configuring, 

 

631–634

 

verifying, 

 

634–635

 

Best Effort (BE) forwarding, 624
best-effort counter, 630
BGP

for IPv6, 

 

540–541

 

, 

 

541–542

 

port assignments for, 345
and static routing

configuring, 

 

708–712

 

, 

 

709

 

verifying, 

 

712–727

 

bgp-ospf export policy, 738
bgp term in firewall filter case study, 353
BOOT service port assignments, 345
bootstrap protocol in PIM-SM, 430

configuring, 

 

441–445

 

, 

 

443

 

verifying, 

 

445–455

 

broadcast trees, 430
bundles for MPLS, 245
bypass-routing, 139

 

C

 

c1-c2-vpn policy, 732
c1-export policy, 745
c1-in filter, 

 

299–301

 

, 305, 325–326
c1-ospf routing instance, 737–738
c1-out filter, 

 

301–303

 

, 305–307
C1 router

for CoS case study, 

 

670–671

 

for firewall filters
case study, 

 

355–356

 

, 

 

372–374

 

Filter Based Forwarding, 

 

327

 

for IPv6 tunneling, 

 

577

 

for LDP signaled LSP verification, 138–139
for VPNs

with BGP and static routing, 

 

716–717

 

, 

 

719

 

, 

 

723

 

case study, 

 

785

 

draft-Kompella, 

 

748–750

 

Internet access from non-VRF 
interface, 

 

764–765

 

with OSPF, 

 

729–731

 

, 

 

739

 

redundancy and route filtering, 

 

741–744

 

c1-syns counter, 301, 303–304
c2-export policy, 732–733
c2-import policy, 732
c2-ospf policy, 731–735, 737
C2 router for VPNs

draft-Kompella, 

 

760

 

draft-Martini, 

 

772–773

 

Internet access from non-VRF 
interface, 

 

765–766

 

Layer 3, 

 

717–720

 

, 

 

724

 

C3 router for VPN case study, 

 

794–795

 

C4 router for VPN case study, 

 

793

 

, 

 

797–798

 

, 

 

803

 

, 

 

806

 

case studies
CoS, 

 

667–669

 

analysis, 

 

669–680

 

configurations, 

 

680–688

 

firewall filters, 

 

346–349

 

, 

 

346

 

, 

 

348

 

analysis, 

 

349–376

 

configurations, 

 

376–393

 

IPv6, 

 

578–579

 

, 

 

579–580

 

analysis, 

 

580–597

 

configurations, 

 

597–615

 

MPLS and traffic engineering, 

 

223–226

 

, 

 

224–225

 

analysis, 

 

226–247

 

configurations, 

 

247–268



 

CCC (Circuit Cross Connect) – configuring

 

831

 

multicast, 

 

480–481

 

, 

 

481

 

analysis, 

 

481–494

 

, 

 

482

 

configurations, 

 

494–499

 

network discovery and validation
analysis, 

 

67–82

 

, 

 

82

 

configurations, 

 

82–116

 

VPNs, 

 

775–776

 

, 

 

775

 

, 

 

777

 

analysis, 

 

778–807

 

configurations, 

 

807–819

 

CCC (Circuit Cross Connect), 747
Cell Loss Priority (CLP) bit, 642
cflowd export, 

 

334–335

 

configuring, 

 

335

 

verifying, 

 

335–337

 

Circuit Cross Connect (CCC), 747
Class of Service. 

 

See

 

 CoS (Class of Service)
classifier filter, 628
classify filter, 626–627, 629, 631
clear firewall all command

for firewall filters
case study, 364, 372
prefix-specific counting, 320

for VPN case study, 806
clear igmp statistics command, 410
clear interfaces statistics command, 629
clear mpls lsp command, 169–171
CLP (Cell Loss Priority) bit, 642
commit command

for CoS
DSCP rewrites, 639
schedulers, 659

for firewall filters
RE, 288, 293
transit, 303

for IPv6
EBGP, 545
OSPF, 540
RIPng, 525
tunneling, 563

for MPLS
LSP forwarding, 215–217
LSP policing, 312
preemption, 211
processing enabling, 131
RSVP signal enabling, 149
RSVP signaled LSPs, 153, 157
secondary paths, 200–201

for multicast
case study, 487
DVMRP, 428

PIM DM, 432
PIM SM, 463

for VPNs
case study, 788, 792
draft-Martini, 770

commit and-quit command, 407–408
commit check command, 774
commit complete message command, 287
commit confirmed command for firewall 

filters
benefits of, 321
case study, 356
RE, 287

configure command, 356
configuring

COS
BA classification, 631–634
case study, 680–688
DSCP rewrites, 636–639
loss priority, 642–646, 643
multifield classification, 625–628
RED profiles, 661–664
schedulers, 651–655

firewall filters
case study, 376–393
cflowd export, 335
Filter Based Forwarding, 322–326
ICMP policing, 307–308
port mirroring, 338–340, 338
PSCP, 314–316
traffic sampling, 330–332

IPv6
case study, 597–615
EBGP peering, 542–543
IBGP peering, 546–558
OSPF, 533–534
RIPng, 523–529, 524–525
router advertisements, 515
tunneling, 562–567, 566

MPLS and traffic engineering
case study, 247–268
CSPF constrained LSPs, 167–169
ERO constrained LSPs, 158–159
Fast Reroute, 203–204
link protection, 205–206
LSP-to-prefix mapping, 185–191
preemption, 209–214
RSVP signaled LSPs, 151–154

multicast
case study, 494–499



832 constrained routing in MPLS – default routes

DVMRP, 413–416
IGMP, 407–408
MSDP interdomain, 472–475, 473
MSDP with Any-Cast, 465–470, 466
PIM DM, 431–433
PIM SM using Auto-RP, 455–459, 455
PIM SM using bootstrap, 441–445, 443

VPNs
with BGP and static routing,

708–712, 709
case study, 807–819
draft-Kompella, 750–755
draft-Martini, 766–768
Layer 3, 700–707, 701
with OSPF, 731–736

constrained routing in MPLS, 157–158
Constrained Shortest Path First algorithm 

for, 124, 141, 161–163
link coloring for, 163–167, 163
for LSPs, 167–169
for RSVP signaled LSPs, 152–154
and TEDs, 158
troubleshooting, 169–171

ERO constraints, 158–161
SPF constraints, 161–171, 163

convergence with multicast protocols, 408
CoS (Class of Service), 620–623, 622

BA classification
configuring, 631–634
verifying, 634–635

case study, 667–669
analysis, 669–680
configurations, 680–688

classification summary, 635
firewall filters for, 277
loss priority, 642

configuring, 642–646, 643
verifying, 646–650

multifield classification, 624
configuring, 625–628
verifying, 628–631

packet classification and forwarding 
classes, 623–624

RED profiles, 661
configuring, 661–664
verifying, 664–666

review questions, 689–691
review questions, answers to, 692–695
rewrite markers for, 635–636

DSCP rewrites configuration, 636–639

DSCP rewrites verification, 639–642
summary, 650–651

schedulers, 651
configuring, 651–655
summary, 666
verifying, 655–659

summary, 666–667
count action

for firewall filters
case study, 359
RE, 285

for IPv6 case study, 596
CSPF (Constrained Shortest Path First) 

algorithm, 124, 141, 161–163
link coloring for, 163–167, 163
for LSPs, 167–169
for RSVP signaled LSPs, 152–154
and TEDs, 158
troubleshooting, 169–171

customer peering, 30–31

D
data-center prefix action, 316
data center routes, 18
dc-pscp filter, 316–320, 368
DC router

for IGP discovery, 15–16
for RE firewall filters, 297–299

DCs (Demand Connections), 124
DDoS (Distributed Denial of Service)

attacks, 276
DE (Discard Eligibility) bit, 642
deactivate interfaces fe-0/0/0 command, 563
deactivate interfaces so-0/2/0 command

for draft-Martini VPNs, 770
for IPv6 tunneling, 563
for secondary paths, 200

deactivate label-switched-path command, 211
deactivate protocols command, 798
deactivate protocols pim command for PIM SM

using Auto-RP, 462–463
using bootstrap, 453

default keyword for multifield
classification, 634

default routes
in IGP discovery, 16, 75
in IS-IS, 594–595
in NSSA, 11



delete group command – domain-id 833

delete group command, 720
delete label-switched-path command

for active prefixes, 177
for link protection, 205
for secondary paths, 195
for TE shortcuts, 180

delete output command
for cflowd export, 335
for port mirroring, 339

delete pim rp bootstrap-priority command, 456
delete policy-options community c1-c2-rt 

command, 767
delete policy-options community c1-c2-vpn 

command, 750
delete policy-options community domain 

command, 751
delete policy-options forwarding-table export 

command, 767
delete policy-options policy-statement

c1-c2 export command, 767
delete policy-options policy-statement

c1-c2 import command, 766
delete policy-options policy-statement

c1-import command, 750
delete policy-options policy-statement 

mapping command, 767
delete policy-options policy-statement ms1 

command, 442
delete protocols bgp group c2 command, 717
delete protocols bgp group ext command, 792
delete protocols bgp group p1 command, 792
delete protocols dvmrp command, 431
delete protocols isis export command, 442
delete protocols isis traffic-engineering 

shortcuts command, 184
delete protocols mpls label-switched-path 

command, 184
delete protocols mpls path command, 184
delete protocols mpls traffic-engineering 

command, 184
delete protocols msdp traceoptions 

command, 476
delete protocols ospf area 1 interface 

command, 788
delete protocols pim command, 442
delete protocols rsvp command, 767
delete route command, 724
delete routing-instances command for

Layer 3 VPNs
draft-Kompella, 750

draft-Martini, 766
with OSPF, 731

delete routing-options interface-routes 
command, 431

delete routing-options rib command, 525
delete routing-options rib-groups

command, 431
delete system authentication-order password 

command, 356
delete then accept command, 308
delete traceoptions command, 157
Demand Connections (DCs), 124
dense mode PIM (PIM DM), 430–431

configuring, 431–433
verifying, 433–440

Dense option, 434
deny-all action, 301, 321
deny-all-else option, 284
destination keyword, 338
destination-port option for firewall filters

Filter Based Forwarding, 326
RE, 283

destination-prefix-length option, 315
DHCP service port assignments, 345
DiffServ Code Point (DSCP), 624

classification, 642, 643
rewrites

configuring, 636–639
verifying, 639–642

discard action for firewall filters, 321
case study, 359
ICMP policing, 308
RE, 285

Discard Eligibility (DE) bit, 642
discovery. See network discovery and 

verification
discovery messages, Auto-RP, 456
Distance Vector Multicast Routing Protocol 

(DVMRP), 412–413, 413
configuring, 413–416
metrics in, 425–427
summary, 429
tracing, 427–429
verifying, 416–427, 421

Distributed Denial of Service (DDoS)
attacks, 276

DNS service port assignments, 345
documenting discovery findings, 19
domain community, 733
domain-id, 732



834 downstream prefixes with TE shortcuts – Expedited Forwarding (EF)

downstream prefixes with TE shortcuts, 179
draft-Kompella VPNs, 747–750, 748

configuring, 750–755
verifying, 755–766

draft-Martini VPNs
configuring, 766–768
verifying, 769–773

DSCP (DiffServ Code Point), 624
classification, 642, 643
rewrites

configuring, 636–639
verifying, 639–642

dscp-default classifier, 633
dscp-default rewrite tables, 636
dscp-plp table, 644
DVMRP (Distance Vector Multicast Routing 

Protocol), 412–413, 413
configuring, 413–416
metrics in, 425–427
summary, 429
tracing, 427–429
verifying, 416–427, 421

E
E-FEB designation, 621
E-FPCs (Enhanced Flexible PIC 

Concentrators), 620–621
EBGP

configuring, 542–543
discovery, 24

customer peering in, 30–31
final checks, 34–35
P1 peering in, 24–27
r4 to C1 peering in, 32–34
r7 to C1 peering in, 31–32
summary, 35–36, 36
T1 peering in, 28–30

for IPv6 tunneling, 569–577
verifying, 543–546

ebgp-in policy, 29–30
ebgp-out policy, 26, 30, 32–33
echo-reply option, 281
echo-request option, 281
edit at-0/2/1 unit command, 513
edit class-of-service schedulers best-effort 

command, 651
edit family inet prefix-action data-center 

command, 314

edit firewall filter command
for multifield classification, 625
for RE firewall filters, 281
for traffic sampling, 330

edit interfaces command
for IPv6 tunneling, 567
for Layer 3 VPNs, 701
for LDP signaled LSPs, 126
for MPLS baseline support, 142

edit policy-options policy-statement 
command, 189

edit protocols mpls command
for LSP-to-prefix mapping, 188
for TE shortcuts, 182

edit protocols msdp group ext command, 472
edit protocols rsvp command, 206
edit rewrite-rules dscp command, 643
edit routing-instances c1-c2-l2 command, 752
edit routing-instances c2 command, 710
edit routing-instances http command, 322
edit schedulers best-effort command, 662
edit so-0/1/0 unit command, 513
EF (Expedited Forwarding), 624
egress node in MPLS, 241
election problems, PIM-SM RP, 449–450
else term, 353
enabling

LDP instances, 132–134
MPLS processing, 130–131
RSVP signaling, 148–150

Enhanced Flexible PIC Concentrators
(E-FPCs), 620–621

ERO constrained LSPs, 158
configuring, 158–159
verifying, 159–161

EROs (Explicit Route Objects), 124, 141, 
157, 706

/etc/services file, 345
EUI-64 (Extended Unique Identifier) format, 

511–512
eui-64 keyword, 512–513
exact keyword for schedulers, 652, 657
except option for prefix-specific

counting, 316
exclude statement in link coloring, 163
exit command for RE firewall filters, 287
EXP classification, 642
exp-default table, 640
expedited-fo queue counter, 630
Expedited Forwarding (EF), 624



Explicit Route Objects (EROs) – FTP sessions 835

Explicit Route Objects (EROs), 124, 141, 
157, 706

export policies for IGP, 14–15
exporting traffic sampling, 334–337
ext-ipv6 peering, 542
Extended Unique Identifier (EUI-64) format, 

511–512
extensive switch

for DVMRP, 423
for PIM dense mode, 436–437
for schedulers, 656

F
families, address, 625
Fast Reroute (FRR), 201–203, 202

configuring, 203–204
for CSPF, 163
for MPLS, 236
verifying, 204–205

FBF (Filter Based Forwarding), 321–322
configuring, 322–326
filters for, 277
summary, 329
verifying, 326–328

FCs (forwarding classes), 623–624
FECs (forwarding equivalency classes),

134, 136
FF (fixed filter) style

for bandwidth reservation, 220
for secondary paths, 198

file show/etc/services command, 345
Filter Based Forwarding (FBF), 321–322

configuring, 322–326
filters for, 277
summary, 329
verifying, 326–328

filter_c1_routes term, 745
filter-specific statement, 366
firewall filters, 276–279, 278

with address families, 625
case study, 346–349, 346, 348

analysis, 349–376
configurations, 376–393

Filter Based Forwarding, 321–322
configuring, 322–326
summary, 329
verifying, 326–328

policing, 307
ICMP, 307–309
LSP rate limiting, 309–313
prefix-specific counting, 313–321

for REs, 279
applying and verifying, 286–299
confirming initial operation, 279–280
creating, 281–286

review questions, 394–399
review questions, answers to, 400–401
summary, 321, 344–345
transit filtering

applying and verifying, 303–307
creating, 299–303

fixed filter (FF) style
for bandwidth reservation, 220
for secondary paths, 198

Flexible PIC Concentrators (FPCs), 620–621
flow records, 334–337
flows in traffic sampling, 329
Format Prefix (FP) with IPv6 addresses,

511–512
forwarding

Filter Based Forwarding (FBF), 321–322
configuring, 322–326
filters for, 277
summary, 329
verifying, 326–328

LSP, 215–217
forwarding-class action, 626–627
forwarding classes (FCs), 623–624
forwarding equivalency classes (FECs),

134, 136
forwarding table export policies, 241
FP (Format Prefix) with IPv6 addresses,

511–512
FPCs (Flexible PIC Concentrators), 620–621
FRR (Fast Reroute), 201–203, 202

configuring, 203–204
for CSPF, 163
for MPLS, 236
verifying, 204–205

ftp command, 372–373
ftp interface lo0 command, 319
FTP sessions

for firewall filters
case study, 372–373
prefix-specific counting, 319
RE, 294–295

port assignments for, 345



836 gateways – interfaces stanza

G
gateways, 139
graceful-restart feature

in LDP instance enabling, 132
for MPLS, 246

H
help topic pim auto-rp command, 457
hidden routes in EBGP, 34
hold priority in preemption, 208
hops, 78

with EROs, 158
in IBGP discovery, 23–24
in IGP discovery, 16, 80
for Layer 3 VPNs, 726–727
in port mirroring, 339
for routing table integration prefixes, 174

HTTP service
in firewall filter case study, 361
port assignments for, 345

I
IBGP

configuring, 546–558
discovering and verifying, 20–24
export policies, 241
for IPv6 tunneling, 569–577
verifying, 558–561

ICMP policing
configuring, 307–308
verifying, 308–309

icmp-sample file, 332–334
icmp-type option, 281
IGMP (Internet Group Management 

Protocol), 406, 406
configuring, 407–408
summary, 411
verifying, 408–411

IGP, 5–7, 6
discovering

case study, 67–82, 82
core, 7–10
redistribution, 10–19
summary, 19–20, 20

OSPF
configuring, 533–534
troubleshooting, 538–540
verifying, 534–537

RIPng, 522, 523
configuring, 523–529, 524–525
verifying, 529–532

verifying, 5
core, 7–10
redistribution, 10–19

import statement, 644
include statement, 163
inet.3 tables

for routing table integration, 172, 174
for TE shortcuts, 183

inet-unicast family, 548
inet-vpn family, 721–722, 788, 800
inet4 unicast family, 547
inet6-unicast family, 548
infinity metric, 412
input filters, 277
insert term bgp before term deny-all-else 

command, 292
insert term la after term 1 command, 553
insert term ospf-rsvp before term deny-all-else 

command, 292–293
install action

for routing table integration prefixes, 172
for TE shortcuts, 179

installing prefixes, 172–179, 173
instance switch, 746
int-vg peer group, 594
interdomain multicast with MSDP

configuring, 472–475, 473
verifying, 475–479

interface all option
for draft-Martini VPNs, 767
for MPLS, 231

interface operation, verifying, 5
interface-rib option, 413
interface switch for prefix-specific

counting, 319
interfaces, troubleshooting, 341–342
interfaces stanza

for IS-IS baseline
r1, 83–85
r2, 87–88
r3, 91–93
r4, 97–99
r5, 103–105



Internet access from non-VRF interface – Label Switching Routers (LSRs) 837

r6, 107–108
r7, 112–113

for OSPF baseline
r1, 38–39
r2, 41–42
r3, 45–47
r4, 50–51
r5, 54–56
r6, 58–59
r7, 63–64

Internet access from non-VRF interface,
764–766

Internet Group Management Protocol 
(IGMP), 406, 406

configuring, 407–408
summary, 411
verifying, 408–411

IP-IP tunnels, 561, 562
configuring, 562–567, 566
verifying, 567–569

ipprec-compatibility classifier, 627
IPv6, 510, 511

addresses, 510–513, 512
assigning, 513–515
and neighbor discovery, 522
verifying, 515–520

BGP support, 540–541, 541–542
case study, 578–579, 579–580

analysis, 580–597
configurations, 597–615

EBGP peering
configuring, 542–543
verifying, 543–546

IBGP peering
configuring, 546–558
verifying, 558–561

OSPF
configuring, 533–534
troubleshooting, 538–540
verifying, 534–537

review questions, 616–617
review questions, answers to, 618
RIPng, 522, 523

configuring, 523–529, 524–525
verifying, 529–532

router advertisements
configuring, 515
verifying, 520–521

summary, 577–578
tunneling, 561, 562

configuring, 562–567, 566

IBGP and EBGP adjustments for,
569–577

summary, 577
verifying, 567–569

ipv6-agg policy, 545
IS-IS routing protocol

adjacencies in, 5
baseline network, 82

r1, 82–86
r2, 86–90
r3, 90–96
r4, 96–102
r5, 102–106
r6, 106–111
r7, 111–116

case study, 67–82, 82
in CSPF, 162
default route, 594–595
for IGP discovery, 14

isis-ospf policy, 17
isis-rip policy, 75

J
jncie-cos scheduler map, 652–655, 678–679

K
keep-multiplier option, 245–246

L
l1-l2 export policy, 72
l2circuit for VPNs

case study, 784
draft-Martini, 768, 771

lab logins, 4
Label Distribution Protocol (LDP), 124

LDP signaled LSPs, 126
configuring, 126–130, 127
enabling LDP instances, 132–134
enabling MPLS processing, 130–131
summary, 141
verifying, 134–140

port assignments for, 345
Label Switched Paths. See LSPs (Label 

Switched Paths)
Label Switching Routers (LSRs), 124



838 Layer 2 VPNs – mapping keyword

Layer 2 VPNs, 746–747
draft-Kompella, 747–750, 748

configuring, 750–755
verifying, 755–766

draft-Martini
configuring, 766–768
verifying, 769–773

Internet access from non-VRF interface, 
764–766

mapping to LSPs, 760–764
summary, 773–774

Layer 3 VPNs, 699–700, 700
configuring

with BGP and static routing,
708–712, 709

with OSPF, 731–736
preliminary, 700–707, 701

with OSPF
configuring, 731–736
PE-CE, 727–731, 728
verifying, 736–739

redundancy and route filtering for,
739–746

summary, 746
troubleshooting, 714–715
verifying

with BGP and static routing,
712–727

with OSPF, 736–739
preliminary, 707–708

LDP (Label Distribution Protocol), 124
LDP signaled LSPs, 126

configuring, 126–130, 127
enabling LDP instances, 132–134
enabling MPLS processing, 130–131
summary, 141
verifying, 134–140

port assignments for, 345
ldp-stats file, 126
ldp-tunneling keyword, 232
Level 1 external routes, 14
limit-access term, 353
limit-http filter, 362–363
limit-icmp policer, 353
limit-mpls policy, 310–311
link coloring, 163–167, 163
link protection

configuring, 205–206
verifying, 206–208

Link State Databases (LSDBs), 179
lo0 interface in IGP discovery, 8

load merge command
for Filter Based Forwarding, 327
for VPN case study, 795

load override command, 562
loop detection, 159
loopback addresses

with EROs, 158
with IPv6 addresses, 512

loopback-based IBGP sessions, 21
loose EROs, 158
loss priority, 642

configuring, 642–646, 643
verifying, 646–650

LSDBs (Link State Databases), 179
LSP-Egress-to-OSPF-RID matches, 234
lsp-map policy

for LSP-to-prefix mapping, 189–192
for MPLS for OSPF baseline, 243–244

LSP-to-prefix mapping plans, 242
LSPs (Label Switched Paths), 124

ERO constrained
configuring, 158–159
verifying, 159–161

forwarding, 215–217
LDP signaled, 126

configuring, 126–130, 127
enabling LDP instances, 132–134
enabling MPLS processing, 130–131
summary, 141
verifying, 134–140

mapping Layer 2 VPNs to, 760–764
mapping prefixes to, 184–193
policing, 312–313
in preemption, 208
rate limiting, 309–312
stitching, 162

LSRs (Label Switching Routers), 124

M
mapping

in link coloring, 164
LSP-to-prefix, 242
to LSPs, 138

Layer 2 VPNs, 760–764
rules for, 138

for multicast case study, 483
prefixes, 184–193

mapping agents, Auto-RP, 456
mapping keyword, 483



mapping policy – multicast 839

mapping policy, 762–763
messages, Auto-RP, 456
metrics

in DVMRP, 425–427
in LSP-to-prefix mapping, 188

monitor interface command
for DVMRP, 421
for port mirroring, 340

monitor start command
for CSPF troubleshooting, 170
for IGMP, 411
for MSDP interdomain, 476
for PIM

using bootstrap, 449–450
tracing, 463–464

for test-cflowd log file, 336
monitor traffic command

for Filter Based Forwarding, 328
for transit firewall filters, 307

monitor traffic interface command
for CoS

case study, 675–676
DSCP rewrites, 638–639, 641
loss priority, 649

for firewall filters
Filter Based Forwarding, 327–328
transit, 306
troubleshooting, 341

for IPv6 tunneling, 568–569
MPLS (Multiple Protocol Label based Switch-

ing) and traffic engineering, 124–125, 125
case study, 223–226, 224–225

analysis, 226–247
configurations, 247–268

constrained routing in, 157–158
ERO constraints, 158–161
SPF constraints, 161–171, 163

LDP signaled LSPs for, 126
configuring, 126–130, 127
enabling LDP instances, 132–134
enabling MPLS processing, 130–131
summary, 141
verifying, 134–140

miscellaneous capabilities and features, 214
bandwidth reservations, 220–223
LSP forwarding, 215–217
pop function, 217–220

review questions, 269–271
review questions, answers to, 272–273
routing table integration, 172

installing prefixes, 172–179, 173

mapping prefixes, 184–193
summary, 193–194
traffic engineering shortcuts, 179–184

RSVP signaled LSPs for, 141
configuring and verifying, 151–154
enabling RSVP signaling, 148–150
MPLS baseline support configuration, 

141–148, 142
RSVP authentication configuration, 

150–151
summary, 172

summary, 223
traffic protection in, 194

Fast Reroute in, 201–205, 202
link protection in, 205–208
preemption in, 208–214
secondary paths, 194–201
summary, 214

for VPNs, 698
mpls family, 126
MSDP (Multicast Source Discovery 

Protocol), 465
configuring

with Any-Cast, 465–470, 466
interdomain, 472–475, 473

summary, 479
verifying

with Any-Cast, 470–472
interdomain, 475–479

Multi-Area OSPF topology, 234
multicast, 404–405, 405

case study, 480–481, 481
analysis, 481–494, 482
configurations, 494–499

Distance Vector Multicast Routing 
Protocol, 412–413, 413

configuring, 413–416
summary, 429
tracing, 427–429
verifying, 416–427, 421

Internet Group Management Protocol, 
406, 406

configuring, 407–408
summary, 411
verifying, 408–411

Multicast Source Discovery Protocol.
See MSDP (Multicast Source
Discovery Protocol)

PIM, 429–430. See PIM (Protocol 
Independent Multicast)

review questions, 500–504



840 Multicast Source Discovery Protocol (MSDP) – null labels

review questions, answers to, 505–507
scoping for, 511
summary, 480

Multicast Source Discovery Protocol 
(MSDP), 465

configuring
with Any-Cast, 465–470, 466
interdomain, 472–475, 473

summary, 479
verifying

with Any-Cast, 470–472
interdomain, 475–479

multifield classification, 624
configuring, 625–628
verifying, 628–631

Multiple Protocol Label based Switching. See 
MPLS (Multiple Protocol Label based 
Switching) and traffic engineering

N
NAT/PAT (Network Address/Port Address 

Translation) services, 276
native EBGP peering

configuring, 542–543
verifying, 543–546

NC (network control) traffic
forwarding, 624
schedulers for, 659–661

neighbors
and IPv6 addresses, 512, 522
for LSP-to-prefix mapping, 190

Network Address/Port Address Translation 
(NAT/PAT) services, 276

network control (NC) traffic
forwarding, 624
schedulers for, 659–661

network discovery and verification
case study

analysis, 67–82, 82
configurations, 82–116

EBGP routing policy, 24
customer peering in, 30–31
final checks, 34–35
P1 peering in, 24–27
r4 to C1 peering in, 32–34
r7 to C1 peering in, 31–32
summary, 35–36, 36
T1 peering in, 28–30

IBGP, 20–24
IGP, 5–7, 6

case study, 67–82, 82
core, 7–10
redistribution, 10–19
summary, 19–20, 20

OoB, 2
telnet for, 4–5
topology in, 3–4, 3

OSPF baseline network, 37
r1, 37–40
r2, 40–44
r3, 44–49
r4, 49–53
r5, 53–57
r6, 57–61
r7, 62–66

review questions, 117–120
review questions, answers to, 121–122

Network Layer Reachability Information 
(NLRI), 540–541, 700

next-hop option, 339
next hops, 78

in IBGP discovery, 23–24
in IGP discovery, 16, 80
in port mirroring, 339
for routing table integration prefixes, 174

next-term action for firewall filters
case study, 361
transit, 301

nhs policy
for IBGP discovery, 22–23
for Internet access from non-VRF 

interface, 766
for IPv6

BGP, 550–552
case study, 594
tunneling, 570–571

NLRI (Network Layer Reachability 
Information), 540–541, 700

no-decrement-ttl option, 215
no-ipv4-routing keyword, 583
no-ipv6-routing keyword, 583
no-propagate-ttl option, 215
no-spoof option for firewall filters

case study, 359, 370
transit, 305

non-VRF interface, Internet access from, 
764–766

NTP service port assignments, 345
null labels, 218–219



OoB (Out Of Band) networks – ping command 841

O
OoB (Out Of Band) networks, 2

telnet for, 4–5
topology in, 3–4, 3

OSPF
adjacencies in, 280
baseline network, 37

in MPLS and traffic engineering case 
study, 224–247, 224

r1, 37–40
r2, 40–44
r3, 44–49
r4, 49–53
r5, 53–57
r6, 57–61
r7, 62–66

configuring, 533–534
port assignments for, 345
troubleshooting, 538–540
verifying, 534–537
with VPNs, 727–731, 728

configuring, 731–736
PE-CE, 727–731, 728
redundancy and route filtering,

739–746
verifying, 736–739

ospf-isis policy, 15
OSPF-to-BGP policy, 23
ospf3-export policy, 533–534
Out Of Band (OoB) networks, 2

telnet for, 4–5
topology in, 3–4, 3

outgoing-tcp-services term, 353
outgoing-udp-services term, 353
output filters, 277

P
P1 router

for EBGP discovery, 24–27
for IPv6 case study, 595–597
for MSDP interdomain, 478
for prefix-specific counting, 317–320

packet classification in CoS, 623–624
packet forwarding with RE filtering, 289
packet loss priority (PLP), 636
passwords for user accounts, 4

PAT (Port Address Translation) services, 276
PE-CE links

BGP and static routing
configuring, 708–712, 709
verifying, 712–727

with OSPF routing, 727–731, 728
configuring, 731–736
redundancy and route filtering,

739–746
verifying, 736–739

PE (provider’s edge) routers, 699
Penultimate Hop Popping (PHP), 124

in LDP signaled LSP verification, 136
for pop function, 217–218

PHB (per-hop behavior), 623
PIM (Protocol Independent Multicast),

429–430
dense mode (PIM DM), 430–431

configuring, 431–433
verifying, 433–440

sparse mode (PIM SM), 430, 441
configuring using Auto-RP,

455–459, 455
configuring using bootstrap,

441–445, 443
RP election problems, 449–450
verifying using Auto-RP, 459–463
verifying using bootstrap, 445–455, 455

summary, 464–465
tracing, 463–464

pim-join policy, 486
ping command

for CoS
case study, 670–671
DSCP rewrites, 640–641
loss priority, 649–650
multifield classification, 630–631
schedulers, 657–658

for firewall filters
case study, 360
ICMP policing, 308–309
LSP policing, 312–313
port mirroring, 342
prefix-specific counting, 320
RE, 297
traffic sampling, 333
transit, 304–305

for IGMP, 408
for IPv6

addresses, 518–519



842 PLP (packet loss priority) – protocols stanza

case study, 596–597
EBGP, 544–546
tunneling, 568, 571–576

for LSPs
forwarding, 216–217
RSVP signaled, 156

port assignments for, 345
for static routing, 4
for VPNs

with BGP and static routing, 712–713, 
718–719

case study, 779, 806
draft-Kompella VPNs, 756

PLP (packet loss priority), 636
poison reverse, 412, 413
police-icmp term, 353
policing, 307

ICMP
configuring, 307–308
verifying, 308–309

LSP
rate limiting, 309–312
verifying, 312–313

prefix-specific counting
configuring, 313–316
verifying, 317–320

policy-options stanza
for IS-IS baseline

r1, 86
r2, 89–90
r3, 94–96
r4, 100–102
r5, 106
r6, 110–111
r7, 115–116

for OSPF baseline
r1, 40
r2, 44
r3, 48–49
r4, 53
r6, 60–61
r7, 65–66

pop function, 124, 217–220
Port Address Translation (PAT) services, 276
port mirroring, 338

configuring, 338–340, 338
in traffic sampling, 329
verifying, 340–343, 340, 342–343

ports
assignments, 345

for firewall filters, 302, 307
for multifield classification, 626

preemption, 208–214
prefix-action for firewall filters

case study, 365–366, 369
prefix-specific counting, 314–315

Prefix Specific Counters and Policies (PSCP) 
feature

configuring, 314–316
verifying, 317–320

prefix-specific counting
configuring, 313–316
verifying, 317–320

prefixes
LSP-to-prefix mapping plans, 242
mapping, 184–185

configuring, 185–191
verifying, 191–193

for routing table integration, 172–179, 173
primary keyword

for MPLS, 243–244
for MSDP, 467

priority
for Best Effort scheduler, 652
loss, 642

configuring, 642–646, 643
verifying, 646–650

in preemption, 208
Protocol Independent Multicast (PIM),

429–430
dense mode (PIM DM), 430–431

configuring, 431–433
verifying, 433–440

sparse mode (PIM SM), 430, 441
configuring using Auto-RP,

455–459, 455
configuring using bootstrap,

441–445, 443
RP election problems, 449–450
verifying using Auto-RP, 459–463
verifying using bootstrap, 445–455, 455

summary, 464–465
tracing, 463–464

protocol-port aggregation, 337
protocols, port assignments for, 345
protocols stanza

for IS-IS baseline
r1, 85–86
r2, 89
r3, 93–94



provider’s edge (PE) routers – r3 router 843

r4, 99–100
r5, 105–106
r6, 109–110
r7, 114–115

for OSPF baseline
r1, 39–40
r2, 43–44
r3, 47–48
r4, 52–53
r5, 56–57
r6, 59–60
r7, 64–65

provider’s edge (PE) routers, 699
prudent security philosophy, 279
PSCP (Prefix Specific Counters and Policies) 

feature
configuring, 314–316
verifying, 317–320

Q
QoS (Quality of Service), 154
quit command for firewalls

case study, 357
RE, 296

R
r1 router

for IPv6
addresses, 518–519
case study, 584–585, 593, 598–600
IBGP, 548–557
RIPng, 526–528, 530
router advertisements, 515, 520–521

for MPLS
baseline support configuration, 142–145
LSP configuration and verification, 

151–156
LSP forwarding, 217
OSPF, 232–233, 247–250
RSVP authentication configuration, 

150–151
secondary paths, 195–199

for multicast
case study, 485, 494–495
DVMRP, 423
PIM DM, 435–436

PIM SM using Auto-RP, 460
PIM SM using bootstrap, 443, 443, 

445, 450–451
for network discovery and verification

EBGP, 24–27
IGP discovery, 9, 80–81
IS-IS, 82–86, 594
OSPF, 37–40

for VPN case study, 786–789, 792–793, 
798–804, 807–809

r2 router
for IPv6

case study, 587–589, 600–602
OSPF, 536–537

for MPLS
case study, 250–252
ERO constrained LSPs, 158–161
LSP forwarding, 215–216

for multicast
case study, 493–495
DVMRP, 424
MSDP, 470
PIM DM, 436–437
PIM SM using Auto-RP, 459, 463
PIM SM using bootstrap, 443, 443, 

448–451
for network discovery and verification

IBGP discovery, 24
IGP discovery, 9–10, 71–72
IS-IS baseline, 86–90
OSPF, 40–44

for VPN case study, 795–797, 801–802, 
809–812

r3-lo0 filters, 286–299, 307–308
r3 router

for CoS
case study, 672–678, 680–682
DSCP rewrites, 636–640
loss priority, 643–644, 646–647
multifield classification, 625–631
RED profiles, 661–663
schedulers, 651–653, 655

for firewall filters
case study, 349–351, 364–365,

376–380
ICMP policing, 307–309
prefix-specific counting configuring, 

313–316
prefix-specific counting verifying,

317–320
RE, applying and verifying, 286–299



844 r4-C1 peering – r4 router

RE, confirming initial operation,
279–280

RE, creating, 281–286
for IPv6

addresses, 517–520
case study, 581–583, 585–587,

591–594, 602–608
EBGP, 542–546
IBGP, 547–548, 550–554, 560
OSPF, 533–534, 538–540
RIPng, 524–526, 524–525, 529–531
tunneling, 563, 565–573, 576

for MPLS
case study, 227–228, 235–237,

243–244, 252–257
Fast Reroute, 204–205
link coloring, 164–167
link protection, 206–208
RSVP authentication configuration, 151
RSVP signal enabling, 148–150
secondary paths, 200–202

for multicast
case study, 483–484, 487, 490, 493, 

495–497
DVMRP, 415–418, 420, 424–429
MSDP interdomain, 472–479, 473
MSDP with Any-Cast, 467–468,

470–471
PIM DM, 432, 435, 437–438
PIM SM using Auto-RP, 456, 458–462
PIM SM using bootstrap, 442–444, 

443, 446, 453, 455
PIM tracing, 463–464

for network discovery and verification
EBGP, 28–30
IGP discovery, 7–8, 15, 18–19, 67–71
IS-IS, 90–96
OSPF, 44–49

for VPNs
case study, 786–787, 790–792, 794, 

798–806, 812–815
draft-Martini, 768, 770
Layer 3, 707

r4-C1 peering, 361
r4-dscp-rewrite table, 672–674
r4 router

for CoS
case study, 669–672, 674, 678, 683–686
DSCP rewrites, 641
loss priority, 645–650

multifield classification, 631–635
RED profiles, 663–666
schedulers, 654–655, 657–659

for firewall filters
case study, 358–363, 370–372, 380–384
Filter Based Forwarding, configuring, 

322–326
Filter Based Forwarding, verifying, 

326–327
traffic sampling, 333–334
transit, applying and verifying, 303–306
transit, creating, 299–303

for IPv6
addresses, 515–517
case study, 583–584, 589–591, 608–614
RIPng, 528–529, 531–532
tunneling, 563–564, 567–570, 573–576

for MPLS
bandwidth reservation, 220–223
baseline support configuration, 146–148
CSPF, constrained LSPs, 167–169
CSPF, troubleshooting, 169–171
Fast Reroute, 202–203
OSPF baseline, 238–240, 257–260
RSVP signaled LSP configuration and 

verification, 155–156
for multicast

case study, 483, 486–491, 494, 497–498
DVMRP, 418, 425–427
MSDP, 469–472
PIM DM, 431
PIM SM using Auto-RP, 456–457, 

462–463
PIM SM using bootstrap, 443–444, 

443, 447–448, 451–452
for network discovery and verification

EBGP, 32–34
IBGP, 23, 558–561
IGP, 8–9, 78
IS-IS baseline, 96–102
OSPF baseline, 49–53

for VPNs
with BGP and static routing, 711–717, 

719, 725
case study, 778, 780–785, 815–817
draft-Kompella, 750–754, 757–758
draft-Martini, 766–769, 771–772
Internet access from non-VRF 

interface, 764–765
Layer 3, 706–708



r4 to C1 peering – r7 router 845

mapping to LSPs, 761–764
with OSPF, 731, 734–738
redundancy and route filtering, 744–745

r4 to C1 peering, 32–34
r4-voip-classifier filter, 669
r5 router

for CoS
case study, 673–674, 679–680, 686–688
loss priority, 644–645
multifield classification, 634
network control traffic, 659–661
schedulers, 655–657

for firewall filters
case study, 351–358, 365–370,

372–375, 384–390
cflowd export, 335–337
Filter Based Forwarding, 327–328
ICMP policing, 308–309
LSP rate limiting, 310–313
port mirroring, 339–343
traffic sampling, 330–332
transit, 305–306

for IPv6
addresses, 513–514, 518
case study, 585, 589, 614–615
IBGP, 556–558
OSPF, 533–537
tunneling, 562

for MPLS
Fast Reroute, 202
LDP instance enabling, 133
LDP signaled LSP configuration, 126
LDP signaled LSP verification, 135–136
LSP forwarding, 216–217
OSPF, 228–231, 237–238, 245–247, 

260–263
preemption, 209–214
processing enabling, 131
RSVP signaled LSP, 154
TE shortcuts, 181

for multicast
case study, 484, 489–490, 492–493, 499
DVMRP, 413–415, 418–422, 426
IGMP, 407–411
MSDP interdomain, 477–478
PIM DM, 431–434, 438–440
PIM SM using Auto-RP, 458–461
PIM SM using bootstrap, 445–447, 

452–455
for network discovery and verification

EBGP, 34–35

IBGP, 20–21
IGP, 10–11, 72–73
IS-IS, 102–106
OSPF, 53–57

for VPNs
case study, 779–781, 817–818
draft-Martini, 768
Layer 3, 701–704

r6-C2 peering, 361
r6-r4-prime LSP, 762
r6 router

in firewall filter case study, 355, 390–391
for MPLS

Fast Reroute, 203–204
LDP instance enabling, 134
LDP signaled LSP configuration, 127
LDP signaled LSP verification, 140
link protection, 205–207
OSPF, 234–235, 263–266
pop function, 218–220
routing table integration prefixes,

174–178
TE shortcuts, 179–184

for network discovery and verification
IGP, 11, 14–16, 76–77
IS-IS, 106–111
OSPF, 57–61

for VPNs
BGP and static routing, 710–712, 717, 

722, 724
case study, 779, 781–782, 784, 818–819
draft-Kompella, 754–760
draft-Martini, 767–769, 771
mapping to LSPs, 761–763
OSPF, 731–735
redundancy and route filtering, 742–743

r7-C1 peering, 31–32, 361
r7 router

in firewall filter case study, 361, 392–393
for MPLS

LDP instance enabling, 132–133
LDP signaled LSP configuration, 127
LDP signaled LSP verification, 137–138
LSP-to-prefix mapping, 185–193
OSPF, 232–233, 242, 244, 266–268
processing enabling, 131
RSVP signaled LSP, 156–157

for network discovery and verification
EBGP, 31–32
IBGP, 22–23
IGP, 11–14, 17–18, 72–76



846 RADIUS/FTP server – routing table integration

IS-IS, 111–116
OSPF, 62–66

for VPNs
with BGP and static routing, 720–724
case study, 782–783, 819
Layer 3, 704–707
redundancy and route filtering, 739–741

RADIUS/FTP server, 294
RADIUS protocol

in firewall filter case study, 356–357
port assignments for, 345

rate limiting, 309–312
RE (routing engine) firewall filters,

276–277, 279
applying and verifying, 286–299
confirming initial operation, 279–280
creating, 281–286

reachability in EBGP, 27, 34
Record Route Object (RRO), 159–160
RED profiles, 661

configuring, 661–664
verifying, 664–666

RED related discards, 636
redundancy for Layer 3 VPNs, 739–746
register messages in PIM-SM, 430
reject action

for firewall filters, 321
case study, 359
ICMP policing, 308
RE, 285

for IBGP, 554
remainder keyword, 652
rename interface command, 157
rename term ssh to term ssh-ftp command, 284
Rendezvous Points (RPs), 430, 441
reservable bandwidth, 162
Resolve Request counter, 487
Resource Reservation Protocol. See RSVP 

(Resource Reservation Protocol)
restart routing command, 539
RESV (RSVP Path and Reservation) 

messages, 160
Reverse Path Forwarding (RPF), 412
rewrite markers for CoS, 635–636

DSCP rewrites
configuring, 636–639
verifying, 639–642

summary, 650–651
rewrite tables, 636–637, 640
rib-groups option, 323

rip-isis policy, 74
RIPng, 522, 523

configuring, 523–529, 524–525
verifying, 529–532

ripng-export policy, 527–528, 553, 557
rollback command

for PIM SM, 463
for schedulers, 659
for secondary paths, 201

root, 4
route-distinguisher-id statement, 711, 753
route filtering

for Layer 3 VPNs, 739–746
for MPLS, 241

route receive-protocol bgp command, 716
route redistribution, 534–537
route targets (RTs), 700
router access, telnet for, 3–4
router advertisements

configuring, 515
verifying, 520–521

routing engine (RE) firewall filters,
276–277, 279

applying and verifying, 286–299
confirming initial operation, 279–280
creating, 281–286

routing in reverse, 441
routing-instance stanza, 766
routing-instance switch, 746
routing-instances option, 329
routing-options in LDP instance enabling, 132
routing-options stanza

for IS-IS baseline
r1, 85
r2, 88–89
r3, 93
r4, 99
r5, 105
r6, 108–109
r7, 113–114

for OSPF baseline
r1, 39
r2, 43
r3, 47
r4, 51–52
r5, 56
r6, 59
r7, 64

routing table integration, 172
installing prefixes, 172–179, 173



RPF (Reverse Path Forwarding) – set interface at command 847

mapping prefixes, 184–193
summary, 193–194
traffic engineering shortcuts, 179–184

RPF (Reverse Path Forwarding), 412
RPs (Rendezvous Points), 430, 441
RRO (Record Route Object), 159–160
RSVP (Resource Reservation Protocol), 124

port assignments for, 345
summary, 172
troubleshooting, 154–157

RSVP Path and Reservation (RESV)
messages, 160

RSVP signaled LSPs, 141
configuring and verifying, 151–154
enabling RSVP signaling, 148–150
MPLS configuration, 141–148, 142
RSVP authentication configuration,

150–151
RTs (route targets), 700
run-length parameter, 330

S
sample action

in firewall filter case study, 374–376
for traffic sampling, 331

sample-icmp filter, 331–332
sampling traffic. See traffic sampling
scheduler-map, 651–652
schedulers, 651

configuring, 651–655
summary, 666
verifying, 655–659

scoping for addresses, 511
SE (Shared Explicit) reservation style, 198
secondary lo0 addresses, 241
secondary paths in traffic protection, 194–201
security, firewall filters for. See firewall filters
Serial Line Address Resolution Protocol 

(SLARP) protocol traffic, 341
services, port assignments for, 345
Session Object attributes, 200
set address command, 343
set admin-groups command, 164
set aggregate route command, 545
set area 0 interface command, 533
set area 2 command, 15
set at-0/1/0 scheduler-map command, 653

for rewrite rules, 644
for schedulers, 653

set at-0/2/1 command
for firewall filters, 332
for Layer 3 VPNs, 701

set auto-bandwidth command
for adjust interval, 222
for minimum bandwidth, 220

set be-low-plp fill-level command, 661–662
set best-effort command, 662
set buffer-size percent command, 652, 657
set community c1-c2-rt members target 

command, 753
set community c1-c2-vpn members target 

command, 732
set count command, 314
set dense-groups command, 457
set destination-prefix-length

command, 315
set drop-profile-map loss-priority

command, 662
set encapsulation command

for traffic sampling, 339
for VPNs, 751

set external-preference command, 743
set family command

for BGP, 547
for IPv6 addresses, 513

set fe-0/0/0 unit command
for MPLS

baseline support configuration, 143
LDP signaled LSP configuration, 126

for traffic sampling, 332
for VPNs, 701

set fe-0/0/3 unit command, 407
set forwarding-class best-effort loss-priority 

command, 643–645
set forwarding-table export command

for LSP-to-prefix mapping, 191
for VPN to LSP mapping, 763

set group command
for IGP, 526
for MSDP, 467, 474

set import default command, 643–645
set instance-type command

for Filter Based Forwarding, 322
for VPNs

draft-Kompella, 752
VRF routing, 710

set interface all command, 414
for DVMRP, 414
for PIM, 456

set interface at command, 164



848 set interface fe-0/0/0 command – set protocols rsvp interface fe-0/0/0 command

set interface fe-0/0/0 command
for draft-Kompella VPNs, 752
for multicast case study, 487
for router advertisements, 515

set interface fe-0/0/1 command, 150
set interface fe-0/0/3 command, 407
set interface fe-0/1/3 command, 710
set interface fxp0 disable command, 415
set interface lo0 command, 767
set interface-routes rib-group inet command

for DVMRP, 413
for Filter Based Forwarding, 323

set interface so-0/1/0.100 command, 767
set interface so-0/2/0.100 command

for link coloring, 164
for link protection, 206

set interface vt-0/3/0 command, 804–805
set interfaces at-0/2/1 command, 645
set interfaces fe-0/0/2 command, 801
set jncie-cos forwarding-class command, 653
set label-switched-path command

for active prefixes, 177
for Fast Reroute, 203
for Layer 3 VPNs, 706
for link coloring, 168
for link protection, 205
for LSPs

CSPF constrained, 167
ERO constrained, 159
LSP-to-prefix mapping, 185–186
RSVP signaled, 151, 153

for preemption, 209, 212
for routing table integration prefixes,

174, 176
for secondary paths, 195–196, 198–199
for TE shortcuts, 180

set lo0 unit 0 family command
for IBGP, 552
for LSP forwarding, 217
for MSDP, 467
for RE firewall filters, 286

set local-address command, 472
set maximum-routes command, 733–734
set mpls label-switched-path command, 215
set neighbor command

for draft-Martini VPNs, 768
for EBGP, 542
for IPv6 tunneling, 563

set no-keepalives command, 341
set output cflowd command, 335–336

set output port-mirroring interface 
command, 339

set path command
for Fast Reroute, 203
for LSP-to-prefix mapping, 185–186
for preemption, 209
for routing table integration prefixes, 174
for secondary paths, 195–196

set peer-as command, 542
set pim interface command

for PIM DM, 432
for PIM SM, 444

set pim rp local address command, 444
set policer be-policer command, 626
set policer dc command, 314
set policer icmp command, 307
set policer limit-mpls command, 310
set priority low command, 652
set protocols bgp group command

for IPv6, 545
for VPNs, 794

set protocols l2vpn command, 752
set protocols ldp explicit-null command, 218
set protocols ldp interface command

for LDP instance enabling, 132
for VPN case study, 801

set protocols ldp keepalive-interval 
command, 132

set protocols ldp traffic-statistics
command, 132

set protocols mpls explicit-null
command, 218

set protocols mpls interface all command
for Layer 3 VPNs, 702
for MPLS

baseline support configuration, 143
processing enabling, 131

set protocols mpls interface fe-0/0/2 
command, 801

set protocols mpls traffic-engineering 
command, 182

set protocols ospf traffic-engineering 
command, 162

set protocols ospf3 area 0 interface 
command, 573

set protocols rsvp interface at-0/1/0 
command, 149

set protocols rsvp interface fe-0/0/0 command
for authentication configuration, 151
for signal enabling, 148



set protocols rsvp interface so-0/2/0.100 – set unit 0 family inet filter output 849

set protocols rsvp interface so-0/2/0.100 
command, 149

set query-response-interval command, 407
set rib-group command, 415
set rib-groups command

for DVMRP, 414
for Filter Based Forwarding, 323

set rib inet6.0 static route command, 526
set route command, 724
set route-distinguisher-id command, 711
set routing-options command

for Filter Based Forwarding, 322
for IPv6, 539–540
for Layer 3 VPNs, 711
for LDP restarts, 132

set rp auto-rp mapping command, 457
set rp local address command, 467
set rsvp interface command, 702
set sampling input family command, 330
set sampling output file command, 330
set scope announce interface command, 474
set so-0/1/0 unit command

for Layer 3 VPNs, 701
for traffic sampling, 332

set so-0/2/0 unit command, 644
set static route command

for Internet access from non-VRF 
interface, 764

for Layer 3 VPNs, 718
set statistics auto-bandwidth command, 220
set statistics file command, 220
set subnet-prefix-length command, 315
set term 1 from destination-address 

command, 315
set term 1 from neighbor command, 189
set term 1 from protocol command

for firewall filters
prefix-specific counting, 315
traffic sampling, 331
transit, 300

for LSP-to-prefix mapping, 189
for RIPng, 527

set term 1 from route filter command, 189
set term 1 from source-address command, 315
set term 1 from tcp-initial command, 299
set term 1 then accept command

for LSP-to-prefix mapping, 189
for RIPng, 527
for traffic sampling, 331

set term 1 then count c1-syns command, 300

set term 1 then install-nexthop command, 189
set term 1 then next term command, 300
set term 1 then prefix-action command, 315
set term 1 then sample command, 331
set term 1k-icmp command, 301
set term 2 from protocol static command, 527
set term 2 from route-filter command, 527
set term 2 from source-address command, 300
set term 2 then accept command

for prefix-specific counting, 316
for RIPng, 527
for transit firewall filters, 300

set term 3 from protocol direct
command, 527

set term 3 from route-filter command for IPv6
IBGP, 553
RIPng, 527

set term 3 then accept command, 527
set term accept-all then accept command, 

302–303
set term be then policer be-policer

command, 626
set term bgp command, 290
set term deny-all-else command, 284–285
set term icmp command, 281
set term la from route-filter command, 553
set term no-spoof command, 301
set term ospf-rsvp ospf command, 290
set term rtp command, 626
set term sip command, 625
set term ssh command, 283
set term ssh-ftp command, 284
set term telnet-in command, 282
set term telnet-out command, 282
set then policer icmp command, 308
set traceoptions file command, 336
set traffic-engineering shortcuts

command, 181
set transmit-rate percent 1 command, 657
set transmit-rate percent 10 command, 651
set type external command

for EBGP, 542
for IPv6 tunneling, 563

set unit 0 classifiers command, 633
set unit 0 family inet address command, 339
set unit 0 family inet filter input command

for prefix-specific counting, 316
for transit firewall filters, 303

set unit 0 family inet filter output
command, 303



850 set unit 0 family inet6 address command for IPv6 – show bgp summary command

set unit 0 family inet6 address command 
for IPv6

EBGP, 543
tunneling, 563, 567

set unit 0 family mpls policer input
command, 311

set unit 0 rewrite-rules command, 638
set unit 0 tunnel command, 567
set unit 0 vlan-id command, 751
set unit 100 classifiers command, 633
set unit 600 encapsulation command, 751
set vlan-tagging command, 751
set vrf-export c1-c2-export command, 752
set vrf-import c1-c2-import command, 752
set vrf-target target command, 710–711
setup priority in preemption, 208
Shared Explicit (SE) reservation style, 198
Shortest Path First (SPF), 161–163

link coloring for, 163–167, 163
for LSPs, 167–169
for RSVP signaled LSPs, 152–154
and TEDs, 158
troubleshooting, 169–171

shortest path trees, 430
show command

for CoS
case study, 669–670
DSCP rewrites, 639
loss priority, 644–646
multifield classification, 633–634
network control traffic, 659–661
RED profiles, 662–664
schedulers, 652, 657

for firewall filters
case study, 358–359
cflowd export, 336
Filter Based Forwarding, 322–324
ICMP policing, 308
LSP rate limiting, 311–312
port mirroring, 339–340, 343
RE, 285–286, 290–291
traffic sampling, 331
transit, 302–303

for IGP discovery, 71–72
for IPv6

EBGP, 542–543
IBGP, 547–548, 551, 553–555, 558
OSPF, 533
RIPng, 526–528
router advertisements, 515, 521

for MPLS
bandwidth reservation, 220–221
Fast Reroute, 203–204
link protection, 205–206
LSP-to-prefix mapping, 185–186, 

190–191
OSPF, 236, 238–239
preemption, 209–210, 212–213
secondary paths, 195–197

for multicast
case study, 483, 487, 489, 493–494
DVMRP, 414–415
IGMP, 407, 410–411
MSDP, 473–474
PIM DM, 431–432, 439
PIM SM using Auto-RP, 457–459
PIM SM using bootstrap, 444–445

for VPNs
with BGP and static routing, 711
case study, 778, 783–784, 787–788, 

790–791, 795, 800–801
draft-Kompella, 751–753
draft-Martini, 767–768
Layer 3, 706–707
mapping to LSPs, 761
with OSPF, 731–733

show arp command, 408–409
show be-high-plp command, 662
show bgp neighbor command

for EBGP, 24–25
for firewall filters, 360–361
for IPv6

case study, 586–587
EBGP, 546
IBGP, 547–549
tunneling, 564

for VPNs
with BGP and static routing, 714–715
case study, 791
draft-Kompella, 758

show bgp summary command
for EBGP, 28, 31
for firewall filters

case study, 350, 358, 363
RE, 280, 288–289, 293–294

for IBGP, 21
for IPv6

case study, 588–590
EBGP, 543–544
IBGP, 558–559



show chassis fpc pic-status command – show firewall filter command 851

for MPLS, 227
for VPNs

with BGP and static routing, 713,
717, 722

case study, 789, 791
draft-Kompella, 757

show chassis fpc pic-status command
for IPv6 tunneling, 566
for PIM SM, 442
for TS PIC, 404
for VPN case study, 804

show chassis hardware command
for E-FPV, 620–621
for IP II, 276

show class-of-service command for
CoS case study

r3, 680–682
r4, 683–685
r5, 686–688

show class-of-service classifier command for 
CoS, 635

case study, 674–675
loss priority, 647
multifield classification, 627–628

show class-of-service drop-profile command, 
664–666

show class-of-service forwarding-class 
command, 629, 635

show class-of-service forwarding-table 
command, 656

show class-of-service interface at-0/1/0 
command for CoS

case study, 675
DSCP rewrites, 640
loss priority, 647
schedulers, 655

show class-of-service interface at-0/2/1 
command, 679–680

show class-of-service interface fe-0/0/2 
command, 627

show class-of-service interface so-0/1/0 
command for CoS

case study, 674, 678
loss priority, 647–648
multifield classification, 634

show class-of-service interface so-0/1/1 
command, 648

show class-of-service interface so-0/2/0 
command for CoS

DSCP rewrites, 640

loss priority, 647
schedulers, 655

show class-of-service rewrite-rule command 
for CoS

case study, 674
DSCP rewrites, 636
loss priority, 646
schedulers, 651

show class-of-service scheduler-map 
command for CoS

CoS case study, 679
RED profiles, 665
schedulers, 655–656

show class-of-service schedulers best-effort 
command, 659

show classifier command, 631
show classifiers command, 672
show community c1 command, 744
show community domain command, 733
show dvmrp neighbors command, 418
show dvmrp prunes command, 425, 427
show expedited-forwarding command,

652–655
show family inet command for firewall

filters
case study, 365–366
prefix-specific counting, 315

show fe0/0/3 command, 407
show filter classify command, 626–627
show filter dc-pscp command, 367
show firewall command

for CoS
multifield classification, 631
r3, 682–683
r4, 685–686

for firewall filters, 351, 361
r3, 378–379
r4, 382–383
r5, 386–389
r6, 391
r7, 393
transit, 303

for VPN case study, 805–806, 814–815
show firewall filter command

for DVMRP, 422
for firewall filters

case study, 361–362, 370–371, 374
Filter Based Forwarding, 325–326
ICMP policing, 309
RE, 297



852 show firewall log command – show interfaces fe-0/0/3 command

show firewall log command
for firewall filter case study, 354–355
for RE firewall filters, 288, 295–296, 298

show firewall policer command, 361, 363–364
show firewall prefix-action-stats command

for firewall filter case study, 369, 373–374
for prefix-specific counting, 317–318, 320

show forwarding options command,
374–375, 389–390

show fxp0 command, 332
show igmp group command, 409
show igmp interface command, 409
show igmp statistics command, 410
show interfaces command

for CoS case study
r3, 673, 677–678
r4, 672

for firewall filters, 359, 362
r3, 376–388
r4, 380–381
r5, 384–386
r6, 390–391
r7, 392–393
traffic sampling, 331

for IGP discovery, 11–13
for MPLS, 228–230

baseline support configuration,
143–144, 146

LDP signaled LSP configuration,
127–129

r1, 247–248
r2, 250–251
r3, 252–254
r4, 257–258
r5, 260–261
r6, 263–264
r7, 266–267

for OSPF, 538
for VPNs

draft-Kompella, 748–749
Layer 3, 702–706
with OSPF, 729

show interfaces at-0/1/0 command for IPv6
addresses, 517–518
case study, 582, 603–604

show interfaces at-0/2/1 command
for DVMRP, 422
for IPv6

addresses, 514
case study, 614

for loss priority, 645

show interfaces fe-0/0/0 command
for CoS

case study, 670, 686
DSCP rewrites, 637, 641
schedulers, 658

for firewall filter case study, 368
for IPv6

case study, 581
r1, 598
r2, 587, 600
r3, 602–603
r4, 608
RIPng, 529
tunneling, 563

for VPN case study, 779–780, 786
r3, 812
r4, 815–816
r5, 817

show interfaces fe-0/0/1 command
for IPv6, 581–582

addresses, 518–519
case study, 594
r1, 598
r2, 600–601
r3, 603
r4, 608–609
RIPng, 530

for VPN case study, 786
r1, 807
r3, 812
r5, 817

show interfaces fe-0/0/2 command
for CoS

case study, 678, 683
multifield classification, 628

for firewall filter case study, 364–365
for IPv6, 585

EBGP, 543
r1, 598–599
r2, 602
r3, 603
r4, 609

for VPN case study, 806
r1, 807
r2, 809
r3, 812

show interfaces fe-0/0/3 command
for firewall filter case study, 375
for IPv6 case study

r1, 599
r2, 602



show interfaces fe-0/1/0 command – show lo0 command 853

for multicast
case study, 489, 499
IGMP, 408

for VPN case study
r2, 809–810
r4, 816

show interfaces fe-0/1/0 command,
779, 818

show interfaces fe-0/1/3 command for VPNs
case study, 818
draft-Kompella, 755

show interfaces fe-0/3/1 command, 782, 819
show interfaces fe-0/3/3 command, 783, 819
show interfaces fxp0 command, 517
show interfaces ip-0/3/0 command, 567–568, 

571–572
show interfaces lo0 command

for firewall filter case study, 354
for IGP discovery, 69–70, 73
for IPv6, 583

addresses, 514
IBGP, 556
r1, 599
r3, 604
r4, 610
r5, 615

for MPLS, 243
for MSDP, 468–470
for VPN case study, 798–799

r1, 807
r2, 810
r3, 812–813

show interfaces ospf command, 572
show interfaces policers command, 313
show interfaces queue command, 658–659
show interfaces so-0/1/0 command

for CoS
case study, 671, 673–674
network control traffic, 661
schedulers, 656–657

for DVMRP, 422
for firewall filter case study, 375
for IPv6

addresses, 513–514, 517
r4, 609
r5, 614–615

for VPN case study, 779, 817
show interfaces so-0/1/1 command

for IPv6 case study, 609–610
for VPN case study, 816

show interfaces so-0/2/0 command
for IPv6 case study, 582, 604
for multifield classification, 629–630

show interfaces terse command
for IPv6 addresses, 515–516
for MPLS

LDP signaled LSP configuration,
129–130

LSP forwarding, 217
show interfaces vt-0/3/0 command, 805, 812
show ipv6 neighbors command, 519
show ipv6 router-advertisement command, 

520–521
show isis adjacency command

for firewall filter case study, 349
for IGP discovery, 14, 73

r2, 71
r3, 70
r7, 76

show isis database command, 179–180
show isis hostname command, 70
show isis interface command

r3, 69
r5, 73

show l2circuit connections command 
for VPNs

case study, 784
draft-Martini, 771–772

show l2vpn connections command, 756, 758
show ldp database command for MPLS

LDP signaled LSP verification, 136
OSPF baseline, 233
pop function, 218–219

show ldp interface command, 133
show ldp neighbor command

for MPLS
LDP instance enabling, 133
LDP signaled LSP verification, 135
OSPF, 233

for VPNs
case study, 781, 784
draft-Martini, 769

show ldp session command
for MPLS

LDP instance enabling, 133
LDP signaled LSP verification, 135
OSPF, 233

for VPN case study, 781
show ldp traffic-statistics command, 140
show lo0 command, 286–287



854 show log command – show pim rps command

show log command, 332–334
show log access-log command, 356
show log isis command, 5
show log ldp-stats command, 140
show mpls interface command

for MPLS
baseline support configuration, 145, 148
LDP signaled LSP configuration, 129
link coloring, 165
for OSPF baseline, 231
processing enabling, 131

for VPNs
case study, 780
Layer 3, 707

show mpls lsp command
for bandwidth reservation, 221–222
for CSPF troubleshooting, 169–170
for ERO constrained LSPs, 159–160
for LDP signaled LSP verification, 138
for link coloring, 168–169
for OSPF, 239
for preemption, 210–214
for routing table integration prefixes, 174
for RSVP signaled LSPs, 152
for secondary paths, 195–196, 198–200

show msdp command, 490–491
show msdp peer command, 470
show msdp source-active command for 

multicast
case study, 490–491
for MSDP

with Any-Cast, 471
interdomain, 476–477

show multicast next-hops command
for case study, 491–493
for DVMRP, 424–425, 427
for PIM DM, 436

show multicast route command
for case study, 491–492
for DVMRP, 420–427
for MSDP interdomain, 477–478
for PIM DM, 435–438
for PIM SM, 450–451

show multicast rpf command
for PIM DM, 434, 440
for PIM SM, 446–447

show multicast scope command
for case study, 487–488
for MSDP interdomain, 479

show ospf database command
for IGP discovery, 9

for VPNs
with OSPF, 730, 737–738
redundancy and route filtering, 741, 

744–745
show ospf neighbor command, 8

for IGP discovery, 9, 11, 14
for MPLS for OSPF baseline, 227
for RE firewall filters, 279, 288, 293
for VPNs

draft-Kompella, 760
draft-Martini, 772
with OSPF, 736

show ospf3 database command,
535–536, 539

show ospf3 interface command, 539
show ospf3 neighbor command

for IPv6 tunneling, 573, 576
for OSPF, 534, 539–540

show output command, 335
show pim command

for PIM DM, 432
for PIM SM, 444

show pim bootstrap command, 447
show pim interfaces command

for case study, 484
for PIM DM, 433, 435
for PIM SM

using Auto-RP, 459
using bootstrap, 446

show pim join command
for case study, 488–492, 494
for MSDP

with Any-Cast, 471–472
interdomain, 477

for PIM DM, 436–440
for PIM SM, 460–461

using Auto-RP, 461–462
using bootstrap, 450–454

show pim neighbors command
for multicast case study, 484
for PIM DM, 433–434
for PIM SM, 446

show pim rps command
for case study, 484–485
for MSDP

with Any-Cast, 470
interdomain, 478

for PIM DM, 435
for PIM SM

using Auto-RP, 460, 463
using bootstrap, 447–448, 454



show policer command – show policy-statement mapping command 855

show policer command
for firewall filter case study, 364–365
for LSP policing, 313

show policer be-policer command, 627
show policer dc command, 314
show policer ftp command, 366
show policer http command, 366–367
show policer icmp command, 308
show policer limit-mpls command, 310
show policy-options command

for MPLS
r3, 255–257
r5, 262–263
r6, 265–266

for VPNs
draft-Kompella, 749–750
Layer 3, 729

show policy-options community c1-c2-rt 
command, 754

show policy-options community c1-c2-vpn 
command, 735

show policy-options community domain 
command for VPNs

with OSPF, 735
redundancy and route filtering, 740

show policy-options community vpn-c1-c2 
command, 740

show policy-options policy-statement 
command

for IPv6
case study, 583, 592–593
EBGP, 545
IBGP, 550–551, 557
OSPF, 534
RIPng, 528–529

for MPLS, 243
for multicast

DVMRP, 425–426
r3, 497
r4, 493, 498

for network discovery and verification
EBGP, 26, 545
IBGP, 22, 550–551, 557
IGP discovery, 78–80

show policy-options policy-statement
bgp-ospf command for VPNs

with OSPF, 738
redundancy and route filtering, 741

show policy-options policy-statement
c1-c2-export command, 755

show policy-options policy-statement
c1-c2-import command, 754–755

show policy-options policy-statement
c1-export command for VPNs

with OSPF, 735–736
redundancy and route filtering, 740–741

show policy-options policy-statement
c1-import command for VPNs

with OSPF, 735
redundancy and route filtering, 740

show policy-options policy-statement ebgp-in 
command, 29

show policy-options policy-statement
ebgp-out command

for EBGP discovery, 29, 32–33
for IPv6 case study, r4, 612

show policy-options policy-statement
ipv6-agg command, 560

show policy-options policy statement
isis-ospf command, 17

show policy-options policy statement l1-l2 
command, 72

show policy-options policy-statement nhs 
command, 764–765

show policy-options policy statement
ospf-isis command, 14–15

show policy-options policy-statement r1-v6 
command, 607–608

show policy-options policy-statement r2-v6 
command, 608

show policy-options policy statement rip-isis 
command, 75

show policy-options policy-statement
send-lo0 command, 802, 814

show policy-options policy statement
static-rip command, 75

show policy-options policy-statement
v6-default command for IPv6 case study

r3, 607
r4, 612–613

show policy-statement bgp-ospf
command, 745

show policy-statement c1-c2-export 
command, 753–754

show policy-statement c1-c2-import 
command, 753

show policy-statement c1-export
command, 744

show policy-statement mapping
command, 762



856 show policy-statement pim-join command – show protocols pim command

show policy-statement pim-join
command, 486

show protocols command
for IGP discovery, 7, 13–14

r3, 67–70
r7, 73–74

for MPLS, 230–231
baseline support configuration, 144–145
r1, 248–250
r2, 251–252
r3, 254–255
r4, 259–260
r5, 261–262
r6, 264–265
r7, 267–268

for VPNs
draft-Kompella, 749
with OSPF, 729
r1, 807–808
r2, 810–811
r3, 813–814

show protocols bgp command
for IPv6, 589, 591–592

case study, 585–588
IBGP, 556–557
r1, 599–600
r2, 602
r3, 605–606
r4, 611–612
r5, 615
tunneling, 563–564, 569

for MPLS, 244
for network discovery and verification

EBGP, 25–26, 28, 31–33
IBGP, 20–23
IGP, 78

for VPNs
with BGP and static routing, 722
case study, 788–789
draft-Kompella, 757
Layer 3, 721

show protocols dvmrp command, 416, 426
show protocols igmp command for multicast 

case study
r4, 498
r5, 499

show protocols isis command
for IGP discovery, 71
for IPv6 case study, 584

r3, 606–607
r4, 612

show protocols l2circuit command for VPN 
case study

r4, 817
r6, 819

show protocols ldp command
for MPLS

LDP instance enabling, 132–134
OSPF, 232
pop function, 219

for VPNs, 780, 783, 786–787
draft-Martini, 768
r4, 816
r5, 818
r6, 818
r7, 819

show protocols mpls command
for MPLS

active prefixes, 177–178
baseline support configuration,

146–148
MPLS processing enabling, 131
OSPF, 232, 234
pop function, 219
TE shortcuts, 182

for VPNs, 779–780, 783, 786–787
Layer 3, 702, 704
r4, 816
r5, 817–818
r6, 818
r7, 819

show protocols msdp command for multicast
case study, 490, 493

r3, 496
r4, 498

MSDP, 467–469
with Any-Cast, 467–469
interdomain, 475–476

show protocols ospf command
for IGP, 9–10
for MPLS, 236–237

show protocols ospf3 command, 533, 538–539
show protocols pim command

for MSDP
with Any-Cast, 468–469
interdomain, 478–479

for multicast case study, 485, 493
r1, 494–495
r2, 495
r3, 495–497
r4, 497–498
r5, 499



show protocols ripng command – show route source-gateway command 857

for PIM DM, 433
for PIM SM

using Auto-RP, 458–460
using bootstrap, 445, 449

show protocols ripng command, 528
show protocols rsvp command

for Layer 3 VPNs, 702, 704
for MPLS

OSPF, 235, 245–246
RSVP signal enabling, 149
RSVP signaled LSPs, 155–156

show rewrite-rules command, 671–672
show ripng neighbor command, 529
show route command

for firewall filters
case study, 350–351
Filter Based Forwarding, 326–327

for IPv6
case study, 588–591
IBGP, 549, 551, 554–556, 558
IS-IS default route, 594
OSPF, 535–537
RIPng, 524–526
tunneling, 564–565, 570–571, 573–576

for MPLS
active prefixes, 178
ERO constrained LSPs, 161
LDP signaled LSP verification, 137–139
OSPF, 228
routing table integration prefixes,

175–176
TE shortcuts, 183–184

for multicast
DVMRP, 419–420, 426
PIM DM, 434, 439–440

for network discovery and verification
IBGP, 24
IGP, 10–11, 16–19, 76–77, 80

for VPNs
with BGP and static routing, 723–724
case study, 782
draft-Martini, 769–770
Internet access from non-VRF 

interface, 764–765
with OSPF, 737, 739
redundancy and route filtering, 742–743

show route advertising-protocol bgp 
command

for EBGP, 26–27, 30, 33–34, 545
for IGP, 80

for VPNs
with BGP and static routing, 716–717
case study, 792–793, 802
draft-Kompella, 759

show route advertising-protocol dvmrp 
command, 420

show route advertising-protocol ripng 
command, 529–530

show route forwarding-table vpn
command, 725

show route hidden command
for EBGP, 34
for IBGP, 550–552, 559

show route-options community transit 
command, 29

show route protocol bgp command
for IPv6 case study, 593, 595–596
for VPN case study, 793–794, 803

show route protocol dvmrp command,
418–419

show route protocol isis command
for firewall filter case study, 349–350
for IGP discovery, 15, 70
for IPv6 case study, 585

show route protocol ospf command
for IGP discovery, 10, 15–16
for MPLS, 227
for OSPF, 534–535
for VPNs

draft-Kompella, 760
draft-Martini, 772
Internet access from non-VRF 

interface, 765–766
show route protocol rip command, 785
show route protocol ripng command, 531–532
show route protocol static command, 712
show route receive-protocol bgp command

for EBGP, 544
for IPv6 case study, 587
for MPLS, 244–245
for VPN case study, 716

show route receive-protocol dvmrp 
command, 420

show route receive-protocol ripng command, 
530–531

show route resolution unresolved command
for IBGP, 550, 552
for IPv6 tunneling, 565

show route source-gateway command,
186–188, 192–193



858 show route table c1 command – show rsvp session detail command for MPLS

show route table c1 command, 713–716
show route table c1-ospf command, 736–737
show route table c2-ospf command, 742
show route table c3 command, 791–792
show route table c4 command, 789,

796–797, 799–802
show route table http command, 324
show route table inet.2 command, 416–418
show route table inet.3 command

for MPLS
LDP instance enabling, 133
LDP signaled LSP verification, 135, 137
LSP forwarding, 216–217
OSPF, 233–234
routing table integration prefixes,

174–177
RSVP signaled, 153–154
TE shortcuts, 180–183

for VPNs
case study, 781–783, 787
draft-Martini, 769

show route table inet6 command, 584
show route table mpls.0 command, 762–764
show routing-instances command

for firewall filter case study, 371
r3, 379–380
r4, 384

for VPNs, 799
with BGP and static routing, 712,

720–721
for case study, 802–803
draft-Kompella, 754
with OSPF, 734–735, 738
r1, 808–809
r2, 811
r3, 815
redundancy and route filtering,

739–740
show routing-options command

for firewall filter case study, 371–372
r3, 379
r4, 383–384

for IBGP discovery, 21
for IPv6

OSPF, 539
r3, 605
r4, 610–611

for MPLS
LDP instance enabling, 133–134
OSPF, 245

for multicasts, 486
DVMRP, 415–416
MSDP interdomain, 475
r3, 495–496
r4, 497

for VPNs
with BGP and static routing, 711, 720
draft-Kompella, 749
with OSPF, 729

show routing-options policy-statement 
command, 569

show routing-options rib command for IPv6
case study, 583, 591
IBGP, 560
tunneling, 569

show routing-options route-distinguisher-id 
command, 753

show routing-options static command
for IGP discovery, 75
for Internet access from non-VRF 

interface, 764
show rsvp interface command

for Layer 3 VPNs, 707
for MPLS

bandwidth reservation, 223
case study, 247
OSPF, 231, 235

for RSVP
authentication configuration, 151
signal enabling, 149
signaled LSPs, 154

for secondary paths, 196, 200–201
show rsvp lsp ingress command, 208
show rsvp neighbor command for MPLS

OSPF, 246
RSVP signal enabling, 150

show rsvp session command
for MPLS

constrained routing, 158
OSPF, 232–233, 240
RSVP signaled LSPs, 152, 157

for RE firewall filters, 280, 289, 294
for VPNs

Layer 3, 707–708
mapping to LSPs, 761

show rsvp session detail command for MPLS
ERO constrained LSPs, 160
LSP rate limiting, 310–311
OSPF, 240
RSVP signaled LSPs, 153–155



show rsvp session egress command – system stanza 859

show rsvp session egress command, 218, 220
show rsvp session ingress command for MPLS

Fast Reroute, 204
link coloring, 168
link protection, 206–207
LSP-to-prefix mapping, 186–187, 191–192
OSPF, 237, 244
secondary paths, 197

show rsvp session transit command for MPLS
Fast Reroute, 204–205
OSPF, 237–238
secondary paths, 199–200

show system syslog command, 354
show ted database detail command, 202
show ted database extensive command 

for MPLS
CSPF troubleshooting, 171
link coloring, 165
OSPF, 242

show term deny-all-else command, 285
show term ports command, 302
show term ssh command, 283–284
show term telnet-in command, 282
show term telnet-out command, 282–283
show traceoptions command

for CSPF troubleshooting, 170
for DVMRP, 428
for PIM tracing, 463

SLARP (Serial Line Address Resolution 
Protocol) protocol traffic, 341

source option for IPv6 case study, 597
source-address option

for MSDP, 467
for prefix-specific counting, 316

source-port option for firewall filters
case study, 362
Filter Based Forwarding, 326
RE, 284

source-port key option, 283
Source Specific Multicast (SSM)

for IGMP, 411
for multicast case study, 488

source-specific trees, 430
sparse mode, PIM, 430, 441

configuring
using Auto-RP, 455–459, 455
using bootstrap, 441–445, 443

RP election problems, 449–450
verifying

using Auto-RP, 459–463
using bootstrap, 445–455, 455

Sparse option, 434
SparseDense option, 434
SPF (Shortest Path First), 161–163

link coloring for, 163–167, 163
for LSPs, 167–169
for RSVP signaled LSPs, 152–154
and TEDs, 158
troubleshooting, 169–171

SSH connections
port assignments for, 345
for RE firewall filters, 296

SSM (Source Specific Multicast)
for IGMP, 411
for multicast case study, 488

standby keyword for MPLS
OSPF, 239
secondary paths, 194

static and BGP routing
configuring, 708–712, 709
in IGP discovery, 75
ping testing for, 4
verifying, 712–727

static LSPs, 124
StreamPlayer application, 423
StreamPump application, 423
strict EROs, 158
strict-high priority, 652
subnet-prefix-length parameter for 

firewall filters
case study, 366
prefix-specific counting, 315

SVCs, 124
swap functions, 124
system stanza

for IS-IS baseline
r1, 82–83
r2, 86–87
r3, 90–91
r4, 96–97
r5, 102–103
r6, 106–107
r7, 111–112

for OSPF baseline
r1, 37–38
r2, 40–41
r3, 44–45
r4, 49–50
r5, 53–54
r6, 57–58
r7, 62–63



860 T1 router – tracing

T
T1 router

for CoS
DSCP rewrites, 637–638, 640–641
loss priority, 648–649
multifield classification, 628–631
schedulers, 657–658

for EBGP discovery, 28–30
for firewall filters

Filter Based Forwarding, 327
prefix-specific counting, 317–320

for IPv6 case study, 597
for MSDP interdomain, 478–479

tables, DSCP rewrite, 636–637, 640
TACACS+ service port assignments, 345
tcp-initial option, 299, 301
TE (traffic engineering). See MPLS (Multiple 

Protocol Label based Switching) and 
traffic engineering

TE extension support in CSPF, 162
TED (Traffic Engineering Database)

in CSPF, 158, 161–162
in ERO-based routing, 157
in Fast Reroute, 202–203, 202
with link coloring, 167
for RSVP signaled LSPs, 153–154

telnet command
for CoS

case study, 670
DSCP rewrites, 637–638, 640
multifield classification, 630

for firewall filters
case study, 355–356
prefix-specific counting, 317–318
RE, 287, 297–298
transit, 303–306

for IPv6 tunneling, 576–577
for MSDP interdomain, 478
port assignments for, 345
for router access, 4–5
for saving time, 3
for VPNs

with BGP and static routing, 716–717
case study, 784–785, 793–794, 797
draft-Kompella, 759
draft-Martini, 772

test bed topology, 5–7, 6
test-cflowd log file, 336

topology, OoB, 3–4, 3
ToS (Type of Service) field, 638
traceroute command

for EBGP, 35
for firewall filters

case study, 356, 359–360, 363, 369, 372
Filter Based Forwarding, 327
prefix-specific counting, 320
traffic sampling, 333

for IGP discovery, 15–16, 19
r1, 77, 80–81
r3, 69, 77
r6, 76–77
r7, 72

for IPv6
addresses, 520
case study, 584–585, 597
IBGP, 552–553, 556, 559–561
OSPF, 537
RIPng, 532
tunneling, 576–577

for MPLS
active prefixes, 178
ERO constrained LSPs, 161
LDP signaled LSP verification, 138–140
LSP forwarding, 215–216
LSP policing, 312
OSPF, 234–235
routing table integration prefixes,

176–177
TE shortcuts, 182–184

for multifield classification, 628–629
port assignments for, 345
for VPNs

with BGP and static routing, 719–720, 
723–724

case study, 782, 785, 795, 797–799, 
803–804

draft-Kompella, 760
draft-Martini, 773
Internet access from non-VRF 

interface, 765
with OSPF, 739

traceroute routing-instance c1 command, 719
traceroute routing-instance c1-ospf 

command, 742
traceroute routing-instance c4 command, 797
tracing

DVMRP, 427–429
PIM, 463–464



traffic engineering (TE) – verifying 861

traffic engineering (TE). See MPLS (Multiple 
Protocol Label based Switching) and 
traffic engineering

traffic-engineering bgp-igp action, 184
Traffic Engineering Database (TED)

in CSPF, 158, 161–162
in ERO-based routing, 157
in Fast Reroute, 202–203, 202
with link coloring, 167
for RSVP signaled LSPs, 153–154

traffic-engineering keyword, 237
traffic protection in MPLS, 194

Fast Reroute in, 201–205, 202
link protection in, 205–208
preemption in, 208–214
secondary paths, 194–201
summary, 214

traffic sampling, 329
case study, 376–393
cflowd export, 334–337
configuring, 330–332
port mirroring for, 338–343, 338,

342–343
review questions, 394–399
review questions, answers to,

400–401
summary, 343–345
verifying, 332–334

transit firewall filters
applying and verifying, 303–307
creating, 299–303

transit LSRs, policing on, 309
transit switch for Fast Reroute, 204–205
transport-address keyword, 135
troubleshooting

CSPF, 169–171
interfaces, 341–342
Layer 3 VPNs, 714–715
OSPF3, 538–540
PIM-SM RP elections, 449–450
RSVP, 154–157

TS PIC (tunnel services Physical Interface 
Card), 404

tunneling IPv6, 561, 562
configuring, 562–567, 566
IBGP and EBGP adjustments for,

569–577
summary, 577
verifying, 567–569

Type of Service (ToS) field, 638

U
unicast addresses

Format Prefixes for, 512
scoping for, 511

up command, 513
upside-down routing, 441
user accounts, 4

V
v6-default policy, 584
validation techniques, IS-IS case study,

67–82, 82
VCs (Virtual Circuits), 124
verifying

COS
BA classification, 634–635
DSCP rewrites, 639–642
loss priority, 646–650
multifield classification, 628–631
RED profiles, 664–666
schedulers, 655–659

firewall filters
cflowd export, 335–337
Filter Based Forwarding, 326–328
ICMP policing, 308–309
LSP policing, 312–313
port mirroring, 340–343, 340,

342–343
PSCP, 317–320
RE, 286–299
traffic sampling, 332–334
transit, 303–307

IBGP, 20–24
IGP

core, 7–10
for interface operation, 5
redistribution, 10–19

IPv6
addressing, 515–520
EBGP, 543–546
IBGP, 558–561
OSPF, 534–537
RIPng, 529–532
route redistribution, 534–537
router advertisements, 520–521
tunneling, 567–569



862 Virtual Circuits (VCs) – Wsend application

MPLS and traffic engineering
active prefixes, 178–179
CSPF constrained LSPs, 167–169
ERO constrained LSPs, 159–161
Fast Reroute, 204–205
LDP signaled LSPs, 134–140
link protection, 206–208
LSP-to-prefix mapping, 191–193
RSVP signaled LSPs, 151–154
secondary paths, 197–201

multicast
DVMRP, 416–427, 421
IGMP, 408–411
MSDP interdomain, 475–479
MSDP with Any-Cast, 470–472
PIM DM, 433–440
PIM SM using Auto-RP, 459–463
PIM SM using bootstrap, 445–455

OoB networks, 2–3
telnet for, 4–5
topology in, 3–4, 3

VPNs
with BGP and static routing, 712–727
draft-Kompella, 755–766
draft-Martini, 769–773
Layer 3, 707–708
OSPF, 736–739
redundancy and route filtering, 739–746

Virtual Circuits (VCs), 124
vpn switch, 746
vpnb-icmp counter, 807
VPNs (virtual private networks),

698–699, 699
case study, 775–776, 775, 777

analysis, 778–807
configurations, 807–819

Layer 2, 746–747
draft-Kompella, 747–750, 748
draft-Kompella configuring, 750–755
draft-Kompella verifying, 755–766
draft-Martini configuring, 766–768
draft-Martini verifying, 769–773
Internet access from non-VRF 

interface, 764–766
mapping to LSPs, 760–764
summary, 773–774

Layer 3, 699–700, 700
with BGP and static routing,

708–712, 709
configuring, 700–707, 701
with OSPF and PE-CE, 727–731, 728
with OSPF configuring, 731–736
with OSPF verifying, 736–739
summary, 746
verifying, 707–708

review questions, 820–824
review questions, answers to, 825–827
summary, 774–775

VRF interface, 699, 700, 727
vrf-table-label, 726, 746, 804
vrf-target option for VPNs, 726

with BGP and static routing, 710
case study, 788
with OSPF, 732

VRRP service port assignments, 345
vt-interface, 726, 746, 804–805

W
Wlisten application, 423
Wsend application, 423


	Cover
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Untitled



